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ABSTRACT 

In this research, a supply chain network design (SCN) considering transportation and 

shortage costs was developed and solved via CPLEX. In general cases, some input 

parameters have been considered as constant values. However, in real-world problems, 

most input parameters are not always constant due to the fluctuation of many factors, 

e.g., time constraints, seasonal demand, and weather conditions. Therefore, an input 

parameter of the developed model in this research, i.e., the capacity of unreliable 

distribution centers (unreliable DCs) was considered as random variable and analyzed 

via a stochastic programming approach which is the scenario-based technique. The 

result obtained from the scenario-based technique provides decision-makers a more 

precise value of the model’s total cost and made it easier to make strategic decisions 

and long-term plans.  

 

Keywords: Supply chain network, Supply chain network design, Stochastic 

programming, Scenario-based technique, Unreliable distribution centers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

CONTENTS 

 Page 

ACKNOWLEDGMENTS iii 

ABSTRACT iv 

LIST OF TABLES vii 

LIST OF ABBREVIATIONS ix 

CHAPTER 1 INTRODUCTION 1 

1.1 Background of the Study 1 

1.2 Statement of the Problem 2 

1.3 Objectives of the Study 3 

1.4 Scope and Limitations of the Study 3 

1.5 Organization of the Thesis 4 

CHAPTER 2 LITERATURE REVIEW 5 

2.1 Connectivity Between Disruption and SCND 5 

2.2 Approaches to Mitigate the Effect of Disruption to SCN 6 

CHAPTER 3 MODEL FORMULATION  12 

3.1 Overview 12 

3.2 Case 1: A General Model without Disruption  

             (No Capacity Changing) 12 

 3.2.1 Objective Function 13 

CHAPTER 4 NUMERICAL EXPERIMENTS 16 

4.1 Overview 17 

 4.1.1 Case 1: Base Case 16 

 4.1.2 Case 2: When the Number of Retailers Increases  

                       from 2 to 20  24 

 4.1.3 Case 3: The Model with Disruption at DCs:  

                       Scenario-Based Technique 28 

 4.1.4 Case 4: The Model with Disruption at DCs:  

                       Scenario-Based Technique 35 

 
 



 vi 

CONTENTS  

   Page 

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 49 

5.1 Conclusions 49 

5.2 Recommendations 50 

REFERENCES 51 

APPENDIX 54 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 



 vii 

LIST OF TABLES 

Tables                                                                                                                      Page 

Table 1.1 Literature Review Table 9 

Table 4.1 Set and Indices  16 

Table 4.2 Unit Transportation Cost in Dollars from Reliable DC j to 

Retailer i  (𝑐𝑖𝑘) and from Unreliable DC k to Retailer i (𝑐𝑖𝑘) 

16 

 

Table 4.3 The Value of Input-Parameters in the Base Case 17 

Table 4.4 The Optimal Value of Decision Variables and the Objective 

Function Value in the Base Case 

18 

 

Table 4.5 Sensitivity Analyses with Respect to Demand Parameters 19 

Table 4.6 Sensitivity Analyses with Respect to the Capacity of Unreliable 

DCs 

20 

Table 4.7 Sensitivity Analyses with Respect to the Capacity of Reliable 

DCs 

22 

Table 4.8 Unit Transportation Cost in Dollars from Reliable DC j to Retailer 

i (𝑐𝑖𝑗) and from Unreliable DC k to Retailer i (𝑐𝑖𝑘)  

24 

Table 4.9 The Value of Input-Parameters for the Case2 25 

Table 4.10 The Optimal Value of Decision Variables and the Objective 

Function Value in Case 2  

26 

Table 4.11 Sensitivity Analyses with Respect to Each Parameter 27 

Table 4.12 Capacity Scenario of Unreliable DC1 28 

Table 4.13 Capacity Scenario of Unreliable DC2 29 

Table 4.14 The Expected Total Cost When Allocation Decision is 

Determined by Scenario1 

30 

Table 4.15 The Expected Total Cost When Allocation Decision is 

Determined by Each Scenario 

33 

Table 4.16 Allocation Decision of Scenario 24  33 

Table 4.17 Comparison Results of Cases 2 and 3 34 

Table 4.18 Unit Transportation Cost in Dollars from Reliable DC j to 

Retailer i (𝑐𝑖𝑗)  and from Unreliable DC k to Retailer i (𝑐𝑖𝑘)  

35 

  



 viii 

LIST OF TABLES  

Tables                                                                                                                      Page 

Table 4.19 The Value of Input-Parameters for Case 4 36 

Table 4.20 The Optimal Value of Decision Variables and the Objective 

Function Value in Case 4 (without Using the Scenario-Based 

Technique) 

37 

Table 4.21 Capacity Scenario of Unreliable DCs 38 

Table 4.22 The Expected Total Cost When Allocation Decision is 

Determined by Scenario2 

39 

Table 4.23 The Expected Total Cost When Allocation Decision is 

Determined by Each Scenario 

45 

Table 4.24 Allocation Decision of Scenario 85 47 

Table 4.25 Comparison Results of Case 4 without and with Scenario-Based      

Technique 

48 

  



 ix 

LIST OF ABBREVIATIONS 

DC = Distribution Center 

DCs = Distribution Centers 

SCN = Supply Chain Network 

SCND = Supply Chain Network Design 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 
 

 
 

1 

CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study  

Several organization goals, e.g., cost reduction in locating DCs’ locations, determining 

DC capacity, and sourcing shipments between DCs and customers can be achieved by 

A well-designed supply chain network. Because of fast technological advancement, 

organizations with a fundamental supply chain can expand the structure of a supply 

chain to be more complex involving a higher level of interdependence and connectivity 

between organizations; this results in a supply chain network. Businesses are mostly 

part of a more extensive network of organizations; a supply-chain network can be used 

to highlight interactions between organizations. The flow of information and materials 

across organizations can be seen using a supply chain network. SCNs are now more 

worldwide than ever and commonly consist of five key areas: external suppliers, 

production centers, distributors, demand zones, and transportation assets. 

 

Many companies nowadays have been directed to modify their primary supply chain, 

analyzing the tools and resources to develop an improved SCN design that considers 

taxation regulations, new entrants into their industry, and availability of resources, 

resulting in more complex and appropriate network designs. A supply chain network 

can be strategically designed to relieve the cost of the supply chain. Specialists have 

recommended that 80% of supply chain costs are defined by the location of facilities 

and the flow of products between the facilities. Supply chain network design can also 

be referred to as Network Modelling. A mathematical model can be developed to 

optimize the supply chain network. For example, transportation, fixed cost of opening 

DCs, and shortage costs can be written in a mathematical form and solved by some 

software to reach optimal solutions. 

 

Designing a SCN relates to constructing a network which contains all the facilities, 

production approaches, products, and transportation properties owned by the 

organization or those not owned by the organization, but which support the supply chain 

operations and product flow. The SCND should also consists of details of the number 
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and location of facilities: plants, warehouses, and suppliers. Therefore, a SCN can be 

illustrated as the integration of nodes with capability and capacity, connected by various 

ways to help products move between facilities. As data accessibility keeps improving, 

it is getting growingly essential for organizations to create data-driven SCND decisions 

regarding transportation based on accurate transportation data. 

 

There is no definitive way to design a SCN as the network footprint, the capability and 

capacity, and product flow. All of these intertwine and are interdependent. There exists 

no single optimal SCN design. There is an apparent trade-off between responsiveness, 

risk tolerance, and efficiency in designing the network. Costs in an organization can be 

relieved by effective designing of SCN. It is necessary to be noted that the supply chain 

is a consistently improved system and adjust in response, is not stable. A crucial 

component of designing the SCN is to ensure that the network is multipurpose and 

robust adequate to deal with future uncertainties. Although there is inherent uncertainty 

related to the future, the use of information available can conduct the analysis of a SCN 

risk.  

 

There are two categories of SCN related to uncertainty which are endogenous 

uncertainty and exogenous uncertainty. Uncertainty can be classified as ‘endogenous’ 

when the source of the risk is in the SCN itself, e.g., market fluctuation or technological 

turbulence. Experts classified uncertainty as exogenous when the risk comes from 

external sources. Exogenous uncertainties can be further classified, e.g., economic 

fluctuation can be addressed as a ‘continuous risk’ while ‘discrete’ risks represent the 

events that could rarely disrupt the supply-chain process, e.g., natural catastrophes. 

 

1.2 Statement of the Problem 

The models related to supply chain network design consist of many mathematical 

formulations with different objective functions and constraints. Generally, the purpose 

of developing a mathematical optimization model is to minimize the total costs of the 

supply chain network. 

 

Researchers have spent many efforts for decades developing models that suit various 

practical situations. Related to the disruption problem at distribution centers, an 
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assumption considered in the past research was “when a DC is disrupted, its capacity 

will be completely lost, and it cannot serve any demand. In other words, it fully fails 

when disruption occurs”. However, a disrupted DC might lose only some of its 

capacity. Some other research works also considered that the capacity of a DC is 

unlimited. Therefore, a new model is needed to be developed to address these issues. 

 

In summary, supply chain network design needs to be considered because it helps 

determine strategic decisions, e.g., defining the suitable number of facilities in the 

model, determining the facility locations, determining the facility sizes (facility 

capacity), and determining the allocation of retailers to distribution centers (distribution 

strategies). Once a strategic decision is derived, it always lasts for a long time, e.g., 

more than five years. In this current research, the focus will be on the distribution 

strategies in which the problem of allocation of retailers to distribution centers will be 

addressed under the existence of disruption at distribution centers. 

 

1.3 Objectives of the Study 

The focus of this research is as follows. 

1. Developing a model to help allocate retailers to distribution centers 

      considering disruption at DCs. 

2. Satisfying the demand of all customers to the maximum extent under 

        disruption. 

3. Minimizing the transportation cost and the shortage cost in the network. 

 

1.4 Scope and Limitations of the Study 

This research will be conducted under the following assumptions. 

1. There are multiple DCs and multiple retailers in the model.  

2. There are reliable DCs and unreliable DCs with known maximum capacities. 

3. DCs in the model are fixed, which means we know which DCs are open, 

reliable, not reliable and know DCs’ location and DCs’ capacities. 

4. A retailer will be assigned to a primary DC and/or a secondary DC.  If the 

retailer is assigned to a reliable DC as a primary DC, there is no need to assign 

a secondary DC.  But if the primary DC is an unreliable DC, the retailer will 

also be assigned to a reliable DC as a secondary one. 
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5. There is no transportation disruption. 

