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ABSTRACT 

In this research, the hybrid lidar and vision-based simultaneous localization and 

mapping (SLAM) system for autonomous forklift will be proposed. This SLAM system 

is capable of localize its position while building the map from surrounding 

environment. In case that system is kidnapped during the system is shutdown, the 

system also able to re-localization its position by given the map of the environment and 

compare with current scanned point cloud from lidar to recognize system’s position and 

heading. The system is consisted of camera for Optical Flow based visual odometry in 

order to calculate relative transformation between two consecutive positions of system 

while lidar is used to detect environment around the system and using point cloud from 

lidar with relative position information from visual odometry for fine tuning the 

system’s position using Iterative Closest Point (ICP) algorithm. This system will be 

installed on forklift to localize position of forklift during navigation task. 
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CHAPTER 1 

INTRODUCTION 

 Background  

An automated guided vehicle (AGV) has many impacts on the manufacturing industry. 

In the production processes, transportation and material handling process are needed to 

transport the materials from one process to another process.  However, these processes 

are not the core process of the automobile industry, so called non-value-added 

activities. 

In automobile industry, the demand of the product is very high. In order to handle the 

high production rate, increasing manpower is one of the solutions. This results in 

increasing the expenses on transportation and material handling process that using 

operator to transport the materials.  

The development of AGVs have resulted in many kinds of autonomous transportation 

vehicle in the industrial floor, such as autonomous tow tractor and autonomous forklift. 

By implementation of these AGVs, manpower for operating the transportation process 

can be reduced. In case of autonomous forklift, unlike autonomous tow tractor that has 

the exact path for operating, forklift will be operated in the specific area that is assigned 

to work for minimizing safety hazard. Therefore, there is a flexibility for forklift when 

operating to choose the best path to reach the destination. To navigate the autonomous 

forklift, two systems are needed to be installed on the forklift which are localization 

system and navigation system. The most suitable localization system for the indoor 

forklift is Simultaneous Localization and Mapping (SLAM). 

 Statement of the Problem 

SLAM can be used to solve the problem of robot operates in unknown environment. 

Common sensors that are usually implemented to SLAM are either lidar or camera with 

the help of wheel encoders or inertial measurement unit (IMU) for dead reckoning 

process to determine the relative position of the plant. However, both lidar and camera 

has their own weaknesses. Lidar can achieve high accuracy in sensing environment, but 

during moving through the environment, the scan point cloud that can be retrieved from 

lidar will change according to the environment without knowing the translation and 
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rotation of the plant. To localize the plant using lidar, wheel encoders and IMU will be 

used to compute for the relative position from previous pose to next pose. On the other 

hand, camera can also be used for features tracking and be able to localize the plant by 

itself without relying on other sensors. The downsides of camera are that, the map 

created from camera will be in 3D point cloud map and difficult to use for navigation 

process because of sparse map and, the accuracy of camera will be depended on 

resolution of camera and the lighting of the environment which is not as accurate as 

lidar. 

 

 Objective  

This research is aiming to develop a hybrid lidar and vision-based SLAM for navigating 

the autonomous forklift. The following objectives must be achieved. 

1. To develop a hybrid lidar and vision-based SLAM algorithm.  

2. To navigate autonomous forklift using the map that is created from the proposed 

SLAM.  

 
 Limitations and Scope 

1.   The speed of the forklift will be limited to 30 cm/s.  

 2.   The usage of the autonomous forklift will be limited only indoor application. 

3. The size of the room for experiment will be roughly 1000 𝑐𝑚 x 720 𝑐𝑚 of the 

room in ISE building 
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CHAPTER 2 

LITERATURE REVIREW 

 Robot Position 

Dead reckoning is the concept of estimating the position of system relative to the sensor 

and acts as initial guess position of the robot. By measuring moving directions of the 

robot using encoders, gyros, and accelerometers, the relative position of robot is 

obtained and able localize the robot position by relate the measurements with the 

previous position. There are several ways to implement dead reckoning. One method 

to implement dead reckoning is to create system that consists of IMU, and encoders on 

two wheels of robot for heading angle reading, and ultrasonic measurements sub system 

that consists of ultrasonic to detect the environment with radio-frequency. Another 

method is to use encoders installed on wheels and inertial sensors only for localization 

for indoor environment and implementation of Kalman filter to optimize the estimations 

of orientation and velocity of mobile robot which gives a better result than standalone 

odometry. Another method is to track features of the scene of the system using camera 

with Optical Flow techniques. By tracking the features of the scene from the Optical 

Flow, the rotation and translation of the system can be determined. The features will be 

separated into two groups, sky region and ground region. Sky region features will be 

used to find rotation of system by calculating difference between mean angle of all 

features between consecutive frames. Ground region features will be used to find 

translation of system. The ground features will be perspective transformed into bird eye 

view. Using previous rotation that is obtained from sky features to transform the next 

frame into the previous frame coordinate, then subtract the mean coordinate of all 

features between consecutive frames to find the translation. 

Even the robot position can be determined using dead reckoning, there are still some 

problems with using dead reckoning for localization of the robot. The error from the 

pose estimation using only dead reckoning will keep accumulate until the system fails. 

The best way to solve this accumulated error is to implement loop closure. Loop closure 

can solve the problem of re-observed places of the environment in mobile robot which 

robot is not able to recognize the place that it already visited. Still, the plant unable to 

locate itself in global position. 
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 Simultaneous Localization and Mapping (SLAM)   

SLAM is a algorithm for map creation of unknown environment using sensors while 

capable of localize the position of the robot. Most applications in factory are indoor 

applications which will encounter the problem of inaccurate of Global Positioning 

System (GPS) and SLAM can be used to solve this problem of indoor applications. The 

map that is created from SLAM represents landmarks that describe the environment 

that robot operates. The map can be used in path planning task as well as limit the error 

in estimation robot position. 

 Lidar based SLAM 

One of the main sensors of SLAM for indoor applications is lidar which is capable of 

low drift estimation. Lidar based SLAM can be separated into two main methods. 

Firstly, filtered-based approach which performs the estimation of the robot poses and 

map recursively. The robot poses and environment will be stored in the state vector. 

Error covariance matrix will be used to store uncertainties of the states along with 

correlation that is computed from the map and system location. The popular solution of 

SLAM that based on filtering approach and Extended Kalman Filter (EKF) and Particle 

Filter (PF). Secondly, graph-based method which use the pose graph to represent the 

robot trajectories. The node of the graph will represent the robot position in the 

environment while the edges represent the constraints between robot pose which is the 

relative transformation between two robot poses that can be computed from odometry 

between poses or, by aligning the observations that are collected from two poses. The 

graph-based method consists of two main tasks. First, graph construction which is the 

front-end of the system. Graph construction will take the raw measurement from the 

sensor and performs data association to build the graph. Then, graph optimization 

which is the back-end of the system will find the best estimation of the robot position 

using nonlinear least squares optimization technique. Scan-Matching and graph 

optimization is a technique to solve SLAM problem by using concept of Iterative 

Closest Point (ICP). ICP will extracts the closest point between each iteration of 

scanning process. After that, by matching between these closest points, transformation 

will be performed for the next scan. ICP will be repeated until current error is within 

the theshold. Solution for SLAM approach by optimizing pose graph that contains 

nodes of the robot and the world features. The target is to get the minimum error that 
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of the nodes given the constraints. The system of the graph-based approach is shown in 

the Figure 2.1. 

 

Figure 2.1                                                                                                                                                                                                                                                                                                                                                                                                     

The Graph-Based Approach SLAM System 

 

 

The lidar-based SLAM gives a satisfying result. However, there are still some 

drawbacks of each approach of the mentioned algorithms of lidar-based SLAM. The 

Table 2.1 shows the advantages and disadvantages of each solution of lidar-based 

SLAM. 

 

Table 2.1                                                                                                                         

Summary of Lidar-Based SLAM’s Advantages and Disadvantages 

Lidar-based SLAM 

 Filtered-Based Graph-Based 

Advantages 

2D lidar Standard technique. Easy to 

implement. Precise and Accurate 

result. 

Easier loop closure than filtering 

technique. Capable of using in large 

environment because of removing 

process of raw data using optimization. 

Disadvantages 

Can be used for 2D technique only, 

Difficult to process for huge 

environment due to high memory 

required. Loop closure is difficult to 

implement. 

The edges between position of system 

need to be accurately estimated. 

 
  

2.3.1 Gmapping 

Gmapping is Rao-Blackwellized particle filters (RBPF) based SLAM algorithm. The 

idea is to estimate the joint posterior between poses and the map. 

𝑝(𝑥1:𝑡,𝑚 | 𝑧1:𝑇, 𝑢1:𝑇−1)                              (2.1) 

Where, 𝑚 is the map, 𝑥1:𝑡 is the trajectory of the robot from first position to the last 

position given the observations which is the measurement of the environment that is 

obtained from sensor 𝑍1:𝑇  and odometry information which can be retrieved from 



 

 6 

encoders and IMU 𝑈1:𝑇−1, Then RBPF for SLAM will factorizes the above equation 

into the following equation. 

𝑝(𝑥1:𝑡, 𝑚 | 𝑧1:𝑡, 𝑢1:𝑡−1) = 𝑝(𝑚 | 𝑥1:𝑡, 𝑧1:𝑡) ⋅ 𝑝(𝑥1:𝑡 | 𝑧1:𝑡, 𝑢1:𝑡−1)           (2.2) 

We can firstly estimate the path of the robot then create map of environment after we 

estimate robot path. Gmapping is an improved approach of the SLAM based on RBPF. 

