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[bookmark: Abstract]ABSTRACT
In the dynamic realm of supply chain management, Vendor Managed Inventory (VMI) systems are pivotal for synchronizing stock levels amidst unpredictable demand. This study delves into a VMI model operating under a base-stock level approach, coordinating between a sole supplier and dual retailers, and contending with variable demands that are contingent on multiple factors. The cornerstone of this research is the formulation of a mathematical model that ascertains the most efficient ordering cycle length, a crucial element for the seamless flow of inventory and an essential metric for the enhancement of supply chain management.
The fundamental goal of the model is to determine the most favorable ordering period that corresponds with the retailers' erratic demand fluctuations, while guaranteeing the aggregate expenses of the supply chain are minimized, preserving service excellence. A detailed sensitivity analysis is also a cornerstone of this study, providing a thorough analysis of how various supply chain parameters, such as lead times and cost components, influence the optimal cycle length. The outcomes of this analysis offer strategic insights, and illustrate how slight perturbations in input parameters can affect the cost-efficiency.
Keywords: Vendor managed inventory, Stochastic demand, Dependent demand, base-stock level approach
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[bookmark: Chapter1]CHAPTER 1
INTRODUCTION
[bookmark: Background]1.1 Background of the Study
Vendor managed inventory (VMI) is becoming a prevalent strategy for streamlining supply chain operations. Within a VMI framework, inventory levels from the retailer are disclosed to the vendor, who then assumes the responsibility for determining the quantity of orders. This stands in contrast to conventional inventory control practices, where the retailer independently dictates the size of the order. Reducing inventory-related expenses for both sides is the aim of VMI. Inventory is renewed only when needed when suppliers handle it, which lowers overstock and retailer expenses. 
The major goals of putting a VMI system in place are to lower inventory costs for both retailers and vendors and to raise customer service level. In VMI arrangements, it is imperative that the systems overseeing sales, inventory, and order processing are interconnected, facilitating seamless information exchange between the involved parties. The consumer demand and the point of replenishment are the key pieces of information. A supply network that has mutual understanding of one another's processes can become stronger and obtain a competitive edge over other supply networks. Enhanced information clarity in a VMI supply chain bolsters decision-making acumen and mitigates inventory optimization risks, thereby diminishing overall costs. Consequently, this transparency cultivates a more agile supply chain with reduced inventory levels.
The application of VMI has been the subject of some research works. Various configurations have been examined, such as single-vendor to single-retailer, single-vendor to dual-retailers, and single-vendor to multiple-retailers systems, under both deterministic and stochastic demand scenarios. Initial models for constructing VMI frameworks with stochastic demand have been rooted in deterministic demand models. These deterministic models are crucial for dissecting the basic vendor-retailer dynamics. Nevertheless, to accommodate consumer preferences, stochastic models are indispensable. One of the prevalent problems with VMI is the demand uncertainty that retailers must deal with. 
In a vendor-managed inventory system, it is the supplier who assumes the role of maintaining and regulating the inventory of the buyer's goods. This entails strategizing on the timing and volume of replenishment to align with the buyer's requirements while minimizing costs and maximizing service levels. Govindan (2015) explores a particular scenario where the demand for the product fluctuates stochastically over time and remains uncertain. The main goal is to identify the optimal replenishment strategy for this type of VMI system while taking into account the stochastic and time-varying characteristics of the demand. The goal is to find the best approach to replenishing inventory that balances the costs of holding excess inventory with potential inventory costs.
[bookmark: ProblemStatement]1.2 Problem Statement
Inventory control procedures that are cooperative between vendors and retailers are known as vendor-controlled inventory. VMI boosts the responsiveness and efficiency of the supply chain by reducing the overall system costs. Many large and well-known companies have used VMI in the past, including Walmart, Campbell Soup, Intel, and others, with positive results. As a result, numerous scholars investigated and created VMI models in a variety of contexts. Researchers have created VMI models for stochastic needs in a variety of scenarios during the last few years, including stochastic demands in single-vendor two-retailer supply chains, joint single vendor-single buyer supply chains, stochastic demands in two-level supply chains, etc. To make VMI more realistic and useful, work still needs to be done on various cases.
Although the models developed by Mateen and Chatterjee (2015) reasonably reflect various supply networks, the assumptions used in VMI introduce certain limitations. When the vendor assumes obligation for the replenishment decisions under VMI, assumptions commonly were made about the predictable nature of demand and stable order costs. Based on previous research, specialists who investigated single vendor multiple retailers systems under vendor managed inventory policy generally assumed that the demands of all retailers are independent.
[bookmark: ObjectiveOfStudy]Therefore, to address this gap, this research will investigate a system involving a single supplier and two retailers, where the demands of the retailers are stochastic variables that depend on each other.
1.3 Objective of Study 
[bookmark: ScopesAndLimitation]The primary aim of this research is to formulate a mathematical VMI model for a system with one supplier and two retailers in which the demands of retailers are dependent variables. The ultimate goal is to help reduce the total inventory costs across the entire supply chain.
1.4 Scopes and Limitation
In this research, the assumptions and limitations used to derive the mathematical model are considered below.
· Single vendor and two retailers with only one product.
· The supplier will use a periodic review policy.  
· Holding cost of the vendor is higher than the retailer's holding cost.
· Shortages will be lost.
· The demands of retailers are dependent. 
· The same replenishment cycle will be employed for both retailers 
· Lead times to deliver products to retailers are constant.