6. When disruption occurs at an unreliable DC, the DC does not entirely fail. The 

capacity on that DC will change following a discrete distribution with known 

capacity. 

7. No product will be transferred between reliable DCs and unreliable DCs. The 

product is always transferred directly from DCs to retailers. 

8. Any open facility may serve any customer (there are no connectivity 

restrictions). 

9. A single product is considered in the model. 

 

1.5 Organization of the Thesis 

This thesis is organized into 6 chapters and the rest are organized as follows 

• Chapter 2 presents related literature review. 

• Chapter 3 presents the model developed in this study.  

• Chapter 4 presents various cases of input parameters of the model tested and 

analyzed via sensitivity analyses. 

• Chapter 5 presents the conclusion and recommendations obtained from this 

research results. 
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CHAPTER 2 

LITERATURE REVIEW 

This research aims to develop a model that effectively helps allocate retailers to 

distribution centers considering disruption risk at DCs. As such, this literature review 

covers previous studies related to supply chain network design, disruption in SCND, 

and mitigation strategies used in SCND.  

 

2.1 Connectivity Between Disruption and SCND 

Once a strategy of SCND is launched, it will be very costly and tough to apply a new 

strategy. When a SCND is in use, the parameters used in the model will not be constant. 

It will fluctuate due to many factors, such as disruption. As such, models developed to 

deal with this problem have been explicated by many researchers (Snyder [3]). 

   

A structure related to mental concepts and initial outcome for the emerging area of 

disruption risk management in SCNs was introduced by Paul et al. [30]. Operational 

risks such as equipment malfunction, unexpected discontinuities in supply, human-

centered issues from strikes to fraud, and risks emerging from natural catastrophes, 

terrorism attack, and instability of politicization are the focus of the paper. 

 

Snyder et al. [15], Qin and Tang [16], and Klibi et al. [17] reviewed many SCND 

models which are flexible to all kinds of disruptions. The network reliability theory [18, 

19, 20] considers maximizing the probability of a network that a connectivity is still 

connected after a random disruption occurs. Maximizing demand coverage is another 

objective of a reliable network. According to classical facility location problems, SCND 

under random disruptions, in which disruption can disrupt DCs with a given probability, 

was guided by Snyder and Daskin [23]. 

 

Hakimi (1964) introduced the classical p-median problem. He assumed that customers 

always get service from the facility that minimizes their “travel cost” (that can also 

serve as a representative for many other costs). Berman et al. [6] introduced a reliability 

aspect which is, considering the likelihood possibility that a facility might suffer by 

disruption and lack of serving any demand for the purposed that he tried to conclude 
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the classical p-median problem. In other words, a p-median problem was proposed by 

Berman et al. [6] and minimizing the demand weighted transportation cost was the 

objective function. Different facilities were allowed to have different probabilities of 

failure.  

 

The random disruption in the DCs’ locations has been considered in many literatures, 

but in the real world, disruption can also disrupt the connectivity between DCs and 

customers. Azad et al. [2] considered that the transportation modes between DCs and 

customers can be disrupted as well as the DCs’ locations. 

 

2.2 Approaches to Mitigate the Effect of Disruption to SCN 

Gurnani et al. [31] showed a conclusion of strategies which relieve the probability 

disruption of a supply chain or alleviate disruption impact. A scrupulous review of the 

literature on supply chain disruption was presented as the objective.  

 

A stochastic programming model and solution approaches for correcting supply chain 

network design problems were proposed by Santoso et al. [36]. They presented the 

importance of the stochastic model via a computing study related to two existing supply 

chain networks.  

 

Adegoke et al. [32] categorized the types of risks, investigated mitigation strategies to 

deal with risks, and identified generic strategies which cope most kinds of risk and 

particular strategies for coping risks. The summary table of the authors’ findings, which 

includes risk category, risk type, classification, and mitigation strategies, is shown in 

the paper.  

 

Peidro et al. [33] presented a review of literature related to supply chain planning 

approaches under uncertainty. They identified a taxonomy to classify models from 

many references. Some of the strengths and weaknesses of the approaches recently used 

in the review have been addressed and shown in table form. 

 

Baghalian et al. [37] developed a stochastic model for planning a network framework 

for a supply chain, which consists of several capacitated production facilities, DCs, and 
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retailing facilities regarding both demand-side and supply-side uncertainties. This 

model assures to provide a predetermined service level for its customers regarding extra 

and shortage costs in retailing facilities. 

 

The so-called hardening strategy can strengthen selected DCs in SCND under random 

disruption Lim et al. [1]. This approach considers the random disruption in the location 

of DCs. Types of DCs are categorized to be two types which are reliable and unreliable 

DC. The random disruption can occur only in unreliable DCs. When a random 

disruption occurs, the capacity of disrupted DC fails entirely, and the customers 

assigned to this DC must be reassigned to a reliable DC. By investment, a reliable DC 

exists on the system.   

 

Azad et al. [2] developed a SCN considering both first- and second-order moments to 

formulate the problem. Also, they applied the concept of a well-known risk measure 

known as conditional value-a-risk (CVaR) into their model to manage the monetary 

risk. 

 

Many strategies to relive the effect of disruptions in the supply chain have been 

reviewed by Wallace J. et al. [29] 

 

A reliable p-median problem was considered, and a heuristic method for solving it was 

developed by Drezner [21]. Lee [22] also developed a practical approach to solve the 

reliable p-median problem. In their model, there existed two customer assignments: 

primary and secondary assignment. Their assumption was that a disrupted DC cannot 

serve any product of its capacity, and there will be reassignment for customers, who are 

assigned to the disrupted DC, from the disrupted DC to a non-disrupted DC. 

Minimizing the cost of a normal situation and a disruption situation was the objective 

function. 

 

Snyder and Daskin [24] extended their previous work from [23] and the concept of 

stochastic p-robustness was introduced. They considered facility location models which 

combine the advantages of both the stochastic and robust facility location models. 
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Ahmadi Javid A and Azad N [25] developed a novel model to optimize a stochastic 

supply chain system’s location, allocation, capacity, inventory, and routing decisions 

simultaneously. The demand of each customer is uncertain following a normal 

distribution, and each distribution center maintains a certain amount of safety stock. 

They solved the model by an exact solution approach by considering the problem as a 

mixed-integer convex program and a heuristic method based on a hybridization of Tabu 

Search and Simulated Annealing.  

 

Chopra et al. [26] showed that bundling the two uncertainties, decoupling recurrent 

supply risk and disruption risk, can guide a manager to underutilize a reliable source 

while overutilize a cheaper but less reliable supplier. They presented that increasing 

quantity from a cheaper but less reliable source is a capable risk mitigation strategy if 

most supply risk comes from an increase in repeated uncertainty. 

 

Some general concepts for modeling stochastic optimization problems were reviewed 

by Ruszczyński et al. [39]. Also, the reader can refer to this approach (stochastic 

programming) by reviewing the tutorial of Alexander Shapiro and Andy Philpott [40]. 

 

The summary of the literature review is shown in table1. Table1 shows the existing gap 

that the author tries to fulfill.     

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Table 1.1  

Literature Review Table 

Author Facility 

disruption 

Transporta-

tion 

disruption 

Transporta-

tion 

mode 

Site-

dependent 

probability 

of disruption 

Capacitated- 

facility location 

problem 

Reliable  

model 
Hardening 

strategy 

Soft-

hardening 

strategy 

Correlated- 

probability 

of disruption 

Drezner 

[21] ✓         

Lee [22] ✓         
Snyder 

and 

Daskin 

[24] 
✓   ✓  ✓    

Berman 

et al. [34] ✓   ✓      
Tang et 

al. [34] ✓         
Gade and 

Pohl [5] ✓   ✓ ✓     
Cui et al. 

[14] ✓   ✓      
Li and  

Ouyang 

[35] 
✓   ✓     ✓ 

Lim et al. 

[1] ✓   ✓   ✓   
Azad et 

al. [2] ✓ ✓ ✓ ✓ ✓ ✓  ✓  
This 

research ✓   ✓ Modified from 

[2] ✓  Simplified  

from [2]  

9
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Each criterion and each part can be described as follows. 

1. Facility disruption 

The problem considered in the research is mainly about unavailability in 

distribution centers due to disruption.  

2. Transportation disruption 

A disruptive event can occur while a DC is transporting goods to retailers. 

3. Transportation Mode 

There is more than one transportation mode in the model, e.g., truck, 

airplane, and sea shipment. 

4. Site-dependent probability of disruption 

The probability of disruption depends on the location of DC. 

5. Capacitated-facility location problem (CFLP) 

This concept is about opening facilities with a finite capacity to serve the 

demands of retailers.  

6. Hardening strategy 

The concept of hardening strategy was presented by Lim et al. [1]. The types 

of DCs are categorized into two: reliable and unreliable DC. When a random 

disruption occurs at an unreliable DC, the unreliable DC completely fails 

(not working), and the customers assigned to this DC must be reassigned to 

a reliable DC. They also assumed that a fully reliable DC appears in the 

system by investment, and there is no need to consider partial disruption at 

unreliable DCs.     

7. Soft-hardening strategy  

This comprehensive strategy considers the investment level in the model. It 

is an extended version of the hardening strategy. It assumes that the impact 

of disruption in unreliable DCs depends on the amount of investment. The 

impact of disruption can be reduced by additional investment. Because of 

additional investment, a disrupted unreliable DC does not entirely fail all of 

its capacity but may lose only just some capacity. The fraction of the 

capacity loss of a DC depends on the amount of investment for operating 

and opening.     
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8. Correlated probability of disruption 

Li and Ouyang [35] introduce this concept. There are strong correlations 

among facilities because neighboring facilities have a high probability of 

facing similar hazards. They assumed that neighboring facilities were more 

likely to fail simultaneously. For instance, the probability of a DC being 

disrupted is relative to the disruption probability of its near facilities. 

9. Reliable model 

Reliability of a model is the ability to perform well even some parts of the 

system fail due to disruption. There are many ways to enhance the model to 

perform well under disruption, such as considering primary and secondary 

assignments in the system. 

10. Simplification of soft-hardening strategy 

As mentioned in the table above, this research will simplify the concept of 

the soft-hardening strategy of Azad et al. [2]. The simplification is that the 

author will not consider the investment concept in this research, and the rest 

will be the same as the original. 