Gmapping makes use of optimal proposal distribution. 

𝑝(𝑥𝑡  | 𝑚𝑡−1
(𝑖) , 𝑥𝑡−1

(𝑖) , 𝑧𝑡, 𝑢𝑡−1) =
𝑝(𝑧𝑡 | 𝑚𝑡−1

(𝑖)
,𝑥𝑡)⋅𝑝(𝑥𝑡 | 𝑥𝑡−1

(𝑖)
,𝑢𝑡−1)

𝑝(𝑧𝑡 | 𝑚𝑡−1
(𝑖)

,𝑥𝑡−1
(𝑖)

,𝑢𝑡−1)
                 (2.3) 

After that, the resampling process is improved using the effective number of particles 

to set the threshold for executing resampling process by comparing current set of 

particles with the target posterior. This can prevent particle depletion due to excessive 

resampling from the normal RBPF which also eliminate good particles in the process. 

 

2.3.2 HectorSLAM 

HectorSLAM was proposed for using in Urban Search and Rescue (USAR) application 

that is for indoor application but not only limited to only planar application but also 3D 

trajectory of the robot. The HectorSLAM is based on graph-based approach which only 

make use only the front-end of the system. Therefore, there is no optimization process 

for the HectorSLAM. The map creation is mainly depending on the scan-matching 

method without using the odometry data of the robot. The change of the robot pose will 

be recovered from the scan-matching method. Figure 2.2 shows the HectorSLAM 

system. 

 

Figure 2.2                                                                                                                    

HectorSLAM and 3D State Estimation System 
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The scan matching method is used for pose estimation of HectorSLAM. In order to 

achieve the best alignment of the scans, the following cost function will be minimized. 

         

          (2.4) 

 

Where 𝜉  is the position of the system, 𝑆𝑖(𝜉)  is the global coordinates of the scan 

endpoint and M(𝑆𝑖(𝜉)) is the map value. The change of the system position can be found  

by using Gauss-Newton method which gives the ∆𝜉 as the result.  

        (2.5) 

 

 

2.3.3 Cartographer 

This technique is one the most recent methods for lidar-based SLAM. This system was 

proposed in order to reduce computation requirement for loop closure and enable large 

map creation with real-time operating using Google’s Cartographer. Cartographer is a 

graph-based SLAM. Solution of the SLAM is the same as HectorSLAM but with a 

different cost function as shown in the following equation. 

 

(2.6) 

 

The bicubic interpolation is used to find the map value from the pose of the robot to get 

a better minimization value while HectorSLAM use bilinear interpolation. For pose 

estimation after scan-matching on front-end, Branch and Bound will be used to find 

optimized pose in the search window. 

 

 Scan Matching 

Scan matching is the algorithm which is widely used in lidar based SLAM. Scan 

matching aligns current point cloud with the previous point cloud and gives the affine 

transform between two point clouds. The standard scan matching is Iterative Closest 

Point (ICP) algorithm. ICP looks for the closest point pairs from two point clouds, 

current scan and reference scan. After that, the affine transformation that projects 

current point cloud to the previous point cloud is calculated based of following 

equation. 
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(2.7) 

 

Where, T is the affine transformation, 𝑝𝑥 and 𝑝𝑦 are translations in x and y axis, ω is 

rotation that transform the current point cloud 𝑎𝑖 to map with previous point cloud 𝑏𝜗(𝑖) 

when ϑ is a function that find the closest point in the previous point cloud with the 

current point cloud with index i. This error function will be minimized and gives the 

result of the best affine. ICP algorithm will be executed as following steps. 

1. Find the correspondences points pairs between two point clouds. 

2. Minimizes error function. 

3. Repeat these steps until algorithm is converged when error is within the 

threshold.  
 

 Visual based SLAM 

Another main sensor except lidar that commonly used is camera. Camera is capable of 

extracting information from the image. There are two main solutions for SLAM in case 

of using camera as sensor. First, feature-based method will detect prominent points in 

the image and track them. Another solution is direct SLAM which uses the whole image 

without using any features extraction. 

 

2.5.1 Feature based SLAM 

This method is depended on features detection and features extraction from the 

sequence of the images. The most used feature-based algorithm right now is ORB-

SLAM which is able to use with all types of the camera. ORB-SLAM is based on pose 

graph optimization. The system of ORB-SLAM has three parallel for tracking the 

features in the scene, create local map and the last thread is loop closure. For pose graph 

optimization, g2o is used for optimization. Figure 2.3 shows the system of ORB-

SLAM. 
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Figure 2.3                                                                                                                  

ORB SLAM syste 

 

 

2.5.2 Direct SLAM 

While feature-based SLAM only uses keypoints. This method uses the whole 

information in the image. Several popular techniques in direct SLAM are DTAM, LSD-

SLAM, SVO and, DSO. Direct SLAM method can give a proper reconstruction of the 

scene unlike feature-based method that can only give sparse reconstruction. However, 

the downside is that in mostly cases, GPU is required and the accuracy of the 

localization is lower than feature-based method. The LSD SLAM is one of the best 

modern monocular SLAM direct method and also graph-based method as well. LSD 

SLAM has of three operations starting with tracking the features in the scene, 

estimation of depth map and loop closure. Figure 2.4 shows the LSD SLAM system. 

 

Figure 2.4                                                                                                                   

LSD SLAM System 
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Even camera cost is much lower compare to LiDAR and Visual-SLAM can give a 

proper result, there are many drawbacks from using Visual-SLAM. The summary of 

advantages and disadvantages of Visual-SLAM is shown in Table 2.2. 

 

Table 2.2                                                                                                                         

Summary of Visual- SLAM’s Advantages and Disadvantages 

Visual-SLAM 

 Feature Based Direct 

Advantages Light weight 

Denser map than feature tracking 

techniques. No need for features 

detection 

Disadvantages 
Lighting of environment affects 

the system performance 
Computation cost, GPU is needed 

  

 
 

 Visual-Lidar SLAM 

The fusion between these two sensors was researched to get a better result from SLAM.  

There are several ways to combine lidar and camera for SLAM, such as using lidar as 

a depth sensor to improve visual based SLAM or, improve lidar based SLAM by using 

visual loop closing.  
 

Another way is to combine result from lidar and visual SLAM. One research fused the 

visual and lidar measurements to improve odometry of the robot. Two maps are built 

separately using visual and lidar. By optimized the position estimated from two maps, 

the final pose estimation is improved.  
 

Another work focuses on countering the downside of SLAM system which are features 

tracking lost and failure in localization. As the result, robust indoor SLAM on 

featureless environment is succeeded.  
 

Another effective work performed graph optimization using specific cost function by 

consider both laser and features. After that, robot pose estimation can be obtained from 

laser and image. 
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CHAPTER 3                                                                       

METHODOLOGY  

 
The details of methodology that is used in this thesis will be explained in this chapter. 

The overall structure of the system will be explained. Next, hardware design will be 

described. The software design which consists of dead reckoning using monocular 

camera, and SLAM system will be explained. 

 Concept 

Figure 3.1 shows the overall structure of the system. 

 

Figure 3.1                                                                                                             

Overall Structure of System 

 
 
Firstly, the camera will be used as substitution for wheel encoders for dead reckoning 

process. The camera will capture the scene and send to the visual odometry system in 

order to determine the position change (X, Y, Heading Change) between two 

consecutive frames. At the same time, lidar will scan the environment and input the 
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scans into scan matching system. Scan matching system takes in relative transformation 

from visual odometry as initial transformation to transform current scan to be as close 

as possible to previous scan then compute the scan matching algorithm which based on 

iterative closest point (ICP) algorithm which map current scan with the previous scan. 

After scan matching computation, the result from the system is the fine-tuned 

transformation matrix that will be used to align the scan to build the map as well as 

used for updating the position of the robot. 

 

 Hardware Design 

SLAM system will be consisted of two sensors which are lidar and monocular camera 

for map making and localization.  

 

3.2.1 Overall Hardware Structure 

In order to retrieve the scan data from lidar to the computer, the RS-422/USB converter 

is needed. The camera will be connected through USB connection to SLAM’s 

computer. When the corrected position from SLAM system is out, the SLAM’s 

computer will send the data to the server’s computer embedded in the plant using 

TCP/IP communication. Client’s computer will be used to send the desired position to 

the server’s computer through TCP/IP communication as well. By comparing both 

positions from SLAM’s computer and client’s computer the server’s computer will 

control and navigate the plant to the desired position through CANBUS protocol. The 

overall hardware structure is shown in Figure 3.2. 

 

Figure 3.2                                                                                                             

Overall Hardware Structure 

 
 

 

 



 

 13 

3.2.2 Plant Characteristic 

The plant for this thesis will be forklift which will be used for navigation as shown in 

Figure 3.3. 

 

Figure 3.3                                                                                                             

Forklift for Navigation Task 

 
 

The forklift must be able to switch between manual drive for map creation and 

autonomous drive when navigation and control. 

 

3.2.3 Camera 

The monocular camera will be used for determining the relative translation and rotation 

between two consecutive poses of the plant. The camera is shown in the Figure 3.4. 

 

Figure 3.4                                                                                                              

Picture of Monocular Camera 
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3.2.4 Lidar 

The model of lidar that is used in this thesis is SICK s300 Expert. This laser has 270-

degree scanning area. Maximum range of sensor is 30 meters. Scan time of each scan 

revolution is 80 ms. The lidar is shown in Figure 3.5 and, the dimension of sensor is 

shown in Figure 3.6.  