[bookmark: ChapterTwo]CHAPTER 2
LITERATURE REVIEW
[bookmark: VendorManagedInventory]2.1 Vendor Managed Inventory
VMI has emerged as a fascinating topic in the management of inventory systems in contemporary supply chain networks. VMI differs from traditional inventory management methods. In traditional inventory systems, a retailer places orders based on personal interest, and the vendor fulfills these orders by delivering the items. The vendor makes the decision on replenishment in VMI. As a result, the seller keeps an eye on the retailer’s inventory level and decides when to replenish it. By using VMI, the vendor will be able to identify the true demand and not rely on retailer orders that might not accurately reflect the true need, hence preventing the bullwhip effect.
Vendor Managed Inventory (VMI) was thoroughly reviewed by Marquès et al. (2010) by tracing the development of VMI from a conceptual framework to its practical implementation procedures. In a VMI setup, the supplier is responsible for managing the inventory levels at the customer's location throughout the supply chain. Huang and Li (2012) found that under VMI, the production decision needs only to consider the customers' market information (such as demand), not their operational information (such as inventory/logistic costs).
Several studies have been carried out on VMI systems involving one vendor and multiple retailers. Siajadi et al. (2006) developed a model featuring a single vendor and multiple buyers. The seller is the only supplier, and the demand is deterministic. Zavanella and Zanoni (2009) suggested a model for a system with one vendor and several buyers, incorporating a collective inventory management approach to decrease or stabilize holding costs. In the study by Hariga et al. (2013), the focus is on a supply chain featuring a single vendor and multiple retailers, operating under a VMI agreement that imposes limits on the retailers' inventory levels. They tackled the challenge of aligning the vendor’s cycle time with the buyers’ irregular ordering cycles by developing a mixed integer nonlinear program that optimizes the combined relevant inventory costs subject to storage constraints
Wang (2013) introduced a periodic-review inventory control strategy for a two-level supply chain involving multiple vendors and facing stochastic demand. In order to balance inventory replenishment decisions among different vendors while taking uncertain demand trends into account, Wang's research tries to design a policy.  The research makes a contribution to improve supply chain performance and efficiency in circumstances where several retailers are involved, demand is uncertain, and coordination is essential by introducing this periodic-review approach.
[bookmark: StochasticDemand]2.2 Stochastic Demand and Different Replenishment Cycles for Retailers under VMI
Given that stochastic demand and replenishment cycles are a significant issue for vendor managed inventory (VMI), research on VMI has risen, and greater attention has been paid to them. Mateen et al. (2015) explored the interactions between a vendor and multiple retailers within a vendor managed inventory (VMI) system operating under stochastic demand. It is assumed that the vendor replenishes all stores simultaneously and that the vendor's replenishment cycle is an integer multiple of the retailers' replenishment cycle. Besides, Darwish and Odah (2010) proposed a vendor managed inventory (VMI) model specifically designed for supply chains with a single vendor and multiple retailers. VMI enhances supply chain efficiency by having the supplier take responsibility for inventory management. Suppliers are advantaged in the VMI system by dictating the restocking schedule and volumes, coupled with insights into the retailer’s stock levels and consumer demand patterns. Moreover, they have devised a strategy that ensures consistent supply chain replenishment. Additionally, they presented a plan that offers uniform replenishment periods for every retailer.
However, an alternative method for a system involving a single vendor and several retailers within a VMI framework was presented by Verma et al. (2014). This strategy permits the adoption of distinct replenishment cycles catered to each retailer's needs. In 2013, Taleizadeh et al. investigated a unified vendor-buyer supply chain dilemma under variable demand and uncertain lead times, focusing on reducing the forecasted overall costs through the calculation of both the reorder point and the order quantity. Taleizadeh et al. (2013) set their research apart by considering the lead-time for each product as a fuzzy variable, unlike earlier studies which treated lead-time as varying linearly with the lot size.
In addition, some models are built and aspects of the research are presented. In Mateen and Chatterjee (2015) work, they provided analytical models for a variety of strategies that can be utilized to coordinate a single vendor-multiple retailer system via VMI. To offer effective inventory management solutions, mathematical models are created, optimization techniques and simulations are run while accounting for the uncertainty of demand and delivery times. Meanwhile, Mateen and Chatterjee (2015) conducted an operational analysis of the VMI system from the perspective of ideal replenishment policy. Sajadieh and Larsen (2015) directed their research towards a dual-stage supply chain framework, featuring a manufacturer and a retailer each grappling with unpredictable demand and production yield. To establish the best coordinated decision strategy, which acts as a benchmark, a thorough Markov chain model was created. Sirikasemsuk and Luong (2017) examined a Vendor Managed Inventory system within a supply chain consisting of a single supplier and two retailers, utilizing a first-order bivariate vector auto regression (VAR(1)) demand model to account for the interrelated demands of the retailers.
In conclusion, the literature review shows that there has been a lot of research studies on vendor managed inventory done in the past. However, these study efforts still have certain limitations, for example, demands of retailers are assumed to be independent. As a result, this study will investigate a system that includes a single supplier and two retailers, in which the retailers' demands are considered dependent random variables.