11. Modification of Capacitated-facility location problem (CFLP)  

The author will modify an unrealistic assumption from the work of Azad et 

al. [2], which is that the capacities of reliable DCs are unlimited. In this 

research, the capacities of reliable DCs become limited, which is more 

realistic to practical situations.    
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CHAPTER 3 

MODEL FORMULATION 

3.1 Overview 

To reach the desired supply chain network providing the minimization in transportation 

cost and shortage cost, a mathematical model related to SCN must be developed. Also, 

sensitivity analyses will be conducted in many scenarios where the input parameters 

change to prove the model’s efficiency and correctness. Therefore, this chapter will 

address the model formulation in detail as follows. 

 

3.2 Case 1: A General Model without Disruption (No Capacity Changing)  

These notations will be used for derivation of mathematical model.  

Indices and sets 

𝐼   Set of retailers  ; 𝑖 ∈ 𝐼   

𝐽   Set of reliable DCs  ; 𝑗 ∈ 𝐽    

𝐾    Set of unreliable DCs  ; 𝑘 ∈ 𝐾  

 

Parameters 

𝑐𝑖𝑗   Unit transportation cost from reliable 𝐷𝐶𝑗 to retailer 𝑖  

𝑐𝑖𝑘  Unit transportation cost from unreliable 𝐷𝐶𝑘 to retailer 𝑖  

𝑑𝑖   Demand of retailer 𝑖   

𝐶𝑎𝑢𝑘  Capacity of unreliable 𝐷𝐶𝑘, (Note that this value will change because of the 

              unreliability due to disruption, so the concept of stochastic programming will 

              be introduced in the next phase)  

𝐶𝑎𝑟𝑗   Capacity of reliable 𝐷𝐶𝑗  

𝜋   Penalty cost per unit of shortage  

𝑀   A very large value, e.g., 1,000,000 

𝑇   Transportation cost  

𝑆   Shortage cost  

𝑂   Objective function cost 
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Decision variables  

𝑋𝑖𝑗  1, if retailer 𝑖 is assigned to reliable 𝐷𝐶𝑗 as a primary DC  

        0, otherwise  

𝑌𝑖𝑘  1, if retailer 𝑖 is assigned to unreliable 𝐷𝐶𝑘 as a primary DC  

       0, otherwise  

𝑍𝑖𝑗  1, if retailer 𝑖 is assigned to reliable 𝐷𝐶𝑗 as a secondary DC  

       0, otherwise  

𝑞𝑥𝑖𝑗   Quantities of goods transported from reliable 𝐷𝐶𝑗 to retailer 𝑖 in the primary 

              assignment 

𝑞𝑦𝑖𝑘  Quantities of goods transported from unreliable 𝐷𝐶𝑘 to retailer 𝑖 in the primary 

assignment 

𝑞𝑧𝑖𝑗  Quantities of goods transported from reliable 𝐷𝐶𝑗 to retailer 𝑖 in the secondary 

assignment 

 

3.2.1 Objective Function 

The objective function is the minimum sum of all transportation costs from each DC to 

each retailer, and all shortage costs, happen at each retailer if the retailer’s demand 

cannot be fulfilled in the whole system. 

 

𝑀𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗𝑞𝑥𝑖𝑗 + ∑ ∑ 𝑐𝑖𝑘𝑞𝑦𝑖𝑘 +

 𝑘∈𝐾𝑖∈𝐼𝑗∈𝐽𝑖∈𝐼

 ∑ ∑ 𝑐𝑖𝑗𝑞𝑧𝑖𝑗 +

𝑗∈𝐽𝑖∈𝐼

 

∑[ 𝑑𝑖 − (∑ 𝑞𝑥𝑖𝑗 + ∑ 𝑞𝑦𝑖𝑘 + ∑ 𝑞𝑧𝑖𝑗)

𝑗∈𝐽𝑘∈𝐾𝑗∈𝐽

]

𝑖∈𝐼

∗ 𝑃𝑒𝑛                     (1) 

 

The objective function’s first, second, and third terms represent the transportation costs 

from DCs to retailers. The last term represents the total shortage costs that happened at 

all retailers, in which the shortage amount can be calculated from the summation of the 

gaps between the demand of a retailer and the total amount of goods a retailer received. 

 

Subject to  

 

∑ 𝑞𝑥𝑖𝑗 + ∑ 𝑞𝑦𝑖𝑘 + ∑ 𝑞𝑧𝑖𝑗 ≤

𝑗∈𝐽𝑘∈𝐾𝑗∈𝐽

 𝑑𝑖   ; ∀𝑖 ∈ 𝐼          (2)    
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The first constraint states that the total amount a retailer receives does not exceed its 

demand.  

∑(𝑞𝑥𝑖𝑗 + 𝑞𝑧𝑖𝑗)

𝑖∈𝐼

 ≤ 𝐶𝑎𝑟𝑗   ; ∀𝑗 ∈ 𝐽           (3) 

The second constraint prevents a reliable DC from supplying more than its capacity to 

retailers. 

 

∑ 𝑞𝑦𝑖𝑘

𝑖∈𝐼

 ≤ 𝐶𝑎𝑢𝑘   ; ∀𝑘 ∈ 𝐾          (4)    

Similar to constraint 3, this constraint ensures that the total supplies of an unreliable 

DC delivered to retailers cannot exceed its capacity. 

 

∑ 𝑌𝑖𝑘

𝑘∈𝐾

+  ∑ 𝑍𝑖𝑗

𝑗∈𝐽

= 2 (1 − ∑ 𝑋𝑖𝑗

𝑗∈𝐽

)   ; ∀𝑖 ∈ 𝐼          (5) 

Constraint (5) means that if a retailer is assigned to a reliable DC as a primary DC, it 

will not be assigned to any unreliable DC as primary DC, and also, there will be no 

secondary DC for that retailer. However, when a retailer is assigned to an unreliable 

DC as a primary DC, it will also be assigned to a reliable DC as a secondary DC. 

 

𝑋𝑖𝑗 ∈ {0,1}   ; ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽          (6) 

 

𝑌𝑖𝑘 ∈ {0,1}   ; ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾        (7) 

 

𝑍𝑖𝑗 ∈ {0,1}   ; ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽          (8) 

Constraints (6) to (8) enforce that these decision variables must be binary. 

 

𝑞𝑥𝑖𝑗 ≥ 0; ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽          (9) 

 

𝑞𝑦𝑖𝑘 ≥ 0; ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾       (10) 

 

𝑞𝑧𝑖𝑗 ≥ 0; ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽          (11) 

Constraints (9) to (11) state that the number of goods shipped from each DC to each 

retailer cannot be negative. 
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𝑞𝑥𝑖𝑗 ≤ 𝑀 ∗ 𝑋𝑖𝑗 ; ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽           (12)            

𝑞𝑦𝑖𝑘 ≤ 𝑀 ∗ 𝑌𝑖𝑘 ; ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾        (13)       

 

𝑞𝑧𝑖𝑗 ≤ 𝑀 ∗ 𝑍𝑖𝑗  ; ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽           (14)       

Constraints (12) to (14) ensure that the product will be delivered to a retailer from a DC 

only when the retailer is assigned to that DC. 

 

∑ 𝑌𝑖𝑘

𝑘∈𝐾

≤ 1; ∀𝑖 ∈ 𝐼          (15)              

 

∑ 𝑍𝑖𝑗

𝑗∈𝐽

≤ 1; ∀𝑖 ∈ 𝐼          (16)    

Constraints (15) to (16) are used to make sure that constraint 5 works properly as we 

want, e.g., 𝑋11 = 0, 𝑋12 = 0, 𝑌11 = 1, 𝑌12 = 1 𝑎𝑛𝑑 𝑍11 = 0, 𝑍12 = 0  will never 

happen. Even these values happen, constraint 5 is still valid. However, we do not want 

a scenario like this because we allow only one allocation for primary assignments. If 

retailer one is already assigned to unreliable DC1 in the primary assignment in this 

example, it cannot be assigned again to unreliable DC2 in the same primary assignment.  
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CHAPTER 4 

NUMERICAL EXPERIMENTS AND SENSITIVITY ANALYSES 

4.1 Overview 

To demonstrate the mathematical model developed in chapter 3, various cases of the 

proposed model will be presented in this section to prove the correctness and the 

applicability of the model. Moreover, sensitivity analyses will also be conducted after 

proving the correctness of the base model. Sensitivity analyses are used to evaluate the 

impact of input parameters on decision variables and the objective function and analyze 

the model’s trend in various scenarios. 

 

4.1.1 Case 1: Base Case: A General Model Without Disruption (No Capacity 

Changing) 

In this section, input parameters for case 1 are generated and will be used throughout 

the base case as follows. 

 

Table 4.1  

Sets and Indices 

Parameters Value 

𝑖 2 

𝑗 2 

𝑘 2 

 

It is assumed that there are two retailers, two unreliable DCs, and two reliable DCs 

written as the table 2 above. 

 

Table 4.2 

Unit Transportation Cost in Dollars from Reliable DC j to Retailer i (𝑐𝑖𝑗) and from 

Unreliable DC k to Retailer i (𝑐𝑖𝑘) 

 
𝑗1 𝑗2 𝑘1 𝑘2 

𝑖1 2.2 2 2.1 2.4 

𝑖2 1.9 3 4.3 1.2 
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Table 4.3 

The Value of Input-Parameters in the Base Case 

Parameters Value Unit 

𝑑1 100 units 

𝑑2 120 units 

𝐶𝑎𝑢1 90 units 

𝐶𝑎𝑢2 80 units 

𝐶𝑎𝑟1 110 units 

𝐶𝑎𝑟2 130 units 

𝑀 1,000,000 $ 

𝜋 5 $ 

 

The value of each input parameter is generated as shown in the table4 above. Also, 

these values in table4 will be changed to conduct sensitivity analyses in the next section 

to help analyze the impact of each input parameter on the value of decision variables 

and the value of the objective function.