 

Figure 3.5                                                                                                              

Picture of Lidar SICK s300 Expert 

 

 

Figure 3.6                                                                                                              

Dimension of Lidar SICK s300 Expert 

 
 

 

 Software Design 

This SLAM system is implemented on Visual C#. The system is consisted of two main 

parts, Visual Odometry and SLAM. Firstly, the SLAM system is developed in SLAM’s 

computer which lidar and camera are connected to. The camera will be used for visual 

odometry to find the relative transformation between two consecutive poses of the 

forklift. Lidar will be used for sensing the unknown environment and gives the 

environment in form of point cloud at each position of forklift. Then, by sending the 
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change of position and orientation from camera with the point cloud from lidar at these 

positions into the SLAM system, the system will compute for the localization of forklift 

and mapping. After receives location of the robot, this information will be sent to the 

server’s computer that is used for controlling and navigating the forklift to compare 

with the desired position that is sent from the client’s computer. 

 

 Visual Odometry System 

The plant must be able to know how far it was travelled which consists of translation 

change and heading change. Most of the case, the wheel encoders are selected as sensor 

for tracking the translation and heading change. However, by implementing wheel 

encoders, a modification of the plant is needed. In contrast, camera can be used to track 

the translation and heading change as well without modification of the plant. This 

system is developed using .NET OpenCV which is called EMGU CV. 

 

3.4.1 Camera Calibration 

The camera calibration will be needed to get the properties of the camera. Intrinsic 

parameters that consist of focal length and center of the camera will be used to calculate 

the feature points distance and angle related to the center of the camera. Distortion 

parameters will be used to undistort input image. Table 3.1 shows camera parameters 

from calibration process. 

 

Table 3.1                                                                                                                   

Camera Parameters 

Intrinsic Parameters 

fx 0.731318846e+003 

fy 0.708229696e+003 

cx 3.54491786e+002 

cy 2.35166125e+002 

 
Distortion Parameters 

k1 -5.833e-003 

k2 -8.3797e-002 

k3 0 

p1 -3.210e-003 

p2 1.060e-003 
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3.4.2 Visual Odometry 

Firstly, the input image will be undistorted by using the distortion parameter from 

camera calibration process to compensate lens distortion. After that, the algorithm will 

generate the first feature points group. The good features of the original image will be 

detected using function goodFeaturesToTrack() in OpenCV that used Shi-Tomasi 

corner detection to find the prominent corner points in the image. Then each feature 

points will also be undistorted and stored as history feature points. After retrieved the 

first set of feature points, the algorithm will take previous frame, current frame and 

history feature points as inputs for Optical Flow calculation to get current set of feature 

points. Then, current feature points will be stored as history feature points for next 

frame. The algorithm continues as new frame comes in. When two consecutive feature 

points are retrieved, the calculation of heading change and translation change can be 

done based on location of these feature points. Image frames will be separated into two 

sections, sky region and ground region. Feature points in sky region will be used to find 

heading change. While, feature points on ground region will be used to find translation 

change. Figure 3.7 shows image frame that consists of feature points in both sky region 

and ground region. 

 

Figure 3.7                                                                                                                

Image Frame with Feature Points in Sky (Above the Red Line) and Ground Region 

(Below the Red Line) 

 
 

In order to find heading change of the camera, the feature points in sky region will be 

considered. As the depth distance of feature points in the sky region of two consecutive 

frames is not different that much, the different in depth will be neglected. By finding 

the distance in x-axis of each feature points of both frames related to the center of 

camera with focal length, the angle (θ) of each feature points related to center of camera 

can be obtained as shown in Figure 3.8.  
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Figure 3.8                                                                                                                

Calculation of Feature Point’s Angle related to Center of Camera 

 
 

The heading can be calculated as the following equation:  

𝜃𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =  𝑎𝑟𝑐𝑡𝑎𝑛
(𝑋𝑓𝑒𝑎𝑡𝑢𝑟𝑒− 𝑋𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑐𝑎𝑚𝑒𝑟𝑎)

𝐹𝑜𝑐𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ
                    (3.1) 

After each individual θ are retrieved from calculation, the angle change of each feature 

point can be found. The mean of all angle change will be selected as the candidate of 

heading change between two frames as shown in the following equation: 

𝜃𝑐ℎ𝑎𝑛𝑔𝑒 = 
∑ (𝜃𝑓𝑒𝑎𝑡𝑢𝑟𝑒,𝑐𝑢𝑟𝑟𝑒𝑛𝑡  −  𝜃𝑓𝑒𝑎𝑡𝑢𝑟𝑒,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)𝑖

𝑛
𝑖=0

𝑛
                (3.2) 

To find translation change, feature points in ground region will be considered. 

However, the features on the ground must be perspective transformed into bird eye view 

in order to retrieve real coordinate of features. The camera will be set at the specific 

height and angle then capture the scene. Four corners of the tile of size 600 mm x 600 

mm in the image frame will be manually marked to get their coordinates. Figure 3.9 

shows the image frame with marked coordinates at each tile corner. 

 

Figure 3.9                                                                                                                

Image Frame with Marked Coordinates at Each Tile Corner 

 
 
 

 

 

 

 

 

Focal length 

Center of Camera 
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Homography matrix can be calculated as following equation: 

[
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[
 
 
 
 
 
 
 
 
 
ℎ11

ℎ12

ℎ13

ℎ21

ℎ22

ℎ23

ℎ31

ℎ32

ℎ33]
 
 
 
 
 
 
 
 
 

 = 

[
 
 
 
 
0
0
⋮
0
0]
 
 
 
 

               (3.3) 

 

Where, 

𝑥𝑛 is x-coordinate of 𝑛𝑡ℎcorner of the tile in the image frame. 

𝑦𝑛 is y-coordinate of 𝑛𝑡ℎcorner of the tile in the image frame. 

𝑥′𝑛 is actual x-coordinate of the tile. 

𝑦′𝑛 is actual y-coordinate of the tile. 

ℎ is homography matrix. 

 

Which can be re-written as: 

𝐴ℎ = 0              (3.4) 

To find homography matrix, Singular Value Decomposition (SVD) will be used to 

factorize matrix A which gives the following result: 

𝐴 = 𝑈𝐷𝑉𝑇                                                   (3.5) 

homography matrix will be equal to the last column of matrix V. 

ℎ = [
−1.8998 −0.0022 1338.7137
−0.1311 0.5700 −1918.0493

−3.5679 − 05 −0.0095 1
] 

The image and features after perspective transformed is shown in Figure 3.10. 

 

Figure 3.10                                                                                                                

Homography Transformation of Feature Points on the Ground Region 

 

8x9 A matrix 

9x1 h matrix 
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Feature points in ground region are affected by the heading change. To find pure 

translation change, the heading change effect will need to be eliminated. By 

transforming the current frame coordinate system back to previous frame coordinate 

system using heading change that was retrieved previously, rotation effect can be 

eliminated and the pure translation change of each feature points can be obtained as the 

following equation:  

[
𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
] =  [

cos (𝜃𝑐ℎ𝑎𝑛𝑔𝑒) −sin (𝜃𝑐ℎ𝑎𝑛𝑔𝑒)

sin (𝜃𝑐ℎ𝑎𝑛𝑔𝑒) cos (𝜃𝑐ℎ𝑎𝑛𝑔𝑒)
] [

𝑥
𝑦]             (3.3) 

Mean value of translation change in both x direction and y direction will be selected as 

the candidate of translation change as shown in the following equation: 

𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = 
∑ (𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑐𝑢𝑟𝑟𝑒𝑛𝑡  −  𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)𝑖

𝑛
𝑖=0

𝑛
             (3.4) 

 

𝑦𝑐ℎ𝑎𝑛𝑔𝑒 = 
∑ (𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑐𝑢𝑟𝑟𝑒𝑛𝑡  −  𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)𝑖

𝑛
𝑖=0

𝑛
             (3.5) 

 

 

 SLAM System 

After received relative position of the camera, this information will be input for the 

SLAM system. SLAM system will be consisted of three parts. Firstly, the interprets of 

the raw measurement from lidar. Secondly, using information from camera as initial 

transformation between two poses to compute scan-matching between two consecutive 

point cloud in order to obtain better transformation between two poses. Thirdly, 

creating the map as well as localize the pose of the robot in global coordinate. 

3.5.1 Interpretation of Raw Data Measurements from Lidar 

In order to sense the unknown environment, SICK s300 lidar is used to scan the 

environment. However, this lidar has its unique structure for output raw data. The 

sensor will continuously send the data over to the laptop. Figure 3.11 shows the 

structure of measurement. 
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Figure 3.11                                                                                                                

Structure of Raw Measurements from Lidar 

 
 

The information starts with a block number 1 which contains of all zeros. The second 

block is used for defining the current configuration of the sensor. There are three modes 

of sensing in this sensor, I/O data, distance data, reflector data. For I/O data, the third 

block will be started with “AA AA 11 11”. Reflector data will be started with “CC CC 

11 11”. While in this case, only the distance of the environment will be considered. 

Therefore, second block will be started with “BB BB 11 11”. The third block is the 

most important block which contains the distance of each scan varies from -45 degree 

to 225 degree. While connecting sensor to laptop, sensor will send the data continuously 

to the laptop. The data can be acquired by following the data structure mentioned 

previously. Firstly, looks up for the first block to detect the starting of the scan round. 