[bookmark: ChapterThree]CHAPTER 3
MATHEMATICAL MODEL DEVELOPMENT 
[bookmark: EstablishingTheMathematical]The primary objective of this study is to develop a Vendor Managed Inventory (VMI) system under a base-stock level policy for a network consisting of one supplier and two retailers. This chapter will introduce a mathematical model designed to manage scenarios in which the demands of the two retailers are interdependent variables.
3.1 Establishing the Mathematical Framework 
The two retailers in this study's VMI system have equal replenishment cycles. For the entire system, the supplier will place the order. Utilizing the notations below, the total cost function for the supplier and the two retailers has been formulated.
       		=	Index of retailers (K = 1, K = 2) 
		=	Expected cycle length (Decision Variable) 
	=	Demand faced by retailer K in time period t 
		=	Total demand of two retailers in time period t 
	=	Order lead time between retailer K and the supplier 
	=	Order-up-to-level of retailer K at the beginning of period t 
		=	Base-stock level at two retailers 
	=	Order quantity placed by retailer K to the supplier in time period t 
		=	Total order quantity received by the supplier at the beginning of 
			period t 
	=	Mean of the autoregressive process which is used to describe 
			the demand process at retailer K 
		=	Total mean of the autoregressive process which is used to 
			describe the demand process at two retailers 
	=	Variance of demand at retailer K 
		=	Total variance of demand at two retailers 
	=	Probability density function during lead time for a normal 
distribution with mean and the standard 
deviation  
	=	The expected shortage amount at two retailers 
		=	Holding cost at the centralized warehouse per time unit 
		=	Ordering cost at the supplier per cycle 
		=	Shortage cost of the two retailers per unit 
	=	Total cost at both retailers 

[bookmark: FigATwoStageSupplyChainModel]Figure. 3.1 
[image: A diagram of a retail process

Description automatically generated]A Two-Stage Supply Chain Model. 