 
 

 
 

The results run by CPLEX are in table 5 as follows   

 

Table 4.4 

The Optimal Value of Decision Variables and the Objective Function Value in the Base Case 

 

Allocated quantity of goods 
𝑇 𝑆 𝑂 

𝑞𝑥𝑖𝑗 𝑞𝑦𝑖𝑘 𝑞𝑧𝑖𝑗 

𝑞𝑥11 𝑞𝑥12 𝑞𝑥21 𝑞𝑥22 𝑞𝑦11 𝑞𝑦12 𝑞𝑦21 𝑞𝑦22 𝑞𝑧11 𝑞𝑧12 𝑞𝑧21 𝑞𝑧22 
372 0 372 

Base case - 100 - - - - - 80 - - 40 - 

** Noted that 𝑇 = transportation cost, 𝑆 = shortage cost, 𝑂 = objective function value 

 

The results obtained from the base case are shown in table5, which are  

1. The quantity of shipped goods from reliable DC2 to retailer1 in the primary assignment is 100 units (𝑞𝑥12). 

2. The quantity of shipped goods from unreliable DC2 to retailer2 in the primary assignment is 80 units (𝑞𝑦22). 

3. The quantity of shipped goods from reliable DC1 to retailer2 in the secondary assignment is 100 units (𝑞𝑥12). 

4. The transportation cost is 372$.  

5. There is no shortage cost.  

6. The objective function value is 372$. 

 

 

1
8
 



 
 

 
 

Table 4.5 

Sensitivity Analyses with Respect to Demand Parameters 

According to table 6, when 𝑑1and 𝑑2 decrease, 𝑇 also decreases. In contrast, when 𝑑1 and 𝑑2 increase, 𝑇 also increases as well. This result is 

understandable because the transportation cost will also increase when the demand increases. There is no shortage cost if the demands are not too 

high. 

Parameter 
Parameter 

value 

Allocated quantity of goods 

𝑇 𝑆 

𝑂 

(Objective 

function) 

𝑞𝑥𝑖𝑗 𝑞𝑦𝑖𝑘 𝑞𝑧𝑖𝑗 

𝑞𝑥11 𝑞𝑥12 𝑞𝑥21 𝑞𝑥22 𝑞𝑦11 𝑞𝑦12 𝑞𝑦21 𝑞𝑦22 𝑞𝑧11 𝑞𝑧12 𝑞𝑧21 𝑞𝑧22 

𝑑1 

25        80  25 40  222 0 222 

50  100      80   40  272 0 272 

75  100      80   40  322 0 322 

100  100      80   40  372 0 372 

125  125      80   40  422 0 422 

150     20   80  130 40  474 0 474 

300     90   80  130 40  621 400 1021 

𝑑2 

30        30  100   236 0 236 

60  100      60     272 0 272 

90  100      80   10  315 0 315 

120  100      80   40  372 0 372 

150  100      80   70  429 0 429 

180  100      80   100  486 0 486 

400        80  100 110  505 1050 1555 

1
9 



 
 

 
 

Table 4.6 

Sensitivity Analyses with Respect to the Capacity of Unreliable DCs 

Parameter 
Parameter 

value 

Allocated quantity of goods 

𝑇 𝑆 
 

 

𝑂 

(Objective 

function) 
 

𝑞𝑥𝑖𝑗 𝑞𝑦𝑖𝑘 𝑞𝑧𝑖𝑗 

𝑞𝑥11 𝑞𝑥12 𝑞𝑥21 𝑞𝑥22 𝑞𝑦11 𝑞𝑦12 𝑞𝑦21 𝑞𝑦22 𝑞𝑧11 𝑞𝑧12 𝑞𝑧21 𝑞𝑧22 

𝐶𝑎𝑢1 

0  100      80   40  372 0 372 

45  100      80   40  372 0 372 

67.5  100      80   40  372 0 372 

90  100      80   40  372 0 372 

112.5  100      80   40  372 0 372 

135  100      80   40  372 0 372 

270  100      80   40  372 0 372 

𝐶𝑎𝑢2 

20  100      20   100  414 0 414 

40  100      40   80  400 0 400 

60  100      60   60  386 0 386 

80  100      80   40  372 0 372 

100  100      100   20  358 0 358 

120  100      120     344 0 344 

140  100      120     344 0 344 

2
0
 



 
 

 
 

The changes in the capacity of unreliable DC1 (𝐶𝑎𝑢1) do not affect the result of the model at all. This makes sense because both retailers 1 and 2 

have not been assigned to unreliable DC1. In other words, there are no values in 𝑞𝑦11row and 𝑞𝑦21row when 𝐶𝑎𝑢1 changes. 

When the capacity of unreliable DC2 (𝐶𝑎𝑢2) decreases, the transportation increases. Similarly, when the capacity of unreliable DC2 increases, 

transportation cost decreases. It happens like this because the transportation cost from unreliable DC2 to retailer2 is less than the transportation 

cost from reliable DC2 to retailer2 (𝑐𝑖𝑘 𝑤ℎ𝑒𝑛 𝑖 = 2, 𝑘 = 2 < 𝑐𝑖𝑗  𝑤ℎ𝑒𝑛 𝑖 = 2, 𝑗 = 1)  or 1.2$ < 2.2$, which can be seen in table1. 
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Table 4.7 

Sensitivity Analyses with Respect to the Capacity of Reliable DCs 

Parameter 
Parameter 

value 

Allocated quantity of goods 

𝑇 𝑆 

𝑂 

(Objective 

function) 

𝑞𝑥𝑖𝑗 𝑞𝑦𝑖𝑘 𝑞𝑧𝑖𝑗 

𝑞𝑥11 𝑞𝑥12 𝑞𝑥21 𝑞𝑥22 𝑞𝑦11 𝑞𝑦12 𝑞𝑦21 𝑞𝑦22 𝑞𝑧11 𝑞𝑧12 𝑞𝑧21 𝑞𝑧22 

𝐶𝑎𝑟1 

27.5        80  100 27.5  348.25 62.5 410.75 

55  100      80   40  372 0 372 

82.5  100      80   40  372 0 372 

110  100      80   40  372 0 372 

137.5  100      80   40  372 0 372 

165  100      80   40  372 0 372 

192.5  100      80   40  372 0 372 

𝐶𝑎𝑟2 

32.5     68   80  32 40  378.8 0 378.8 

65     35   80  65 40  375.5 0 375.5 

97.5     3   80  97 40  372.3 0 372.3 

130  100      80   40  372 0 372 

162.5  100      80   40  372 0 372 

195  100      80   40  372 0 372 

227.5  100      80   40  372 0 372 

 

2
2
 



 
 

 
 

The changes in the capacity of reliable DC1 (𝐶𝑎𝑟1) seem not to affect the model results, but when it is deficient, the shortage will occur, which 

causes the higher in the objective function value. 

 

When the capacity of reliable DC2 (𝐶𝑎𝑟2) increases, it does not affect the objective function values. On the other hand, when 𝐶𝑎𝑟2 decreases, it 

affects the objective function value. It causes an increase in transportation costs. This is reasonable because when 𝐶𝑎𝑟2 decreases, the assignment 

order will change from 𝑞𝑥12to 𝑞𝑦11𝑎𝑛𝑑 𝑞𝑧11; and the transportation costs of the new routes are more expensive than the former route. The changes 

of goods allocation, e.g., from 𝑞𝑥12to 𝑞𝑦11𝑎𝑛𝑑 𝑞𝑧11, have a relationship with the transportation cost (table1).  

 

CPLEX always tries to minimize the transportation cost and the shortage cost by choosing the cheapest path while satisfying the demands of both 

retailers as much as possible under input constraints. However, before we confirm that the model and the CPLEX code are correctly generated, we 

will increase the number of retailers from 2 to 20 in the next section. 

 

2
3
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4.1.2 Case 2: When the Number of Retailers Increases from 2 to 20  

 
Table 4.8 

Unit Transportation Cost in Dollars from Reliable DC j to Retailer i (𝑐𝑖𝑗) and from 

Unreliable DC k to Retailer i (𝑐𝑖𝑘) 

 
𝑗1 𝑗2 𝑘1 𝑘2 

𝑖1 3.30 4.49 5.40 4.78 

𝑖2 3.57 3.22 3.59 6.47 

𝑖3 6.84 4.56 6.57 6.17 

𝑖4 5.84 3.06 5.18 3.22 

𝑖5 4.66 4.71 6.29 6.41 

𝑖6 4.52 3.97 4.66 4.78 

𝑖7 3.36 4.75 3.58 3.55 

𝑖8 6.53 5.06 6.40 4.90 

𝑖9 5.73 4.00 4.57 4.50 

𝑖10 4.29 6.32 6.21 6.14 

𝑖11 6.12 4.85 6.79 6.58 

𝑖12 4.74 3.36 3.75 5.42 

𝑖13 3.12 3.30 4.67 4.64 

𝑖14 6.96 4.04 6.36 6.57 

𝑖15 6.11 5.83 3.09 3.24 

𝑖16 4.22 3.65 5.37 4.26 

𝑖17 6.89 3.90 3.34 5.90 

𝑖18 6.61 4.51 6.58 4.84 

𝑖19 5.26 5.74 3.52 3.94 

𝑖20 4.95 5.39 3.07 6.83 

 

Each unit transportation cost is randomly generated, and most of the costs from 𝑐𝑖𝑗 are 

higher than 𝑐𝑖𝑘 because we assume that most of the transportation costs from reliable 

DCs are more expensive than unreliable DCs.   
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Table 4.9 

The Value of Input-Parameters for the Case2 

Parameter Value Unit Parameter Value Unit 

𝑑1 110 units 𝑑14 87 units 

𝑑2 110 units 𝑑15 116 units 

𝑑3 110 units 𝑑16 108 units 

𝑑4 98 units 𝑑17 83 units 

𝑑5 93 units 𝑑18 96 units 

𝑑6 104 units 𝑑19 117 units 

𝑑7 82 units 𝑑20 106 units 

𝑑8 112 units 𝐶𝑎𝑢1 350 units 

𝑑9 110 units 𝐶𝑎𝑢2 250 units 

𝑑10 89 units 𝐶𝑎𝑟1 800 units 

𝑑11 96 units 𝐶𝑎𝑟2 600 units 

𝑑12 94 units 𝑀 1,000,000 $ 

𝑑13 88 units 𝜋 5 $ 

 

Every input-parameters above are randomly generated except M and 𝜋 because M is 

just an enormous value, and 𝜋 is the constant penalty cost. The demands vary between 

80 to 130. 
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The results run by CPLEX are in table 11 as follows. 