Then using BB BB 11 11 as the starting index for reading scan data. This lidar has 0.5 

degree of scan resolution and 270 degrees scan range which means, the scan end points 

will be 541 points and equal to 2164 data words. In order to retrieve the measurement 

data from data words, converting from hexadecimal to decimal will be processed. The 

example below shows the converting from data words to measurement data. Figure 3.12 

shows the example of data words from the sensor. 

 

Figure 3.12                                                                                                                

Data Words from Sensor and Interpretation of the Words into Measurement 

 
(Measured data no.1) B9 00 measurements at -45 degree is 0x00B9 

Convert into bit: 0000 0000 1011 1001 

Measurements are varying from bit 0 to bit 12 

(128 cm + 32 cm + 16 cm + 8 cm + 1 cm = 185 cm) 

 

(Measured data no.2) B8 00 measurements at -44.5 degree is 0x00B8 

Convert into bit: 0000 0000 1011 1000 

Measurements are varying from bit 0 to bit 12 
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(128 cm + 32 cm + 16 cm + 8 cm = 184 cm) 

 

(Measured data no.3) B5 00 measurements at -44 degree is 0x00B5 

Convert into bit: 0000 0000 1011 0101 

Measurements are varying from bit 0 to bit 12 

(128 cm + 32 cm + 16 cm + 4 cm + 1 cm = 181 cm) 

 

(Measured data no.4) B4 00 measurements at -43.5 degree is 0x00B4 

Convert into bit: 0000 0000 1011 0100 

Measurements are varying from bit 0 to bit 12 

(128 cm + 32 cm + 16 cm + 4 cm = 180 cm) 
 

(Measured data no.5) AF 00 measurements at -43 degree is 0x00AF 

Convert into bit: 0000 0000 1010 1111 

Measurements are varying from bit 0 to bit 12 

(128 cm + 32 cm + 8 cm + 4 cm + 2 cm + 1 cm = 175 cm) 

 

As the data is the distance from sensor to the obstacle at that specific scan angle. 

Therefore, converting of the distance with scan angle to coordinate 𝑥 and 𝑦 must be 

processed for mapping. The example of converting will be shown below. 

 

(Data block no.1) Measured distance: 185 cm at -45.0 

𝑥 : 185 * cos (-45.0) = 130.81 cm 

𝑦 : 185 * sin (-45.0) = -130.81 cm 

 

(Data block no.2) Measured distance: 184 cm at -44.5 degree 

𝑥 : 184 * cos (-44.5) = 131.24 cm 

𝑦 : 184 * sin (-44.5) = -128.97 cm 

 

(Data block no.3) Measured distance: 181 cm at -44.0 degree 

𝑥 : 181 * cos (-44.0) = 130.20 cm 

𝑦 : 181 * sin (-44.0) = -125.73 cm 

 
(Data block no.4) Measured distance: 180 cm at -43.5 degree 

𝑥 : 180 * cos (-43.5) = 130.57 cm 

𝑦 : 180 * sin (-43.5) = -123.90 cm 

 
(Data block no.5) Measured distance: 175 cm at -43.0 degree 

𝑥 : 175 * cos (-43.0) = 127.99 cm 

𝑦 : 175 * sin (-43.0) = -119.35 cm 
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3.5.2 Scan Matching Algorithm 

While visual odometry is capable of finding relative transformation between two 

consecutive poses of the robot, it contains a lot of error in the process. If localization 

process only depends on visual odometry alone, the error will keeps accumulating until 

diverge from the true path of the robot. Scan matching algorithm will be used to 

corrected the error from visual odometry by aligning two consecutive point cloud that 

are retrieved from lidar with initial transformation between two consecutive poses from 

visual odometry. After scan matching is done, corrected transformation both rotation 

and translation can be obtained. This transformation will be used to transform next point 

cloud to align with previous point cloud and also used updating the pose of the robot.  

Iterative closest point scan matching algorithm consists of three processes. Firstly, 

apply transformation from Visual Odometry to current point cloud which will map the 

current point cloud to the previous point cloud. Secondly, the algorithm will find the 

pair of each point in current point cloud with previous point cloud using Euclidean 

distance. This method can be easily done through brute force, by finding the distance 

of one point of next point cloud with all of points in previous point cloud, the nearest 

point will be selected as the pair. Thirdly, these point pairs will be aligned together each 

iteration until overall error between two point clouds is within the threshold. The 

transformation between these two point clouds will be the corrected version of 

transformation between two poses as well. However, using brute force method requires 

huge computation resource. The binary search K-D tree will be applied to deal with the 

computation process in order to reduce Euclidean distance computation of unlikely 

points pair. 

3.5.2.1 Correspondences Points Finding using K-Dimensional Tree. 

K-Dimensional Tree (K-D tree) is a binary search tree that will divide the previous 

point cloud into section and build the search tree. When the current point cloud is 

inputted into ICP algorithm, each point will be searched through the tree of reference 

point cloud. The building of the search tree follows these steps in the following 

example. 

 

Given the point cloud of the following points. 

(70,721), (207,313), (343,858), (479,449), (615,40), (751,177), (888,585)  
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1. Arrange all reference points in 𝑥 coordinate. 

2. Find median point in 𝑥 coordinate, which is (479,449). 

3. Split reference point cloud into left and right using median point as center. 

Left side contains points that have x value less than median point. Right side 

contains points that have x value greater or equal to median point. 

4. Consider points that have x value less than 479 which are (70,721), (207,313),   

    And (343,858). The first sub node and the reference point are shown in Figure 

3.13. 

 

Figure 3.13                                                                                                                

First Sub Node of the Search Tree 

 
 

 
 
 
 
 

The Reference Point Divided into Section 

 
5. Consider left hand section, arrange these three points again in y direction. 

The median point this time is (70,721). 

6. Split into upper and lower section using median point as center. The lower 

section contains (207,313) while the upper section contains (70,721) and 

(343,858).  
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7. The lower section only contains one point. Consider upper section and split 

section in x direction around median which is (343,858). The left part of the 

search tree is now completed. Figure 3.14 shows the left section of the search 

tree and the reference point in section. 

 

Figure 3.14                                                                                                                 

Left Section of the Search Tree 

 

 
 
 
 
 
 
 
 
 

The Reference Point Divided into Section 

 
 

8. Repeat all the previous step recursively to all the points switching between x 

and y directions until each section contains only one point (exclude median 

point). The completed search tree is shown in Figure 3.15. 
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Figure 3.15                                                                                                                 

Completed K-D Tree 

 
 

The Reference Point Divided into Section 

 

After building K-D tree, the search point will be inputted to find the nearest neighbor 

in the search tree. For example, to find the nearest point of (438,681) from the reference 

point cloud. The steps of finding the closest point are as follow. 
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1. Starting with the root node, x value of search point is less than 479. Therefore, 

this takes the left section. Next, y value is less than 721. After the leaf cell is 

reached, compute distance to every point in that leaf and find the closest 

point. In this case, (207,313) gives the nearest distance to the search point (r). 

As shown in Figure 3.16. 

 

Figure 3.16                                                                                                                 

Searching for Nearest Neighbor 

 

Search Point with Nearest Neighbor with Radius (Distance from Search Point to 

Nearest Point) 

 

2. Euclidean distance will be computed to find the distance between two points 

as shown in the following equation: 

  𝑑(𝑥, 𝑦)2 = (𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2                      (3.6) 
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    When (𝑥1, 𝑦1)  is the coordinate of the first point and (𝑥2, 𝑦2)  is the 

coordinate of the second point. 

3. After we obtained the distance to the nearest neighbor (r), we need to check 

the distance perpendicular from search point to the other adjacent section that 

is within the r value that we did not visit and call this distance as r’ value. If 

this perpendicular distance is shorter than the nearest distance that we 

obtained. There is a chance that that section may contain closer point. The 

perpendicular distance to the adjacent section is shown in Figure 3.17. 

 

Figure 3.17                                                                                                                 

Perpendicular Distance (r’) from Search Point to Adjacent Section 

 
 

4. Check the distance of each point in the adjacent section with the search point 

as previous step. If the new point is closer than the previous point, replace 

the old point with the new one. Figure 3.18 shows the searching process 

through the K-D tree until the closest point is found. 
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Figure 3.18        

The Searching Process through the K-D Tree until the Closest Point is found.                 

The Search Tree if r’ is less than best r. (Step 1) 

 

Search Point with New Nearest Neighbor. (Step 1) 

 

 

The r’ value is still less than the new r value. Therefore, recurse back again to another 

section. 
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The Search Tree after r’ is less than best r. (Step 2) 

 

Search Point with New Nearest Neighbor. (Step 2) 

 
Now, all the points in the upper section are searched. Therefore, the new r’ is calculated 

based on right-handed section that still overlap with the latest radius. 

 

 
 



 

 30 

After Reaching the Best Possible Solution in the Left-Handed Side of the Tree. The Right 

Section is Searched (Step 4). 

 

 
Search Point with New Nearest Neighbor. (Step 4) 

 
 

However, the new r distance is still not the best. Therefore, the closest point is 

(343,858). And the searching in now completed.  
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All these steps will be repeated until all nearest neighbors of the current search point 

cloud are found. The result nearest neighbor points will be stored and used in Iterative 

Closest Point algorithm. 

3.5.2.2 Determining the Best Alignment Between Two Point Clouds. 

After finding the correspondences points, the transformation between these two point 

clouds will be calculated using the following error function. 