The VAR(1) demand model, characterized as a first-order vector autoregressive model, serves to delineate the linear dependencies that exist across various time series. The VAR(1) demand model is used in this research because the demand of the two retailers is correlated and random.
From the basic equation of bivariate VAR (1) demand model, demands faced by retailer 1 and retailer 2 in time period t can be expressed as:

  			   (1)
Then, the total demand of two retailers in time period t is: 
 					(2)
Let be a vector representing the demands of the two retailers. We can express that: 
 
 is a vector representing mean of the autoregressive process which is used to describe the demand process at retailer 1 and retailer 2 
 is 2x2 covariance matrix which is expressed as , where and are variance of demand at retailer 1 and retailer 2,  is the covariance of  and 
It is noted that: 
					(3)
 is constant vector of the VAR (1) model 
 is autoregressive parameter matrix 
 is white noise vector following the jointly-distributed normal distribution with 
zero mean vector, which represents the random factors affecting the demand of 
retailer 1 and retailer 2 
Then: 
				(4)
The distribution of  is stationary, so: 
					(5)
We also know: 
 						(6)
From the equations (4) (5) (6) imply: 

 
Where:  is 2x2 identity matrix 
	
  					 (7)
We have: 
+ 
 				          (8)
Where  and  follow the same distribution, so 
 is 2x2 covariance matrix which is expressed as , where  is the covariance between  and ,  and  are variance of  and 
So:

 		(9)
From equation (7): 

 

Therefore: 

 				     (10)
From equation (9):




Therefore:


      		(11)
From equations (11), 

      		                (12)

 	 		     (13)

 		    (14)
From Cramer's rule, rewrite the equations (12) (13) (14) and represent it as a matrix: 

Calculate , and g: 



The final results of, and g are shown below: 

(15)

 (16)

 (17)
In conclusion: 

Therefore, total demand 
 And 
Where: 
 				 (18)
And: 




					 (19)
Then calculate  : 


Then, the final result of  is: 

  (20)
[bookmark: BaseStockLevelPolicy]3.2 Base-Stock Level Policy 
A base-stock level policy is a method often employed in inventory management for stock regulation. The aim within this framework is to keep the inventory at an established,
designated level, termed the base-stock level.

[bookmark: FigBaseStockPolicy]Figure. 3.2 
[image: ]Base-Stock Policy

Assume: 
S		=	Base-stock level
		=	Length of the review period
		=	Lead Time
	=	Average daily demand
	=	Standard deviation of this daily demand
		=	Service level
In the base-stock level policy, the target inventory level, denoted by the base-stock level S, is reviewed at each interval T. Orders are then placed as necessary to elevate the inventory position to match the base-stock level.
The average demand during an interval of T+ L days is:
 				(21)
Safety stock is: 
 				 (22)
Then, the base-stock level is:
 		(23)
We know: The average daily demand: 
 			(24)
The standard deviation of this daily demand: 
 					(25)
Then, from equation (10), the base-stock level is: 
 			(26)
[bookmark: TotalCost]3.3 Total Cost 
The total cost will consist of the holding cost incurred at the centralized warehouse, the ordering cost incurred at the supplier, and the shortage cost incurred at the two retailers. When an order is placed for inventory products or supplies, there are costs involved that are referred to as ordering costs. The costs related to maintaining and keeping inventory for a particular period of time are referred to as the holding cost. The costs a company incurs when its inventory runs out and it is unable to satisfy consumer demand are referred to as the shortage cost.