Table 4.10 

The Optimal Value of Decision Variables and the Objective Function Value in Case 2 

  
𝑞𝑥𝑖𝑗 𝑞𝑦𝑖𝑘 𝑞𝑧𝑖𝑗 𝑇 

  

𝑆 

  

𝑂 

  𝑗1 𝑗2 𝑘1 𝑘2 𝑗1 𝑗2 

𝑖1 110 0 0 0 0 0       

𝑖2 0 0 0 0 110 0       

𝑖3 0 81 0 0 0 0       

𝑖4 0 0 0 98 0 0       

𝑖5 93 0 0 0 0 0       

𝑖6 0 0 0 0 0 104       

𝑖7 82 0 0 0 0 0       

𝑖8 0 0 0 0 0 0       

𝑖9 0 110 0 0 0 0       

𝑖10 89 0 0 0 0 0       

𝑖11 0 0 0 0 0 0       

𝑖12 0 0 44 0 0 50       

𝑖13 88 0 0 0 0 0       

𝑖14 0 87 0 0 0 0       

𝑖15 0 0 0 116 0 0       

𝑖16 0 0 0 0 0 108       

𝑖17 0 0 83 0 0 0       

𝑖18 0 0 0 36 0 60       

𝑖19 0 0 117 0 0 0       

𝑖20 0 0 106 0 0 0       

Value             6572.2 1185 7757.2 
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Table 4.11 

Sensitivity Analyses with Respect to Each Parameter 

 

 Capacity 𝑇 𝑆 𝑂 
% Change 

respect to 𝑂 

𝑑𝑖𝑗 

𝑑𝑖𝑗 − 60 3066.7 0.0 3066.7 -60.42% 

𝑑𝑖𝑗 6562.7 1185.0 7747.7 0.00% 

𝑑𝑖𝑗 + 60 6922.9 6045.0 12967.9 67.38% 

𝑑𝑖𝑗 + 100 6646.2 10045.0 16691.2 115.43% 

𝐶𝑎𝑢1 

150 5810.6 2070.0 7880.6 1.72% 

350 6562.7 1185.0 7747.7 0.00% 

600 7247.1 480.0 7727.1 -0.27% 

𝐶𝑎𝑢2 

100 5844.1 1935.0 7779.1 0.41% 

250 6562.7 1185.0 7747.7 0.00% 

700 7189.9 545.0 7734.9 0.17% 

𝐶𝑎𝑟1 

200 4844.1 3045.0 7889.1 1.83% 

800 6562.7 1185.0 7747.7 0.00% 

1400 6562.7 1185.0 7747.7 0.00% 

𝐶𝑎𝑟2 

150 5646.9 2375.0 8021.9 3.54% 

600 6562.7 1185.0 7747.7 0.00% 

1200 7629.7 0.0 7629.7 -1.52% 

 

For the demand parameters (𝑑𝑖𝑗), there exists a shortage cost which is 1185$. When the 

demands are decreased, the shortage cost disappears, and, similarly, when the demands 

increase, the shortage cost is higher, which makes sense because shortage depends on 

the demands.  

 

For parameters related to capacity (𝐶𝑎𝑢𝑘 𝑎𝑛𝑑 𝐶𝑎𝑟𝑗), the shortage costs tend to increase 

when the capacities of both reliable and unreliable DCs reduces. Similarly, the 

transportation costs also tend to increase when the capacities increase because there is 

still demand waiting to be satisfied, so products should be delivered to retailers, which 

causes the higher transportation cost. 
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Related to the objective function, the higher the capacities of DCs, the lower the 

objective function. This is sensible because the shortage will be reduced when the 

capacities are high. Furthermore, demand parameter is the most sensitive parameter 

respect to the total costs in the system. Therefore, demand parameter should be invested 

the most to reduce the total costs. As a result, we are confidently sure that the developed 

model and the CPLEX code work properly as we want. Therefore, we will start 

introducing a stochastic programming approach to help deal with uncertainties in the 

model, which are the capacities of unreliable DCs.  

 

4.1.3 Case 3: The Model with Disruption at DCs: Scenario-Based Technique 

In case 2, we demonstrated the results of the developed model and its sensitivity 

analyses when 𝐶𝑎𝑢1 and 𝐶𝑎𝑢2  (capacity of unreliable DC1 and DC2) are constant, 

which are 350 and 250 respectively. However, the capacities of unreliable DCs should 

not be constant because they are categorized in the low-reliability group. Therefore, a 

stochastic programming approach, a scenario-based technique, will be applied to help 

deal with uncertainties of unreliable DCs. 

 

In this section, we assume that the capacities of unreliable DCs are not constant 

anymore, and we know the capacity of each scenario with known probability because 

of historical data. The capacities of both unreliable DCs and the probability of 

occurrence are presented in tables 13 and 14.  

 

Table 4.12  

Capacity Scenario of Unreliable DC1 

Capacity ratio  
Capacity of  

unreliable DC1 
Probability 

Constant value 350 1 

0% 0 0.010 

25% 87.5 0.018 

50% 175 0.022 

75% 262.5 0.050 

100% 350 0.900 
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Table 4.13 

Capacity Scenario of Unreliable DC2 

Capacity ratio   
Capacity of  

unreliable DC2 
Probability 

Constant value 250 1 

0% 0 0.013 

25% 62.5 0.012 

50% 125 0.030 

75% 187.5 0.095 

100% 250 0.850 

 

Since there are five scenarios of 𝐶𝑎𝑢1 and 𝐶𝑎𝑢2, there will exist twenty-five possible 

scenarios of unreliable DC capacities, as shown in table 15. Also, each scenario (we got 

25 scenarios) can be used to determine allocation decision (𝑋𝑖𝑗, 𝑌𝑖𝑘, 𝑍𝑖𝑗). As a result, 

we must run the model 25 ∗ 25 = 625 times to find every expected total cost when 

allocation decision is determined by every scenario.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Table 4.14  

The Expected Total Cost When Allocation Decision is Determined by scenario1 

 

Scenario 

Capacity of  

unreliable 

DC1 

Probability 

Capacity of  

unreliable 

DC2 

Probability 
Total capacities of two 

DCs 

Probability 

 to occur 

Cost  

for each 

scenario 

Expected 

cost 

1 0 0.010 0 0.013 0 0.0001 8466.44 1.10 

2 0 0.010 62.5 0.012 62.5 0.0001 8466.44 1.02 

3 0 0.010 125 0.030 125 0.0003 8466.44 2.54 

4 0 0.010 187.5 0.095 187.5 0.0010 8466.44 8.04 

5 0 0.010 250 0.850 250 0.0085 8466.44 71.96 

6 87.5 0.018 0 0.013 87.5 0.0002 8300.57 1.94 

7 87.5 0.018 62.5 0.012 150 0.0002 8300.57 1.79 

8 87.5 0.018 125 0.030 212.5 0.0005 8300.57 4.48 

9 87.5 0.018 187.5 0.095 275 0.0017 8300.57 14.19 

10 87.5 0.018 250 0.850 337.5 0.0153 8300.57 127.00 

11 175 0.022 0 0.013 175 0.0003 8133.84 2.33 

12 175 0.022 62.5 0.012 237.5 0.0003 8133.84 2.15 

13 175 0.022 125 0.030 300 0.0007 8133.84 5.37 

14 175 0.022 187.5 0.095 362.5 0.0021 8133.84 17.00 

15 175 0.022 250 0.850 425 0.0187 8133.84 152.10 

3
0
 



 
 

 
 

 

Process 1: The steps to find the expected total cost when the allocation decision is determined by scenario1 are as follows. 

1. Find the cost for each scenario by generating every possible outcome of capacities of two unreliable DCs, e.g., the capacities of unreliable 

DC1 and DC2 in scenario 23 are 350 and 125 respectively, then run the model in CPLEX to find out the cost for each scenario. 

Scenario 

Capacity of  

unreliable 

DC1 

Probability 

Capacity of  

unreliable 

DC2 

Probability 
Total capacities of two 

DCs 

Probability 

 to occur 

Cost  

for each 

scenario 

Expected 

cost 

16 262.5 0.050 0 0.013 262.5 0.0007 8041.29 5.23 

17 262.5 0.050 62.5 0.012 325 0.0006 8041.29 4.82 

18 262.5 0.050 125 0.030 387.5 0.0015 8041.29 12.06 

19 262.5 0.050 187.5 0.095 450 0.0048 8041.29 38.20 

20 262.5 0.050 250 0.850 512.5 0.0425 8041.29 341.75 

21 350 0.900 0 0.013 350 0.0117 8037.13 94.03 

22 350 0.900 62.5 0.012 412.5 0.0108 8037.13 86.80 

23 350 0.900 125 0.030 475 0.0270 8037.13 217.00 

24 350 0.900 187.5 0.095 537.5 0.0855 8037.13 687.17 

25 350 0.900 250 0.850 600 0.7650 8037.13 6148.40 

Expected total cost when allocation routes are determined by scenario1 8048.50 
 

3
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2. After we get the cost for each scenario, we multiply it by its probability of occurrence. Then we will have the expected cost for each 

scenario. 

3. We take the sum of all expected costs we have found, then we will finally have the expected total cost when allocation routes are determined 

by scenario1, which is 8048.50.  

As we said earlier that each scenario (noted that we got 25 scenarios) could be used to determine allocation decision (𝑋𝑖𝑗, 𝑌𝑖𝑘, 𝑍𝑖𝑗). However, this 

section only shows the expected total cost when allocation routes are determined by scenario1, which is 8048.50. Therefore, process1 will be 

repeated 25 times to find the expected total costs when allocation routes are determined from scenarios 1 to 25.  

 

After the twenty-five-time-repeating process, we got all expected total costs when allocation routes are determined from scenarios 1 to 25, shown 

in table 16 below, and the allocation routes of a scenario with the lowest cost will be selected.

3
2
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Table 4.15 

Expected Total Cost When Allocation Decision is Determined by Each Scenario 

Scenario 
Expected 

total cost  
Scenario 

Expected 

total cost  

1 8048.50 14 7865.43 

2 8250.17 15 7859.99 

3 8151.20 16 7897.52 

4 8151.20 17 7856.04 

5 8148.76 18 7823.18 

6 8082.56 19 7784.77 

7 8069.03 20 7795.78 

8 7955.96 21 7856.35 

9 7953.65 22 7856.35 

10 7951.21 23 7784.83 

11 7897.52 24 7779.74 

12 7824.94 25 7794.14 

13 7879.26   
 

As we see in table 16, the lowest cost belongs to scenario 24. Therefore, the allocation 

decision of scenario 24 will be selected, and it is shown in table17 below.   