                                            (3.7) 

 

Where, 

𝐸(𝑅, 𝑡) is the error function of rotation and translation matrix to be minimized. 

𝑁 is the number of points in point cloud. 

𝑝 is the current point cloud. 

𝑞 is the point cloud of correspondences points that is retrieved from the previous step 

and will be considered as reference point cloud in ICP algorithm. 

𝑅 is the rotation matrix that transform current point cloud to map with correspondences 

point cloud. 

𝑡  is the translation matrix that transform current point cloud to align with 

correspondences point cloud. 

 Finding Rotation. By taking in two point clouds as inputs, the current 

point cloud is affected by both translation and rotation. To find the rotation, the 

translation can be neglected by subtracting with its own centroid as shown in the 

following equations. New coordinate of two point clouds will be related to the same 

reference which is origin point (0,0). 

𝑝′ = 𝑝 − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑝)                                             (3.7) 

    𝑞′ = 𝑞 − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑞)                                             (3.8) 

Cross-covariance matrix (𝑊) between these point clouds will be computed. 

    (3.7) 

 

Singular Value Decomposition (SVD) will be used to decompose this cross-covariance 

matrix. 

(3.8) 

Rotation matrix can be calculated as follows. 

(3.9) 

𝐸(𝑅, 𝑡) = ∑ ∥  𝑞𝑖 − 𝑅𝑝𝑗 − 𝑡 ∥2

(𝑖,𝑗)∈𝑁

 

𝑊 = ∑ 𝑞′𝑖𝑝′𝑗
⊺

(𝑖,𝑗)∈𝑁

 

𝑊 = 𝑈𝐷𝑉⊺ 

𝑅 = 𝑉𝑈⊺ 
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 Finding Translation. The current point cloud will be transformed 

using rotation matrix. New centroid of current point cloud will be calculated again. By 

subtract new centroid of current point cloud from centroid of previous point cloud. The 

translation can be obtained. 

(3.10) 

 Error Computation. After obtaining of the transformation both 

rotation and translation, the error function as mentioned in equation (3.7) will be 

computed. At first, the error will be set to be maximize. When ICP is computed each 

time, the current error will be compared with the previous minimum error. If the current 

error is less than previous best but still more than threshold, these processes from 

determining the correspondences points will be repeated. The final transformation 

matrix will be used to aligned the current point cloud to the reference point cloud. The 

Figure 3.19 shows the alignment of current point cloud to the reference point cloud. 

 

Figure 3.19                                                                                                                  

Alignment of Current Point Cloud (Red) to Reference Point Cloud (Green)          

 

 

 

 

 

 

 

 

        (1)             (2) 
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𝑡 = 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑞) − 𝑅 ∗ 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑝) 
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3.5.3 Localization 

In order to update the system position, the transformation matrix from ICP algorithm 

will also be used to update the system position each time ICP is completed. The robot 

state updating is as following: 

[
𝑥′
𝑦′
1

] =  [

𝑟11 𝑟12 𝑡𝑥
𝑟21 𝑟22 𝑡𝑦
0 0 1

] [
𝑥
𝑦
1
] 

Where, 

𝑥 is the initial x coordinate of system. 

𝑦 is the initial y coordinate of system. 
𝑥′ is the x coordinate of robot after transformed by transformation matrix from ICP. 

𝑦′ is the y coordinate of robot after transformed by transformation matrix from ICP. 

𝑟 is the rotation component of the rotation matrix from ICP. 

𝑡 is the translation component of the translation matrix from ICP. 

 

3.5.4  Mapping 

The point cloud that is scanned by lidar will be transformed by transformation matrix 

from ICP algorithm by aligning current scanned point cloud with reference point cloud 

as shown in the following equation. 

[
𝑝′1𝑥 ⋯ 𝑝′𝑛𝑥

𝑝′1𝑦 ⋯ 𝑝′𝑛𝑦

1 ⋯ 1

] =  [

𝑟11 𝑟12 𝑡𝑥
𝑟21 𝑟22 𝑡𝑦
0 0 1

] [

𝑝1𝑥 ⋯ 𝑝𝑛𝑥

𝑝1𝑦 ⋯ 𝑝𝑛𝑦

1 ⋯ 1
] 

Where, 

𝑝𝑛𝑥 is the x coordinate of the  𝑛𝑡ℎ point of the current point cloud. 

𝑝𝑛𝑦 is the y coordinate of the  𝑛𝑡ℎ point of the current point cloud. 

𝑝′𝑛𝑥 is the x coordinate of the  𝑛𝑡ℎ point of the transformed current point cloud. 

𝑝′𝑛𝑦 is the y coordinate of the  𝑛𝑡ℎ point of the transformed current point cloud. 

 

The point cloud that is already transformed by ICP algorithm will be stored. These set 

of point clouds will be used to build the map of the environment which will be used as 

the global map by assigning the first scanning position as zero position (𝑥 = 0 , 𝑦 =

0 , 𝜃 = 0). 
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3.5.5 Re-Localization 

When starting the system, the map from the previous process will be used as the input 

for re-localization. The system will compare the current scan from lidar with reference 

point cloud which is the map to determine where the current position is. However, the 

ICP algorithm may result in local minimum due to no prior knowledge of where it is. 

The pose of the robot with different heading angle will be generated. In this case, the 

72 poses with the heading varies from 0 degree to 355 degree (5 degrees difference 

from each pose) will be generate to give the initial transformation of current point cloud. 

The ICP algorithm will be computed using the current point cloud in each heading with 

the map until the minimum error from ICP can be achieved. The result transformation 

matrix then will be used to update the position of the system and transform the current 

point cloud into corrected position. To summarize, the re-localization can be described 

as follows: 

1. Read the current scanned point cloud. 

2. Rotate the current point cloud 5 degrees starting from 0 degree until 355 

degrees. 

3. Each time the point cloud is rotate by 5 degrees, execute the ICP algorithm. 

4. The minimum error that can be obtained from all ICP executions is the best 

possible location of the system. 

 

 Navigation 

After the system is capable of localize itself, the next step is to implement the system 

to navigate the plant. The SLAM system will be connected to the plant which in this 

case is forklift. The forklift is modified and the program to receive location of the 

system and to drive the forklift is installed in the embedded PC that is installed in the 

forklift. The command to drive the forklift will be sent through CAN BUS which 

consists of direction of steering and speed of forklift. To receive location from SLAM 

system, the TCP/IP communication is used to send location by connecting embedded 

system to the SLAM system laptop using LAN. The TCP listener is set in the embedded 

PC as the server. The SLAM system laptop will act as TCP client and will continuously 

send the location of the system which consists of 𝑥, 𝑦 and heading to the server. The 

forklift will be navigated until reaching the final waypoint. 

 

 



 

 35 

 Experiment Design 

The room for experiment has the size of 1000 cm x 720 cm in the rectangle shape. Each 

corner of the room will be modified to be unique from each corner in order to help re-

localization system able to recognize the direction of the system, or the system will be 

unable to recognize the position due to similar feature on the map. Figure 3.20 shows 

graphical map of the environment. 

 

Figure 3.20                                                                                                                  

Graphical Map of the Testing Area 

 
 

The center of the room is set as origin when facing upright in the map (𝑥 = 0 , 𝑦 =

0 , 𝜃 = 0). Figure 3.21 shows reference coordinates that are set for testing the re-

localization system. 

 

Figure 3.21                                                                                                                  

Reference Coordinates in the Map for Testing Re-Localization System 
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The real environment is shown in Figure 3.22. 

 

Figure 3.22                                                                                                                  

Real Environment of the Testing Area 

 
 

Real Environment of the Testing Area (Heading: 0 Degree) 

 

 
 

 

Real Environment of the Testing Area (Heading: 90 Degree) 
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Real Environment of the Testing Area (Heading: 180 Degree) 

 

 
 

 

Real Environment of the Testing Area (Heading: 270 Degree) 
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The testing conditions of re-localization system are shown in the Table 3.2. 

 

Table 3.2                                                                                                                   

Testing Conditions for Re-Localization System 

Test Point 
Ground Truth Position Distance 

to wall x y heading 

1 -240 160 45 

Near 
2 -240 -160 135 

3 240 -160 225 

4 240 160 315 

5 -240 160 225 

Far 
6 -240 -160 315 

7 240 -160 45 

8 240 160 135 

9 0 0 0 

Medium 
10 0 0 90 

11 0 0 180 

12 0 0 270 

 
There are total of 12 conditions for testing which are divided mainly into 3 groups based 

on distance of sensor facing to the wall, near, far and medium. Each group will be tested 

to localize the system in 4 different corners of the room. 

 

To test the navigation system, the forklift will be kidnapped to any place in the map 

and will be navigated to two waypoints. The forklift must past the first waypoint and 

then navigate itself to reach the second waypoint. 

The testing conditions of navigation are shown in the Table 3.3. and Figure 3.23. 

 

Table 3.3                                                                                                                   

Testing Conditions for Navigation 

Waypoint 
Ground Truth Position 

x y 

1 130 -15 

2 -240 -160 

 

 

 

 



 

 39 

Figure 3.23                                                                                                                   

Reference Coordinates in the Map for Testing Navigation System. 

 

 

The evaluation of SLAM system will be based on comparison between RMSE of the 

hybrid lidar and vision-based SLAM system and RMSE of the lidar-only localization 

system using ICP algorithm without the aid from visual odometry which, the scans 

between poses of the robot will be used to find the transformation between two poses 

without knowing the relative transformation from dead reckoning system. 
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CHAPTER 4                                                                                         

RESULT AND DISCUSSION 

 

 Overview 

The map result of hybrid lidar and vision-based SLAM and the re-localization result 

will be shown in this section including evaluation of the system. 