[bookmark: FigBaseStockLevelPolicy]Figure. 3.3 
Base-Stock Level Policy 

The graph presented illustrates the inventory distribution of the retailer utilizing a base-stock level policy.
At point A: 
The order is released at the vendor, and the average inventory level at retailer is 
 				 (27)
At point B: 
The order is received at the vendor, and the average inventory level at retailer is 
 (Safety stock)			(28)
At point C: 
The order is delivered from the warehouse to the retailer, and the average inventory 
level at retailer is 
				(29)
[bookmark: TotalCostAtTheSupplier]3.3.1 Total Cost at the Supplier 
Ordering cost:
The ordering cost per cycle at the supplier is: 
Therefore, total cost at the supplier per unit of time is: 
[bookmark: TotalCostAtTheCentralized]3.3.2 Total Cost at the Centralized Warehouse
Holding cost:
The average inventory level is shown as below:

[bookmark: FigTheAverageInventoryLevelforHolding]Figure. 3.4 
The Average Inventory Level for Holding Cost

From the graph above, the average inventory level = the area under the inventory curve = the shadow area:

 	(30)
The holding cost per cycle at the centralized warehouse is: 

Therefore, total cost at the centralized warehouse per unit of time is: 
[bookmark: TotalCostAtTheRetailers]3.3.3 Total Cost at the Retailers
Shortage cost:
The expected shortage amount before the next order arrives is:
 				(31)
Where:  is the demand of two retailers during (T+L) 

is probability density function for a normal distribution 
And:
The total mean during (T + L) is: 
The total standard deviation during (T + L) is:
 					(32)
So: 
 			(33)
From the lost sales policy:
The shortage cost per unit of time at two retailers is: 



[bookmark: TotalCostAtTheVMIsystem]3.3.4 Total Cost at the VMI System
The aggregate cost within the VMI system encompasses the holding cost at the central warehouse, the ordering cost at the supplier, and the shortage cost at both retailers.
Therefore, the total cost per unit of time is:  



[bookmark: ChapterFour]

CHAPTER 4
NUMERICAL EXPERIMENTS
[bookmark: NumericalExample]4.1 Numerical Example 
To demonstrate the practicality of the created mathematical model, MATLAB's fmincon toolbox is utilized to conduct numerical experiments. Utilizing the fmincon solver, it will ascertain the optimal cycle length (T) aimed at diminishing the overall inventory expenses across the entire system.
For the optimization model, the following options are employed.
Bounds: Lower – 0.01
  Upper – Infinity
The subsequent values were employed as input parameters of the base case.
		=	100$ per cycle 
		=	5$ per time unit 
		=	40$ per unit, 
z		=	1.645 (95% service level) 
L		=	2 days
	=	0.2
	=	-0.4
	=	-0.4
	=	0.2
		=	10
		=	15
		=	10
		=	20
		=	-12
The optimal values derived from the fmincon solver for these input parameters are:
Optimal cycle length T = 1.336, and the total inventory cost is 184.846$.
[bookmark: SensitivityAnalysis]

4.2 Sensitivity Analysis 
This section will scrutinize the impacts of the input parameters. Investigations are conducted on parameters including service level, delivery time, holding cost, ordering cost, shortage cost, constant parameter of VAR(1), autoregressive parameter of VAR(1), variance of demand error term, and covariance between the error terms of demands.
[bookmark: EffectOfOrderingCostOfTheTwo]4.2.1 Effect of Ordering Cost of the Two Retailers
In this section, the ordering cost will vary from 80 to 120 while maintaining the initial values for the remaining parameters. Table 4.2.1 displays the results.

[bookmark: TableEffectOfOrderingCost]Table 4.1
Effect of Ordering Cost
	
	Optimal T
	Total cost

	80
	1.1982
	169.06

	90
	1.2691
	177.17

	100
	1.3363
	184.85

	110
	1.4003
	192.15

	120
	1.4616
	199.14



Based on the findings, it is clear that with an increase in ordering cost, both the optimal cycle length and the total cost also increase. The above trends look reasonable. In fact, it is understandable that the total cost increases when the ordering cost increases. Also, when the ordering cost increases, the cycle length must also increases to help reduce ordering cost per unit of time, which is one component in the total cost function.
[bookmark: EffectOfHoldingCostOfTheTwo]4.2.2 Effect of Holding Cost of the Two Retailers 
Within this section, the holding cost will vary from 2 to 10 while maintaining the starting point values for the remaining parameters. Table 4.2.2 provides the results.
Based on the findings, it is clear that as the holding cost increases, the optimal cycle length decreases while the total cost rises. The above trends are reasonable. It is understandable that the total cost increases as the holding cost increases. Additionally, when the holding cost increases, the cycle length must decrease to avoid accumulating excessive holding cost over time, which is one component in the total cost function.
[bookmark: TableEffectOfHoldingCost]
Table 4.2 
Effect of Holding Cost
	