 

Table 4.16 

 Allocation Decision of Scenario 24 

 
𝑋𝑖𝑗 𝑌𝑖𝑘 𝑍𝑖𝑗 

𝑗1 𝑗2 𝑘1 𝑘2 𝑗1 𝑗2 

𝑖1 1 0 0 0 0 0 

𝑖2 0 0 0 1 1 0 

𝑖3 0 1 0 0 0 0 

𝑖4 0 0 0 1 0 1 

𝑖5 1 0 0 0 0 0 

𝑖6 0 0 0 1 0 1 

𝑖7 1 0 0 0 0 0 

𝑖8 1 0 0 0 0 0 

𝑖9 0 1 0 0 0 0 

𝑖10 1 0 0 0 0 0 

𝑖11 1 0 0 0 0 0 

𝑖12 
0 0 1 0 0 

1 
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𝑋𝑖𝑗 𝑌𝑖𝑘 𝑍𝑖𝑗 

𝑗1 𝑗2 𝑘1 𝑘2 𝑗1 𝑗2 

𝑖13 1 0 0 0 0 0 

𝑖14 0 1 0 0 0 0 

𝑖15 0 0 0 1 0 1 

𝑖16 0 0 0 1 0 1 

𝑖17 0 0 1 0 0 1 

𝑖18 0 0 0 1 0 1 

𝑖19 0 0 1 0 0 1 

𝑖20 0 0 1 0 1 0 

 

Related to table 17, the meaning of allocation routes for some rows are as follows,   

1. In row 5, retailer 5 will be supplied by reliable DC 1 as the primary assignment. 

2. In row 15, retailer 15 will be supplied by unreliable DC 2 as the primary 

assignment and also be supplied by reliable DC2 as the secondary assignment 

because the unreliable DC 2 cannot fulfill customer demand. 

3. In row 20, retailer 20 will be supplied by unreliable DC 1 as the primary 

assignment, and retailer 20 will also be supplied by reliable DC1 as the 

secondary assignment because there exists a shortage in unreliable DC 1. 

 

Table 4.17 

Comparison Results of Cases 2 and 3  

  

Result of case 2  

(the model without 

disruption) 

Result of case 3  

(the model with scenario-based 

technique)  

Total cost 7747.700 7779.74 
 

 

Related to table 11, the results of case 2 when there exists no disruption at DCs, and 

case 3 when there exists disruption, which is uncertainty at DCs, and scenario-based 

technique implemented to the model are 7747.700 7779.74 respectively. Even though 

the cost of case 3 that we applied a stochastic programming approach is more expensive 

than case 2, which we did not apply any stochastic programming approach, considering 
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a model with uncertainty is still better because the result is computed more precisely 

and help the supply chain network designers make a decision easier.  

 

4.1.4 Case 4: The Model with Disruption at DCs: Scenario-Based Technique 

Increase the numbers of reliable and unreliable DCs from 2 to 3 and then use the result 

of scenario-based technique compared with the result without using the scenario-based 

technique to find out the difference between the two approaches. 

 

Table 4.18 

Unit Transportation Cost in Dollars from Reliable DC j to Retailer i (𝑐𝑖𝑗) and from 

Unreliable DC k to Retailer i (𝑐𝑖𝑘) 

 𝑗1 𝑗2 𝑗3 𝑘1 𝑘2 𝑘3 

𝑖1 3.30 4.49 4.40 5.40 4.78 5.27 

𝑖2 3.57 3.22 6.48 3.59 6.47 6.61 

𝑖3 6.84 4.56 3.29 6.57 6.17 4.38 

𝑖4 5.84 3.06 6.13 5.18 3.22 3.32 

𝑖5 4.66 4.71 5.63 6.29 6.41 4.28 

𝑖6 4.52 3.97 4.08 4.66 4.78 3.73 

𝑖7 3.36 4.75 6.45 3.58 3.55 4.22 

𝑖8 6.53 5.06 5.48 6.40 4.90 5.75 

𝑖9 5.73 4.00 4.15 4.57 4.50 5.28 

𝑖10 4.29 6.32 3.76 6.21 6.14 4.00 

𝑖11 6.12 4.85 4.29 6.79 6.58 6.43 

𝑖12 4.74 3.36 3.88 3.75 5.42 4.57 

𝑖13 3.12 3.30 5.01 4.67 4.64 3.97 

𝑖14 6.96 4.04 5.48 6.36 6.57 6.92 

𝑖15 6.11 5.83 5.32 3.09 3.24 3.77 

𝑖16 4.22 3.65 5.14 5.37 4.26 3.19 

𝑖17 6.89 3.90 3.69 3.34 5.90 6.44 

𝑖18 6.61 4.51 4.88 6.58 4.84 5.00 

𝑖19 5.26 5.74 6.48 3.52 3.94 3.05 

𝑖20 4.95 5.39 5.66 3.07 6.83 4.61 
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This table, table 19, is similar to table9, but the difference is that, in this table, there are 

one more number of 𝑗 and 𝑘 which are 𝑗3 and 𝑘3 because we decided to increase the 

numbers of unreliable DCs in this case. 

 

Table 4.19 

The Value of Input-Parameters for Case 4 

Parameter Value Unit Parameter Value Unit 

𝑑1 110 units 𝑑15 116 units 

𝑑2 110 units 𝑑16 108 units 

𝑑3 110 units 𝑑17 83 units 

𝑑4 98 units 𝑑18 96 units 

𝑑5 93 units 𝑑19 117 units 

𝑑6 104 units 𝑑20 106 units 

𝑑7 82 units 𝐶𝑎𝑢1 350 units 

𝑑8 112 units 𝐶𝑎𝑢2 250 units 

𝑑9 110 units 𝐶𝑎𝑢3 300 units 

𝑑10 89 units 𝐶𝑎𝑟1 800 units 

𝑑11 96 units 𝐶𝑎𝑟2 600 units 

𝑑12 94 units 𝐶𝑎𝑟3 700 units 

𝑑13 88 units 𝑀 1,000,000 $ 

𝑑14 87 units 𝜋 5 $ 

 

This table, table20, is also similar to table 10, but the difference is that, in this table, 

𝐶𝑎𝑢3 and 𝐶𝑎𝑟3 are added. 
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The results run by CPLEX are in table 21 as follows. 

 

Table 4.20 

The Optimal Value of Decision Variables and the Objective Function Value in Case 4 

(without Using the Scenario-Based Technique) 

 

 

 

 

 

 

 

  
𝑞𝑥𝑖𝑗 𝑞𝑦𝑖𝑘 𝑞𝑧𝑖𝑗 𝑇 𝑆 𝑂 

𝑗1 𝑗2 𝑗3 𝑘1 𝑘2 𝑘3 𝑗1 𝑗2 𝑗3    

𝑖1 110 0 0 0 0 0 0 0 0    

𝑖2 0 110 0 0 0 0 0 0 0    

𝑖3 0 0 110 0 0 0 0 0 0    

𝑖4 0 98 0 0 0 0 0 0 0    

𝑖5 0 0 0 0 0 75 18 0 0    

𝑖6 0 0 0 0 0 0 0 0 104    

𝑖7 82 0 0 0 0 0 0 0 0    

𝑖8 0 0 0 0 112 0 0 0 0    

𝑖9 0 110 0 0 0 0 0 0 0    

𝑖10 0 0 0 0 0 0 0 0 89    

𝑖11 0 0 96 0 0 0 0 0 0    

𝑖12 0 94 0 0 0 0 0 0 0    

𝑖13 88 0 0 0 0 0 0 0 0    

𝑖14 0 87 0 0 0 0 0 0 0    

𝑖15 0 0 0 116 0 0 0 0 0    

𝑖16 0 0 0 0 0 108 0 0 0    

𝑖17 0 0 0 83 0 0 0 0 0    

𝑖18 0 96 0 0 0 0 0 0 0    

𝑖19 0 0 0 0 0 117 0 0 0    

𝑖20 0 0 0 106 0 0 0 0 0    

Value          7255.7 0 7255.7 
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Table 4.21 

Capacity Scenario of Unreliable DCs 

 

Since there are five capacity possibilities for unreliable DCs, there will be 5*5*5 = 125 

possible scenarios. Furthermore, each scenario can be used to determine the allocation 

decision. As a result, there will exist 125*125 = 15,625 exactly possible scenarios to 

solve in CPLEX. We must run 15,625 scenarios to find every expected total cost when 

the allocation decision is determined by every scenario.  

 

The following table will show an example of how to find the expected total cost when 

the allocation decision is determined by scenario2 (there are 125 scenarios that can be 

used to determine allocation decision). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Capacity ratio 
Unreliable DC1 Unreliable DC2 Unreliable DC3 

Capacity Probability Capacity Probability Capacity Probability 

Constant value 350 1 250 1 300 1 

0% 0 0.01 0 0.01 0 0.02 

25% 87.5 0.02 62.5 0.01 75 0.01 

50% 175 0.02 125 0.02 150 0.02 

75% 262.5 0.05 187.5 0.01 225 0.03 

100% 350 0.9 250 0.95 300 0.92 



 
 

 
 

Table 4.22 

The Expected Total Cost When Allocation Decision is Determined by Scenario2 

Scenari

o 

Capacity of  

unreliable 

DC1 

Capacity of  

unreliable 

DC2 

Capacity of  

unreliable 

DC3 

 DC1  

probabili

ty 

 DC2  

probabili

ty 

 DC3 

probabili

ty 

Scenario probability to 

occur 

Total cost 

for each 

scenario 

Expect

ed 

 cost 

1 0 0 0 0.01 0.01 0.02 0.0000017 8039.75 0.01 

2 0 0 75 0.01 0.01 0.01 0.0000009 7893.31 0.01 

3 0 0 150 0.01 0.01 0.02 0.0000024 7796.13 0.02 

4 0 0 225 0.01 0.01 0.03 0.0000030 7761.66 0.02 

5 0 0 300 0.01 0.01 0.92 0.0000920 7735.79 0.71 

6 0 62.5 0 0.01 0.01 0.02 0.0000014 8039.75 0.01 

7 0 62.5 75 0.01 0.01 0.01 0.0000007 7893.31 0.01 

8 0 62.5 150 0.01 0.01 0.02 0.0000019 7796.13 0.01 

9 0 62.5 225 0.01 0.01 0.03 0.0000024 7761.66 0.02 

10 0 62.5 300 0.01 0.01 0.92 0.0000736 7735.79 0.57 

11 0 125 0 0.01 0.02 0.02 0.0000034 8039.75 0.03 

12 0 125 75 0.01 0.02 0.01 0.0000018 7893.31 0.01 

13 0 125 150 0.01 0.02 0.02 0.0000048 7796.13 0.04 

14 0 125 225 0.01 0.02 0.03 0.0000060 7761.66 0.05 

15 0 125 300 0.01 0.02 0.92 0.0001840 7735.79 1.42 

16 0 187.5 0 0.01 0.01 0.02 0.0000020 8039.75 0.02 

17 0 187.5 75 0.01 0.01 0.01 0.0000011 7893.31 0.01 

18 0 187.5 150 0.01 0.01 0.02 0.0000029 7796.13 0.02 

19 0 187.5 225 0.01 0.01 0.03 0.0000036 7761.66 0.03 

20 0 187.5 300 0.01 0.01 0.92 0.0001104 7735.79 0.85 

21 0 250 0 0.01 0.95 0.02 0.0001615 8039.75 1.30 
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Scenari