 

 Mapping 

The result for hybrid lidar and vision-based SLAM is the map of the environment that 

was scanned from the system by placing system at center of the map in order to set this 

location as position of (𝑥 = 0 , 𝑦 = 0 , 𝜃 = 0). Figure 4.1 shows the comparison of 

graphical map and scanned map. 
 
Figure 4.1                                                                                                            

Comparison of Graphical Map (Left) and the Scanned Map (Right) 

     
 

 Evaluation of Re-Localization System 

To evaluate the re-localization system, the map retrieved from SLAM system will be 

given to the system. By comparing the current scan point cloud with the stored map 

point cloud, the system will be able to localize itself in the given map. Root Mean 

Square Error (RMSE) will be used to evaluate the error of the localization of the system. 
The calculation of RMSE is expressed in the following equations: 
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(4.1) 

 

 

(4.2) 

 

 

 (4.3) 

 

Firstly, the system will be placed at position of (𝑥 = −240 , 𝑦 = 160 , 𝜃 = 45). The 

current scanned point cloud will be compared with the point cloud of the given map. 

Figure 4.2 shows the graphical representation of the scanned area and position of the 

system and actual scanned area and position of the system. 

 

Figure 4.2                                                                                                            

Graphical (a) and Actual (b) Representation of Position of the System and the 

Scanned Area of the First Test Point (𝒙 = −𝟐𝟒𝟎 , 𝒚 = 𝟏𝟔𝟎 , 𝜽 = 𝟒𝟓) 

      (a)               (b)    

The Table 4.1 shows the re-localization result of first test point. 

 

Table 4.1                                                                                                                      

Re-Localization Result of First Test Point 

Test Point 
Ground Truth Position Experiment Position 

X (cm) Y (cm) 
θ 

(degree) 
X (cm) Y (cm) 

θ 
(degree) 

1 -240 160 45 -246.8 162.6 48.7 
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The Table 4.2 shows the RMSE between result of first test point and actual position. 

 

Table 4.2                                                                                                                     

RMSE Between Result of First Test Point and Actual Position 

Test Point 
RMSE 

X 
(cm) 

Y 
(cm) 

θ (degree) 
Distance 

(cm) 

1 6.8 2.6 3.7 7.28011 

 

Second test point, the system will be placed at position of (𝑥 = −240 , 𝑦 = −160 , 𝜃 =

135). The current scanned point cloud will be compared with the point cloud of the 

given map. Figure 4.3 shows the graphical representation of the scanned area and 

position of the system and actual scanned area and position of the system. 

 

Figure 4.3                                                                                                            

Graphical (a) and Actual (b) Representation of Position of the System and the 

Scanned Area of the Second Test Point (𝒙 = −𝟐𝟒𝟎 , 𝒚 = −𝟏𝟔𝟎 , 𝜽 = 𝟏𝟑𝟓) 

      (a)               (b)    

The Table 4.3 shows the re-localization result of second test point. 

 

Table 4.3                                                                                                                      

Re-Localization Result of Second Test Point 

Test Point 
Ground Truth Position Experiment Position 

X (cm) Y (cm) 
θ 

(degree) 
X (cm) Y (cm) 

θ 
(degree) 

2 -240 -160 135 -230.2 -161.4 134.5 
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The Table 4.4 shows the RMSE between result of second test point and actual position. 

 

Table 4.4                                                                                                                     

RMSE Between Result of Second Test Point and Actual Position 

Test Point 
RMSE 

X 
(cm) 

Y 
(cm) 

θ (degree) 
Distance 

(cm) 

2 9.8 1.4 0.5 9.89949 

 

Third test point, the system will be placed at position of (𝑥 = 240 , 𝑦 = −160 , 𝜃 =

225). The current scanned point cloud will be compared with the point cloud of the 

given map. Figure 4.4 shows the graphical representation of the scanned area and 

position of the system and actual scanned area and position of the system. 

 

Figure 4.4                                                                                                            

Graphical (a) and Actual (b) Representation of Position of the System and the 

Scanned Area of the Third Test Point (𝒙 = 𝟐𝟒𝟎 , 𝒚 = −𝟏𝟔𝟎 , 𝜽 = 𝟐𝟐𝟓) 

      (a)               (b)    

The Table 4.5 shows the re-localization result of third test point. 

 

Table 4.5                                                                                                                      

Re-Localization Result of Third Test Point 

Test Point 
Ground Truth Position Experiment Position 

X (cm) Y (cm) 
θ 

(degree) 
X (cm) Y (cm) 

θ 
(degree) 

3 240 -160 225 248.9 -164.1 230.7 
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The Table 4.6 shows the RMSE between result of third test point and actual position. 

 

Table 4.6                                                                                                                     

RMSE Between Result of Third Test Point and Actual Position 

Test Point 
RMSE 

X 
(cm) 

Y 
(cm) 

θ (degree) 
Distance 

(cm) 

3 8.9 4.1 5.7 9.79898 

 

Fourth test point, the system will be placed at position of (𝑥 = 240 , 𝑦 = 160 , 𝜃 =

315). The current scanned point cloud will be compared with the point cloud of the 

given map. Figure 4.5 shows the graphical representation of the scanned area and 

position of the system and actual scanned area and position of the system. 

 

Figure 4.5                                                                                                            

Graphical (a) and Actual (b) Representation of Position of the System and the 

Scanned Area of the Fourth Test Point (𝒙 = 𝟐𝟒𝟎 , 𝒚 = 𝟏𝟔𝟎 , 𝜽 = 𝟑𝟏𝟓) 

      (a)               (b)    

The Table 4.7 shows the re-localization result of fourth test point. 

 

Table 4.7                                                                                                                      

Re-Localization Result of Fourth Test Point 

Test Point 
Ground Truth Position Experiment Position 

X (cm) Y (cm) 
θ 

(degree) 
X (cm) Y (cm) 

θ 
(degree) 

4 240 160 315 243.9 158.8 306.8 
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The Table 4.8 shows the RMSE between result of fourth test point and actual position. 

 

Table 4.8                                                                                                                     

RMSE Between Result of Fourth Test Point and Actual Position 

Test Point 
RMSE 

X 
(cm) 

Y 
(cm) 

θ (degree) 
Distance 

(cm) 

4 3.9 1.2 8.2 4.08044 

 

Fifth test point, the system will be placed at position of (𝑥 = −240 , 𝑦 = 160 , 𝜃 =

225). The current scanned point cloud will be compared with the point cloud of the 

given map. Figure 4.6 shows the graphical representation of the scanned area and 

position of the system and actual scanned area and position of the system. 

 

Figure 4.6                                                                                                            

Graphical (a) and Actual (b) Representation of Position of the System and the 

Scanned Area of the Fifth Test Point (𝒙 = −𝟐𝟒𝟎 , 𝒚 = 𝟏𝟔𝟎 , 𝜽 = 𝟐𝟐𝟓) 

      (a)               (b)    

The Table 4.9 shows the re-localization result of fifth test point. 

 

Table 4.9                                                                                                                      

Re-Localization Result of Fifth Test Point 

Test Point 
Ground Truth Position Experiment Position 

X (cm) Y (cm) 
θ 

(degree) 
X (cm) Y (cm) 

θ 
(degree) 

5 -240 160 225 -243.2 163.8 235.2 
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The Table 4.10 shows the RMSE between result of fifth test point and actual position. 

 

Table 4.10                                                                                                                     

RMSE Between Result of Fifth Test Point and Actual Position 

Test Point 
RMSE 

X 
(cm) 

Y 
(cm) 

θ (degree) 
Distance 

(cm) 

5 3.2 3.8 10.2 4.9679 

 

Sixth test point, the system will be placed at position of (𝑥 = −240 , 𝑦 = −160 , 𝜃 =

315). The current scanned point cloud will be compared with the point cloud of the 

given map. Figure 4.6 shows the graphical representation of the scanned area and 

position of the system and actual scanned area and position of the system. 

 

Figure 4.7                                                                                                            

Graphical (a) and Actual (b) Representation of Position of the System and the 

Scanned Area of the Sixth Test Point (𝒙 = −𝟐𝟒𝟎 , 𝒚 = −𝟏𝟔𝟎 , 𝜽 = 𝟑𝟏𝟓). 

       (a)               (b)    

The Table 4.11 shows the re-localization result of sixth test point. 

 

Table 4.11                                                                                                                      

Re-Localization Result of Sixth Test Point 

Test Point 
Ground Truth Position Experiment Position 

X (cm) Y (cm) 
θ 

(degree) 
X (cm) Y (cm) 

θ 
(degree) 

6 -240 -160 315 -239.7 -161.8 314.1 
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The Table 4.12 shows the RMSE between result of sixth test point and actual position. 

 

Table 4.12                                                                                                                     

RMSE Between Result of Sixth Test Point and Actual Position 

Test Point 
RMSE 

X 
(cm) 

Y 
(cm) 

θ (degree) 
Distance 

(cm) 

6 0.3 1.8 0.9 1.82483 

 

Seventh test point, the system will be placed at position of (𝑥 = 240 , 𝑦 = −160 , 𝜃 =

45). The current scanned point cloud will be compared with the point cloud of the given 

map. Figure 4.8 shows the graphical representation of the scanned area and position of 

the system and actual scanned area and position of the system. 

 

Figure 4.8                                                                                                            

Graphical (a) and Actual (b) Representation of Position of the System and the 

Scanned Area of the Seventh Test Point (𝒙 = 𝟐𝟒𝟎 , 𝒚 = −𝟏𝟔𝟎 , 𝜽 = 𝟒𝟓) 

       (a)               (b)    

The Table 4.13 shows the re-localization result of seventh test point. 

 

Table 4.13                                                                                                                      

Re-Localization Result of Seventh Test Point 

Test Point 
Ground Truth Position Experiment Position 

X (cm) Y (cm) 
θ 

(degree) 
X (cm) Y (cm) 

θ 
(degree) 

7 240 -160 45 239.15 -169.5 47.4 
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The Table 4.14 shows the RMSE between result of seventh test point and actual 

position. 

 

Table 4.14                                                                                                                     

RMSE Between Result of Seventh Test Point and Actual Position 

Test Point 
RMSE 

X 
(cm) 

Y 
(cm) 

θ (degree) 
Distance 

(cm) 

7 0.85 9.5 2.4 9.53795 

 

Eighth test point, the system will be placed at position of (𝑥 = 240 , 𝑦 = 160 , 𝜃 =

135). The current scanned point cloud will be compared with the point cloud of the 

given map. Figure 4.9 shows the graphical representation of the scanned area and 

position of the system and actual scanned area and position of the system. 

 

Figure 4.9                                                                                                            

Graphical (a) and Actual (b) Representation of Position of the System and the 

Scanned Area of the Eighth Test Point (𝒙 = 𝟐𝟒𝟎 , 𝒚 = 𝟏𝟔𝟎 , 𝜽 = 𝟏𝟑𝟓) 

       (a)               (b)    

The Table 4.15 shows the re-localization result of eighth test point. 

 

Table 4.15                                                                                                                      

Re-Localization Result of Eighth Test Point 

Test Point 
Ground Truth Position Experiment Position 

X (cm) Y (cm) 
θ 

(degree) 
X (cm) Y (cm) 

θ 
(degree) 

8 240 160 135 238 165.7 128.9 
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The Table 4.16 shows the RMSE between result of eighth test point and actual position. 

 

Table 4.16                                                                                                                     

RMSE Between Result of Eighth Test Point and Actual Position 

Test Point 
RMSE 

X 
(cm) 

Y 
(cm) 

θ (degree) 
Distance 

(cm) 

8 2 5.7 6.1 6.0407 

 

Nineth test point, the system will be placed at position of (𝑥 = 0 , 𝑦 = 0 , 𝜃 = 0). The 

current scanned point cloud will be compared with the point cloud of the given map. 

Figure 4.10 shows the graphical representation of the scanned area and position of the 

system and actual scanned area and position of the system. 

 

Figure 4.10                                                                                                            

Graphical (a) and Actual (b) Representation of Position of the System and the 

Scanned Area of the Nineth Test Point (𝒙 = 𝟎 , 𝒚 = 𝟎 , 𝜽 = 𝟎) 

       (a)               (b)    

The Table 4.17 shows the re-localization result of nineth test point. 

 

Table 4.17                                                                                                                      

Re-Localization Result of Nineth Test Point 

Test Point 
Ground Truth Position Experiment Position 

X (cm) Y (cm) 
θ 

(degree) 
X (cm) Y (cm) 

θ 
(degree) 

9 0 0 0 -0.9 0.5 -2.1 
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The Table 4.18 shows the RMSE between result of nineth test point and actual position. 

 

Table 4.18                                                                                                                     

RMSE Between Result of Nineth Test Point and Actual Position 

Test Point 
RMSE 

X 
(cm) 

Y 
(cm) 

θ (degree) 
Distance 

(cm) 

9 0.9 0.5 2.1 1.02956 

 

Tenth test point, the system will be placed at position of (𝑥 = 0 , 𝑦 = 0 , 𝜃 = 90). The 

current scanned point cloud will be compared with the point cloud of the given map. 

Figure 4.11 shows the graphical representation of the scanned area and position of the 

system and actual scanned area and position of the system. 

 

Figure 4.11                                                                                                            

Graphical (a) and Actual (b) Representation of Position of the System and the 

Scanned Area of the Tenth Test Point (𝒙 = 𝟎 , 𝒚 = 𝟎 , 𝜽 = 𝟗𝟎) 

       (a)               (b)    

The Table 4.19 shows the re-localization result of tenth test point. 

 

Table 4.19                                                                                                                      

Re-Localization Result of Tenth Test Point 

Test Point 
Ground Truth Position Experiment Position 

X (cm) Y (cm) 
θ 

(degree) 
X (cm) Y (cm) 

θ 
(degree) 

10 0 0 90 -1 1.6 89.6 
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The Table 4.20 shows the RMSE between result of tenth test point and actual position. 

 

Table 4.20                                                                                                                     

RMSE Between Result of Tenth Test Point and Actual Position 

Test Point 
RMSE 

X 
(cm) 

Y 
(cm) 

θ (degree) 
Distance 

(cm) 

10 1 1.6 0.4 1.8868 

 

Eleventh test point, the system will be placed at position of (𝑥 = 0 , 𝑦 = 0 , 𝜃 = 180). 

The current scanned point cloud will be compared with the point cloud of the given 

map. Figure 4.12 shows the graphical representation of the scanned area and position 

of the system and actual scanned area and position of the system. 

 

Figure 4.12                                                                                                            

Graphical (a) and Actual (b) Representation of Position of the System and the 

Scanned Area of the Eleventh Test Point (𝒙 = 𝟎 , 𝒚 = 𝟎 , 𝜽 = 𝟏𝟖𝟎) 

       (a)               (b)    

The Table 4.21 shows the re-localization result of eleventh test point. 

 

Table 4.21                                                                                                                      

Re-Localization Result of Eleventh Test Point 

Test Point 
Ground Truth Position Experiment Position 

X (cm) Y (cm) 
θ 

(degree) 
X (cm) Y (cm) 

θ 
(degree) 

11 0 0 180 -0.5 -1.8 181.2 
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The Table 4.22 shows the RMSE between result of eleventh test point and actual 

position. 

 

Table 4.22                                                                                                                     

RMSE Between Result of Eleventh Test Point and Actual Position. 

Test Point 
RMSE 

X 
(cm) 

Y 
(cm) 

θ (degree) 
Distance 

(cm) 

11 0.5 1.8 1.2 1.86815 

 

Twelfth test point, the system will be placed at position of (𝑥 = 0 , 𝑦 = 0 , 𝜃 = 180). 

The current scanned point cloud will be compared with the point cloud of the given 

map. Figure 4.13 shows the graphical representation of the scanned area and position 

of the system and actual scanned area and position of the system. 

 

Figure 4.13                                                                                                            

Graphical (a) and Actual (b) Representation of Position of the System and the 

Scanned Area of the Twelfth Test Point (𝒙 = 𝟎 , 𝒚 = 𝟎 , 𝜽 = 𝟐𝟕𝟎) 

       (a)               (b)    

The Table 4.23 shows the re-localization result of twelfth test point. 

 

Table 4.23                                                                                                                      

Re-Localization Result of Twelfth Test Point 

Test Point 
Ground Truth Position Experiment Position 

X (cm) Y (cm) 
θ 

(degree) 
X (cm) Y (cm) 

θ 
(degree) 

12 0 0 270 -1.5 -1.3 269 
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The Table 4.24 shows the RMSE between result of twelfth test point and actual position. 

 

Table 4.24                                                                                                                     

RMSE Between Result of Twelfth Test Point and Actual Position 

Test Point 
RMSE 

X 
(cm) 

Y 
(cm) 

θ (degree) 
Distance 

(cm) 

12 1.5 1.3 1 1.98494 

 

The summarize of re-localization system evaluation is shown in Table 4.25. 

 

Table 4.25                                                                                                                   

Evaluation of Re-Localization System 

 

 

 Evaluation of Navigation System 

In navigation task, the forklift will be kidnapped when system is shutdown. When the 

system starts, it must re-localization itself in the map to get the current position, then 

navigate itself through the assigned waypoints. 

 

 

 

 

 
 

x y heading x y heading x y heading distance

1 -240 160 45 -246.8 162.6 48.7 6.8 2.6 3.7 7.28011

2 -240 -160 135 -230.2 -161.4 134.5 9.8 1.4 0.5 9.89949

3 240 -160 225 248.9 -164.1 230.7 8.9 4.1 5.7 9.79898

4 240 160 315 243.9 158.8 306.8 3.9 1.2 8.2 4.08044

Avg.Close 7.35 2.325 4.525 7.76476

5 -240 160 225 -243.2 163.8 235.2 3.2 3.8 10.2 4.9679

6 -240 -160 315 -239.7 -161.8 314.1 0.3 1.8 0.9 1.82483

7 240 -160 45 239.15 -169.5 47.4 0.85 9.5 2.4 9.53795

8 240 160 135 238 165.7 128.9 2 5.7 6.1 6.0407

Avg.Far 1.5875 5.2 4.9 5.59284

9 0 0 0 -0.9 0.5 -2.1 0.9 0.5 2.1 1.02956

10 0 0 90 -1 1.6 89.6 1 1.6 0.4 1.8868

11 0 0 180 -0.5 -1.8 181.2 0.5 1.8 1.2 1.86815

12 0 0 270 -1.5 -1.3 269 1.5 1.3 1 1.98494

Avg.Mid 0.975 1.3 1.175 1.69236

Avg.Total 3.3042 2.9417 3.5333 5.0167

Far

RMSE
Condition

Near

Medium

Ground Truth Position Experiment Position
Test Point
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In the test, forklift is kidnapped to the (𝑥 = 0 , 𝑦 = 160 , 𝜃 = 270) as shown in the 

Figure 4.14. 