o 

Capacity of  

unreliable 

DC1 

Capacity of  

unreliable 

DC2 

Capacity of  

unreliable 

DC3 

 DC1  

probabili

ty 

 DC2  

probabili

ty 

 DC3 

probabili

ty 

Scenario probability to 

occur 

Total cost 

for each 

scenario 

Expect

ed 

 cost 

22 0 250 75 0.01 0.95 0.01 0.0000855 7893.31 0.67 

23 0 250 150 0.01 0.95 0.02 0.0002280 7796.13 1.78 

24 0 250 225 0.01 0.95 0.03 0.0002850 7761.66 2.21 

25 0 250 300 0.01 0.95 0.92 0.0087400 7735.79 67.61 

26 87.5 0 0 0.02 0.01 0.02 0.0000031 8039.75 0.02 

27 87.5 0 75 0.02 0.01 0.01 0.0000016 7893.306 0.01 

28 87.5 0 150 0.02 0.01 0.02 0.0000043 7796.13 0.03 

29 87.5 0 225 0.02 0.01 0.03 0.0000054 7761.659 0.04 

30 87.5 0 300 0.02 0.01 0.92 0.0001656 7735.79 1.28 

31 87.5 62.5 0 0.02 0.01 0.02 0.0000024 8039.75 0.02 

32 87.5 62.5 75 0.02 0.01 0.01 0.0000013 7893.306 0.01 

33 87.5 62.5 150 0.02 0.01 0.02 0.0000035 7796.13 0.03 

34 87.5 62.5 225 0.02 0.01 0.03 0.0000043 7761.659 0.03 

35 87.5 62.5 300 0.02 0.01 0.92 0.0001325 7735.79 1.02 

36 87.5 125 0 0.02 0.02 0.02 0.0000061 8039.75 0.05 

37 87.5 125 75 0.02 0.02 0.01 0.0000032 7893.306 0.03 

38 87.5 125 150 0.02 0.02 0.02 0.0000086 7796.13 0.07 

39 87.5 125 225 0.02 0.02 0.03 0.0000108 7761.659 0.08 

40 87.5 125 300 0.02 0.02 0.92 0.0003312 7735.79 2.56 
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Scenari

o 

Capacity of  

unreliable 

DC1 

Capacity of  

unreliable 

DC2 

Capacity of  

unreliable 

DC3 

 DC1  

probabili

ty 

 DC2  

probabili

ty 

 DC3 

probabili

ty 

Scenario probability to 

occur 

Total cost 

for each 

scenario 

Expect

ed 

 cost 

41 87.5 187.5 0 0.02 0.01 0.02 0.0000037 8039.75 0.03 

42 87.5 187.5 75 0.02 0.01 0.01 0.0000019 7893.306 0.02 

43 87.5 187.5 150 0.02 0.01 0.02 0.0000052 7796.13 0.04 

44 87.5 187.5 225 0.02 0.01 0.03 0.0000065 7761.659 0.05 

45 87.5 187.5 300 0.02 0.01 0.92 0.0001987 7735.79 1.54 

46 87.5 250 0 0.02 0.95 0.02 0.0002907 8039.75 2.34 

47 87.5 250 75 0.02 0.95 0.01 0.0001539 7893.306 1.21 

48 87.5 250 150 0.02 0.95 0.02 0.0004104 7796.13 3.20 

49 87.5 250 225 0.02 0.95 0.03 0.0005130 7761.659 3.98 

50 87.5 250 300 0.02 0.95 0.92 0.0157320 7735.79 121.70 

51 175 0 0 0.02 0.01 0.02 0.0000037 8039.75 0.03 

52 175 0 75 0.02 0.01 0.01 0.0000020 7893.306 0.02 

53 175 0 150 0.02 0.01 0.02 0.0000053 7796.13 0.04 

54 175 0 225 0.02 0.01 0.03 0.0000066 7761.659 0.05 

55 175 0 300 0.02 0.01 0.92 0.0002024 7735.79 1.57 

56 175 62.5 0 0.02 0.01 0.02 0.0000030 8039.75 0.02 

57 175 62.5 75 0.02 0.01 0.01 0.0000016 7893.306 0.01 

58 175 62.5 150 0.02 0.01 0.02 0.0000042 7796.13 0.03 

59 175 62.5 225 0.02 0.01 0.03 0.0000053 7761.659 0.04 

60 175 62.5 300 0.02 0.01 0.92 0.0001619 7735.79 1.25 

61 175 125 0 0.02 0.02 0.02 0.0000075 8039.75 0.06 

62 175 125 75 0.02 0.02 0.01 0.0000040 7893.306 0.03 

63 175 125 150 0.02 0.02 0.02 0.0000106 7796.13 0.08 
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Scenari

o 

Capacity of  

unreliable 

DC1 

Capacity of  

unreliable 

DC2 

Capacity of  

unreliable 

DC3 

 DC1  

probabili

ty 

 DC2  

probabili

ty 

 DC3 

probabili

ty 

Scenario probability to 

occur 

Total cost 

for each 

scenario 

Expect

ed 

 cost 

64 175 125 225 0.02 0.02 0.03 0.0000132 7761.659 0.10 

65 175 125 300 0.02 0.02 0.92 0.0004048 7735.79 3.13 

66 175 187.5 0 0.02 0.01 0.02 0.0000045 8039.75 0.04 

67 175 187.5 75 0.02 0.01 0.01 0.0000024 7893.306 0.02 

68 175 187.5 150 0.02 0.01 0.02 0.0000063 7796.13 0.05 

69 175 187.5 225 0.02 0.01 0.03 0.0000079 7761.659 0.06 

70 175 187.5 300 0.02 0.01 0.92 0.0002429 7735.79 1.88 

71 175 250 0 0.02 0.95 0.02 0.0003553 8039.75 2.86 

72 175 250 75 0.02 0.95 0.01 0.0001881 7893.306 1.48 

73 175 250 150 0.02 0.95 0.02 0.0005016 7796.13 3.91 

74 175 250 225 0.02 0.95 0.03 0.0006270 7761.659 4.87 

75 175 250 300 0.02 0.95 0.92 0.0192280 7735.79 148.74 

76 262.5 0 0 0.05 0.01 0.02 0.0000085 8039.75 0.07 

77 262.5 0 75 0.05 0.01 0.01 0.0000045 7893.306 0.04 

78 262.5 0 150 0.05 0.01 0.02 0.0000120 7796.13 0.09 

79 262.5 0 225 0.05 0.01 0.03 0.0000150 7761.659 0.12 

80 262.5 0 300 0.05 0.01 0.92 0.0004600 7735.79 3.56 
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Scenari

o 

Capacity of  

unreliable 

DC1 

Capacity of  

unreliable 

DC2 

Capacity of  

unreliable 

DC3 

 DC1  

probabili

ty 

 DC2  

probabili

ty 

 DC3 

probabili

ty 

Scenario probability to 

occur 

Total cost 

for each 

scenario 

Expect

ed 

 cost 

81 262.5 62.5 0 0.05 0.01 0.02 0.0000068 8039.75 0.05 

82 262.5 62.5 75 0.05 0.01 0.01 0.0000036 7893.306 0.03 

83 262.5 62.5 150 0.05 0.01 0.02 0.0000096 7796.13 0.07 

84 262.5 62.5 225 0.05 0.01 0.03 0.0000120 7761.659 0.09 

85 262.5 62.5 300 0.05 0.01 0.92 0.0003680 7735.79 2.85 

86 262.5 125 0 0.05 0.02 0.02 0.0000170 8039.75 0.14 

87 262.5 125 75 0.05 0.02 0.01 0.0000090 7893.306 0.07 

88 262.5 125 150 0.05 0.02 0.02 0.0000240 7796.13 0.19 

89 262.5 125 225 0.05 0.02 0.03 0.0000300 7761.659 0.23 

90 262.5 125 300 0.05 0.02 0.92 0.0009200 7735.79 7.12 

91 262.5 187.5 0 0.05 0.01 0.02 0.0000102 8039.75 0.08 

92 262.5 187.5 75 0.05 0.01 0.01 0.0000054 7893.306 0.04 

93 262.5 187.5 150 0.05 0.01 0.02 0.0000144 7796.13 0.11 

94 262.5 187.5 225 0.05 0.01 0.03 0.0000180 7761.659 0.14 

95 262.5 187.5 300 0.05 0.01 0.92 0.0005520 7735.79 4.27 

96 262.5 250 0 0.05 0.95 0.02 0.0008075 8039.75 6.49 

97 262.5 250 75 0.05 0.95 0.01 0.0004275 7893.306 3.37 

98 262.5 250 150 0.05 0.95 0.02 0.0011400 7796.13 8.89 

99 262.5 250 225 0.05 0.95 0.03 0.0014250 7761.659 11.06 

100 262.5 250 300 0.05 0.95 0.92 0.0437000 7735.79 338.05 

101 350 0 0 0.90 0.01 0.02 0.0001530 8039.75 1.23 

102 350 0 75 0.90 0.01 0.01 0.0000810 7893.306 0.64 

103 350 0 150 0.90 0.01 0.02 0.0002160 7796.13 1.68 
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Scenari

o 

Capacity of  

unreliable 

DC1 

Capacity of  

unreliable 

DC2 

Capacity of  

unreliable 

DC3 

 DC1  

probabili

ty 

 DC2  

probabili

ty 

 DC3 

probabili

ty 

Scenario probability to 

occur 

Total cost 

for each 

scenario 

Expect

ed 

 cost 

104 350 0 225 0.90 0.01 0.03 0.0002700 7761.659 2.10 

105 350 0 300 0.90 0.01 0.92 0.0082800 7735.79 64.05 

106 350 62.5 0 0.90 0.01 0.02 0.0001224 8039.75 0.98 

107 350 62.5 75 0.90 0.01 0.01 0.0000648 7893.306 0.51 

108 350 62.5 150 0.90 0.01 0.02 0.0001728 7796.13 1.35 

109 350 62.5 225 0.90 0.01 0.03 0.0002160 7761.659 1.68 

110 350 62.5 300 0.90 0.01 0.92 0.0066240 7735.79 51.24 

111 350 125 0 0.90 0.02 0.02 0.0003060 8039.75 2.46 

112 350 125 75 0.90 0.02 0.01 0.0001620 7893.306 1.28 

113 350 125 150 0.90 0.02 0.02 0.0004320 7796.13 3.37 

114 350 125 225 0.90 0.02 0.03 0.0005400 7761.659 4.19 

115 350 125 300 0.90 0.02 0.92 0.0165600 7735.79 128.10 

116 350 187.5 0 0.90 0.01 0.02 0.0001836 8039.75 1.48 

117 350 187.5 75 0.90 0.01 0.01 0.0000972 7893.306 0.77 

118 350 187.5 150 0.90 0.01 0.02 0.0002592 7796.13 2.02 

119 350 187.5 225 0.90 0.01 0.03 0.0003240 7761.659 2.51 

120 350 187.5 300 0.90 0.01 0.92 0.0099360 7735.79 76.86 
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Scenario 