 
Figure 4.14                                                                                                                   

(a) Initial Position of Forklift in Real Environment (The scene was captured facing 

the 180 degree of the map) , (b) System and (c) Map 

      
          (a)              (b) 

 

 
(c) 

 
The Table 4.26 shows the RMSE between result of system’s initial position and ground 

truth. 

 

Table 4.26                                                                                                                     

RMSE Between Result of System’s Initial Position and Ground Truth 

Waypoint 
Ground Truth 

Position 
Experiment 

Position 
RMSE 

X (cm) Y (cm) X (cm) Y (cm) X(cm) Y (cm) Distance (cm) 

0 0 160 -6.26 169.8 6.26 9.8 11.6287 
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Forklift will be navigated to the first waypoint which is at (𝑥 = 130 , 𝑦 = −15) 

regardless the heading. The result is shown in Figure 4.15. 

 

Figure 4.15                                                                                                                   

(a) Position of Forklift in Real Environment (The scene was captured facing the 180 

degree of the map), (b) System and (c) Map and Its Trajectory (orange line) when 

Reach First Waypoint  

      
          (a)              (b) 

 

 
(c) 

 
The Table 4.27 shows the RMSE between result of system’s position when reach first 

waypoint and ground truth. 

 

Table 4.27                                                                                                                     

RMSE Between Result of System’s Position when Reach First Waypoint and Ground 

Truth 

Waypoint 
Ground Truth 

Position 
Experiment 

Position 
RMSE 

X (cm) Y (cm) X (cm) Y (cm) X(cm) Y (cm) Distance (cm) 

1 130 -15 131.18 -15.36 1.18 0.36 1.23369 
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Forklift will be navigated to the second waypoint which is at (𝑥 = −240 , 𝑦 = −160) 

regardless the heading. The result is shown in Figure 4.16. 

 

Figure 4.16                                                                                                                   

(a) Position of Forklift in Real Environment (The scene was captured facing the 180 

degree of the map), (b) System and (c) Map and Its Trajectory (orange line) when 

Reach Second Waypoint  

      
          (a)             (b) 

 

 
(c) 

 
The Table 4.28 shows the RMSE between result of system’s position when reach 

second waypoint and ground truth. 

 

Table 4.28                                                                                                                     

RMSE Between Result of System’s Position when Reach Second Waypoint and 

Ground Truth 

Waypoint 
Ground Truth 

Position 
Experiment 

Position 
RMSE 

X (cm) Y (cm) X (cm) Y (cm) X(cm) Y (cm) Distance (cm) 

2 -240 -160 -245.98 -170.83 5.98 10.83 12.3713 
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The summarize of navigation system evaluation is shown in Table 4.29. 

 

Table 4.29                                                                                                                   

Evaluation of Navigation System 

 
 

 Evaluation of Hybrid Lidar and Vision-Based SLAM System 

To evaluate the performance of hybrid lidar and vison-based SLAM system, the RMSE 

of the system during navigation task will be used to compare with the RMSE of the 

lidar-only localization system using ICP algorithm. The result from lidar-only 

localization system at initial point (𝑥 = 0 , 𝑦 = 160) is shown in Figure 4.17. 

 

Figure 4.17                                                                                                                   

Location of System in the Map (left), Current Scan of the System (right) at Initial 

Position 

 
 

The Table 4.30 shows the RMSE between result of lidar-only localization system’s 

position at initial position and ground truth. 

 

 

 

 

x y x y x y distance

0 0 160 -6.26 164.8 6.26 4.8 7.88845

1 130 -15 131.18 -15.36 1.18 0.36 1.23369

2 -240 -160 -245.98 -170.83 5.98 10.83 12.3713

Waypoint
Ground Truth Position Experiment Position RMSE
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Table 4.30                                                                                                                     

RMSE Between Result of Lidar-Only Localization System’s Position at Initial Position 

and Ground Truth 

Waypoint 
Ground Truth 

Position 
Experiment 

Position 
RMSE 

X (cm) Y (cm) X (cm) Y (cm) X(cm) Y (cm) Distance (cm) 

0 0 160 -5.8 161.73 5.8 1.73 6.0525 

 

The result from lidar-only localization system when reach first waypoint ( 𝑥 =

130 , 𝑦 = −15) is shown in Figure 4.18. 

 

Figure 4.18                                                                                                                   

Location of System in the Map (left), Current Scan of the System (right) when Reach 

First Waypoint 

 
 

The Table 4.31 shows the RMSE between result of lidar-only localization system’s 

position when reach first waypoint and ground truth. 

 

Table 4.31                                                                                                                     

RMSE Between Result of Lidar-Only Localization System’s Position when Reach First 

Waypoint and Ground Truth 

Waypoint 
Ground Truth 

Position 
Experiment 

Position 
RMSE 

X (cm) Y (cm) X (cm) Y (cm) X(cm) Y (cm) Distance (cm) 

1 130 -15 144.48 0.197 14.48 15.197 20.9909 
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The result from lidar-only localization system when reach second waypoint                 

(𝑥 = −240 , 𝑦 = −160) is shown in Figure 4.19. 

 

Figure 4.19                                                                                                                   

Location of System in the Map (left), Current Scan of the System (right) when Reach 

Second Waypoint. 

 
 

The Table 4.32 shows the RMSE between result of lidar-only localization system’s 

position when reach first waypoint and ground truth. 

 

Table 4.32                                                                                                                     

RMSE Between Result of Lidar-Only Localization System’s Position when Reach 

Second Waypoint and Ground Truth 

Waypoint 
Ground Truth 

Position 
Experiment 

Position 
RMSE 

X (cm) Y (cm) X (cm) Y (cm) X(cm) Y (cm) Distance (cm) 

2 -240 -160 9.323 -317.66 249.3 157.66 294.989 
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The Table 4.33 shows comparison between RMSE of Distance from hybrid lidar and 

vision-based SLAM system and lidar-only localization system. 

 

Table 4.33                                                                                                                     

Comparison Between RMSE of Distance from Hybrid Lidar and Vision-Based SLAM 

System and Lidar-Only Localization System 

Waypoint 
Hybrid Lidar 

and Vision (cm) 
Lidar-Only (cm) 

0 7.888 6.053 

1 1.234 20.991 

2 12.371 294.989 

 
As the result of comparison, at initial position, the re-localization will be executed 

which depends on lidar only by comparing current scan with given map. Therefore, 

results from both systems are similar to each other. After the robot moves to the first 

waypoint, the localization of lidar-only system starts to drift due to lack of initial guess 

of the relative transformation. When reaching the second waypoint, the RMSE of 

distance between lidar-only system and the ground truth is huge as 3 meters error. On 

the other hand, the hybrid lidar and vision-based SLAM system can localize the system 

with RMSE distance around 10 cm compare with ground truth when reaching the 

second waypoint. 
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CHAPTER 5                                                                            

CONCLUSIONS AND RECOMMENDATION 

 
 Conclusion 

The hybrid lidar and vision-based SLAM system has been successfully developed and 

were evaluated. There are two main parts of the system, visual odometry which use the 

monocular web camera and SLAM system which use lidar. Visual odometry uses the 

concept of detecting the movement of feature of the image frame. The feature is 

detected using concept of Shi-Tomasi corner detection to find the prominent corner 

points in the image. Features are separated into two sections, sky region and ground 

region. Features in sky region are used to find the heading change between two 

consecutive frames. Features on the ground region are used to find the change of 

translation components between two consecutive frames. The relative transformation 

between two consecutive frames in this process is unusable for localization due to 

accumulation of error. Therefore, SLAM system will use this information as the initial 

transformation for iterative closest points algorithm which aligns the scene of two 

consecutive frames together and gives the result of the better transformation matrix. 

The point cloud that is align with the reference will be stored to build the map of the 

environment. The transformation matrix from iterative closest point will also be used 

to update the position of the system. The system is capable of re-localization itself given 

the map. By comparing the current point cloud with the map, the system is able to 

localize itself in the map without any information related to where it is. The system is 

implemented to the forklift and is used for localization forklift during navigation task. 

The forklift is successfully navigated through two assigned waypoints. 

 
 Recommendation 

Even visual odometry is better than wheel odometry in terms of installation and does 

not have a problem of wheel slip. However, the downsides of visual odometry are that 

the scene must heavily contains the features or else, the odometry system will not be 

able to recognize the change of the scene. Also, the environment must have enough 

lighting to detect the features of the scene.  
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5.3 Future Improvement 

The features in the image frame are manually separated into sky region and ground 

region. This problem can be improved by implementation of deep learning techniques 

using semantic segmentation in order to determine the region of the floor and the wall. 

Then, the features can be automatically separated into the corrected region. Another 

improvement is related to the re-localization system. As of now, the re-localization 

system is capable of matching the first scan with the map in order to determine the 

location of the robot when the system is started. However, if the actual robot’s position 

is too close to the wall, which the scan cannot capture the feature of the map, the system 

might unable to correctly map the current scan with the map which results in failure in 

localization. To solve this problem, particle filter can be used to corrected the position 

of the robot in the map each time the robot moves and the new scan is input into the 

system. 
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