Capacity of  

unreliable 

DC1 

Capacity of  

unreliable 

DC2 

Capacity of  

unreliable 

DC3 

 DC1  

probability 

 DC2  

probability 

 DC3 

probability 

Scenario 

probability 

to occur 

Total cost 

for each 

scenario 

Expected 

 cost 

121 350 250 0 0.90 0.95 0.02 0.0145350 8039.75 116.86 

122 350 250 75 0.90 0.95 0.01 0.0076950 7893.306 60.74 

123 350 250 150 0.90 0.95 0.02 0.0205200 7796.13 159.98 

124 350 250 225 0.90 0.95 0.03 0.0256500 7761.659 199.09 

125 350 250 300 0.90 0.95 0.92 0.7866000 7735.79 6084.97 

Expected total cost when allocation decision is determined by scenario2 7744.60 

 

We must replicate this step 125 times by changing the scenario used to determine allocation decision (in this example, scenario two is used, but 

we exactly have 125 scenarios. That is why we must replicate this step 125 times). So, there will be tables like this 125 tables. 

 

Table 4.23 

Expected Total Cost When Allocation Decision is Determined by Each Scenario  

 

Scenario Cost  Scenario Cost  Scenario Cost  Scenario Cost  Scenario Cost  

1 7793.67 26 7821.79 51 7629.15 76 7467.36 106 7456.43 

2 7744.60 27 7563.61 52 7405.32 77 7345.12 107 7391.77 

3 7680.15 28 7454.40 53 7332.04 78 7330.89 108 7321.43 

4 7680.15 29 7482.60 54 7318.33 79 7292.94 109 7314.53 

5 7651.82 30 7454.27 55 7318.33 80 7290.98 110 7288.32 

6 7838.90 31 7641.35 56 7475.11 81 7479.69 111 7456.43 

7 7604.45 32 7417.52 57 7394.40 82 7367.49 112 7391.88 

8 7567.55 33 7370.00 58 7346.88 83 7319.97 113 7328.24 

4
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Scenario Cost  Scenario Cost  Scenario Cost  Scenario Cost  Scenario Cost  

9 7553.84 34 7345.67 59 7332.73 84 7305.09 114 7314.09 

10 7528.08 35 7319.91 60 7307.41 85 7280.49 115 7288.32 

11 7719.76 36 7520.61 61 7464.49 86 7437.59 116 7445.23 

12 7556.93 37 7406.90 62 7345.41 87 7373.07 117 7380.77 

13 7556.93 38 7359.38 63 7331.24 88 7320.08 118 7304.48 

14 7542.78 39 7317.03 64 7293.23 89 7282.46 119 7314.09 

15 7517.02 40 7319.91 65 7291.27 90 7284.18 120 7288.32 

16 7719.76 41 7522.21 66 7464.49 91 7437.59 121 7445.23 

17 7556.93 42 7406.90 67 7378.76 92 7373.07 122 7373.14 

18 7556.93 43 7359.38 68 7331.24 93 7304.48 123 7304.48 

19 7542.78 44 7345.23 69 7317.03 94 7306.26 124 7314.09 

20 7516.93 45 7319.91 70 7291.27 95 7280.49 125 7288.32 

21 7718.16 46 7520.61 71 7492.47 96 7437.59   

22 7655.58 47 7458.03 72 7428.27 97 7373.07   

23 7556.93 48 7359.38 73 7292.17 98 7304.37   

24 7542.78 49 7345.23 74 7291.27 99 7306.26   

25 7516.93 50 7319.91 75 7291.27 100 7280.49   

 

After replicating 125 times, we already found out the expected total cost when the allocation decision is determined by each scenario and shown 

in table 24. The scenario which belongs the lowest cost will be selected. The lowest-cost scenario is scenario 85. As a result, scenario 85 will be 

used to determine the allocation decision.  
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Table 4.24 

Allocation Decision of Scenario 85 

 
𝑋𝑖𝑗 𝑌𝑖𝑘  𝑍𝑖𝑗  

𝑗1 𝑗2 𝑗3 𝑘1 𝑘2 𝑘3 𝑗1 𝑗2 𝑗3 

𝑖1 1 0 0 0 0 0 0 0 0 

𝑖2 0 1 0 0 0 0 0 0 0 

𝑖3 0 0 1 0 0 0 0 0 0 

𝑖4 0 1 0 0 0 0 0 0 0 

𝑖5 0 0 0 0 0 1 1 0 0 

𝑖6 0 0 0 0 1 0 0 0 1 

𝑖7 0 0 0 0 1 0 1 0 0 

𝑖8 0 0 0 0 1 0 1 0 0 

𝑖9 0 0 0 0 1 0 0 1 0 

𝑖10 0 0 1 0 0 0 0 0 0 

𝑖11 0 0 1 0 0 0 0 0 0 

𝑖12 0 1 0 0 0 0 0 0 0 

𝑖13 1 0 0 0 0 0 0 0 0 

𝑖14 0 1 0 0 0 0 0 0 0 

𝑖15 0 0 0 1 0 0 1 0 0 

𝑖16 0 0 0 0 0 1 1 0 0 

𝑖17 0 0 0 1 0 0 0 0 1 

𝑖18 0 1 0 0 0 0 0 0 0 

𝑖19 0 0 0 0 0 1 1 0 0 

𝑖20 0 0 0 1 0 0 1 0 0 
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Table 4.25 

Comparison Results of Case 4 without and with Scenario-Based Technique 

  

Result of case 4  

(the model without 

scenario-based 

technique) 

Result of case 4  

(the model with scenario-

based technique)  

Total 

cost 
7255.7 7280.49 

 

 

Related to table 25, the results of case 4 without and with the scenario-based technique 

are 7255.7 and 7280.49, respectively. Even though the cost of using the scenario-based 

technique is more expensive than the model, which we did not apply any stochastic 

programming approach, considering a model with uncertainty is still better because the 

result is computed more precisely and helps supply chain network designers make a 

strategic decision easier. 
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CHAPTER 5   

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions  

This research developed a SCND model considering transportation and shortage costs 

to help allocate retailers to various distribution centers in which some are not reliable, 

and hence, disruptions may occur. The developed model is stochastic, and hence, 

scenario-based technique is employed to help find the optimal solution. The possible 

scenarios of unreliable DCs are assumed to follow a discrete distribution with known 

probability. Various scenarios of unreliable DCs and parameters used in the model, 

such as numbers of reliable DCs, unreliable DCs, and retailers, were tested via 

sensitivity analyses. From the tested results, it is noticed that the model’s total costs 

when applying the scenario-based technique are higher than those without applying the 

scenario-based technique. However, the results of the two approaches are not 

significantly different in some cases because the disruption in the model is not serious. 

In other words, the probabilities of disruption to occur for many disruption scenarios in 

the model are very low. If the disruption is so serious, the result of applying the scenario 

-based technique should be much different compared to the result which is not applied 

the scenario-based technique.    

 

Considering supply chain networks with a stochastic programming approach is 

preferable in real-world and practical problems because the scenario-based technique 

provides expected results regarding the occurrence of disruption for various scenarios. 

Hence, the stochastic results are considered to be more accurate. As a result, decision-

makers or SCN developers can make decisions and long-term plans easier with 

confidence. In addition, the reason that made the results of the two approaches not 

significantly different in this research is due to the fact that the possible scenarios of 

unreliable DCs were generated based on real-world situations which disruption is not 

so serious; the occurrence probabilities of high ratios of capacity, such as 90% and 

100%, are much higher than those of low ratios of capacity. For instance, the probability 

of 100% ratio of capacity to occur is 0.90, while the probabilities of 0%, 25%, 50%, 

and 75% ratio of capacity to occur are 0.01, 0.02, 0.02, and 0.05 respectively. In fact, 

if the occurrence probabilities of low and high-capacity ratios are nearly the same, the 



 
 

50 
 

results of the two approaches, with and without the scenario-based technique, would be 

much different.       

 

5.2 Recommendations 

The main cost components considered in this research were transportation and shortage 

costs. Therefore, to be more precise, other cost components such as fixed cost of 

opening DCs, fixed cost of operating DCs, as well as different transportation modes 

should be added into consideration in further research. Also, the solution approach to 

deal with stochastic programming can be altered from scenario-based technique to other 

stochastic programming techniques such as CVaR. In addition, the disruption 

considered in this research was considered unreliable DCs, but, in fact, the disruption 

can also occur at other locations, such as transportation routes and transportation 

modes. Therefore, extending the consideration of disruption locations of SCN to all 

possible position is an effective way to adapt the model in this research to real-world 

problems. Lastly, instead of assuming the capacities of disrupted DCs to follow a 

discrete distribution, the author would recommend considering that the capacity losses 

of DCs to follow a continuous distribution to deal with uncertainty nature more 

accurately.     
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APPENDIX  

CPLEX OPTIMIZATION PROGRAMMMING CODES 

As we mentioned in section 4.1.4 Case 4: The model with disruption at DCs: 

Scenario-based technique that we must run CPLEX 125*125 = 15625 times, it was 

very time-consuming. Therefore, the various codes were developed and used to 

reduce running time via CPLEX. 

 

1. The overview of CPLEX working environment.  

 

2. The based code, referred to as “Sub.mod” in the picture of the number1 above 

and the picture of number3 below, is used with the code mentioned in number 

2 below. 
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3. The code was used to reduce time because initially, we must run 15,625 times.  

 

4. “datFiles” contains capacities of unreliable DCs of each scenario, and we have 

125 scenarios. Therefore, there are 125 datFiles. 
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5. An example of datFiles, “s1.dat”, the possibility 1 in which the capacity of 

unreliable DCs 1, 2, and 3 are 0, 0, and 0, respectively. 
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This section presents the codes used to find the allocation decision for each scenario. 

 

1. The codes were used to find the allocation decision for each scenario. 
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