	Optimal T
	Total cost

	2
	2.1243
	110.03

	3
	1.7301
	138.03

	4
	1.4958
	162.55

	5
	1.3363
	184.85

	6
	1.2187
	205.57

	7
	1.1274
	225.09

	8
	1.0539
	243.67

	9
	0.9931
	261.47

	10
	0.9417
	278.62



[bookmark: EffectOfShortageCostOfTheTwo]4.2.3 Effect of Shortage Cost of the Two Retailers 
Within this section, the shortage cost will vary from 20 to 100 while maintaining the starting values for the others parameters. Table 4.2.3 displays the results.

[bookmark: TableEffectOfShortageCost]Table 4.3
Effect of Shortage Cost 
	Cs
	Optimal T
	Total cost

	20
	1.3262
	183.41

	30
	1.3313
	184.13

	40
	1.3363
	184.85

	50
	1.3413
	185.56

	60
	1.3462
	186.27

	70
	1.3512
	186.98

	80
	1.3561
	187.68

	90
	1.3611
	188.39

	100
	1.3660
	189.09


With regard to the findings, it is evident that with an increase in the shortage cost, both the optimal cycle length and the total cost are prone to rise. The above trends are reasonable. It is understandable that as the shortage cost increases, the total cost rises as well. Additionally, the cycle length shows a slight increase as the shortage cost rises to help reduce the shortage cost per unit of time in the total cost function.
[bookmark: EffectOfLeadTimeOfTheTwo]4.2.4 Effect of Lead Time of the Two Retailers 
In this section, the lead time ranges from 1 to 10, with all other input parameters held constant. Table 4.2.4 provides the results.

[bookmark: TableEffectOfLeadTime]Table 4.4
Effect of Lead Time
	L
	Optimal T
	Total cost

	1
	1.3185
	178.24

	2
	1.3363
	184.85

	3
	1.3485
	190.50

	4
	1.3579
	195.52

	5
	1.3654
	200.09

	6
	1.3718
	204.31

	7
	1.3774
	208.24

	8
	1.3823
	211.95

	9
	1.3867
	215.46

	10
	1.3907
	218.81



Based on the findings, it is apparent that as the lead time increases, both the optimal cycle length and the total cost increase. The above trends are reasonable. As the lead time increases, it is understandable that the total cost would also rise, since a longer lead time typically heightens the risk of holding excess inventory or encountering shortages, both of which can drive up the total cost. Furthermore, as the lead time extends, the cycle length increases to mitigate the increase of shortage cost due to longer lead times.



[bookmark: EffectOfServiceLevelOfTheTwo]4.2.5 Effect of Service Level of the Two Retailers 
The Z-score represents a percentile indicating the service level, which is the likelihood that demand will not surpass the stock level throughout the lead time. In this section, the service level varies from 90% to 97% (corresponds z-score varies from 1.28 to 1.88) while keeping the remaining input parameters constant. Table 4.2.5 showcases the results.

[bookmark: TableEffectOfServiceLevel]Table 4.5
Effect of Service Level
	z
	Optimal T
	Total cost

	1.28
	1.3766
	180.08

	1.33
	1.3699
	180.59

	1.38
	1.3637
	181.15

	1.43
	1.3578
	181.75

	1.48
	1.3523
	182.40

	1.53
	1.3471
	183.10

	1.58
	1.3422
	183.84

	1.63
	1.3376
	184.61

	1.68
	1.3333
	185.41

	1.73
	1.3291
	186.25

	1.78
	1.3253
	187.12

	1.83
	1.3216
	188.01

	1.88
	1.3181
	188.93



Considering the data gathered, it is evident that as the service level time extends, it is evident that the optimal cycle length decreases while the total cost rises. The above trends are reasonable. As the service level increases, it leads to higher inventory levels to prevent fluctuations in demand, which leads to the increase in the total cost. Correspondingly, the cycle length decreases slightly as service level increases, indicating a strategy to compensate for the higher inventory levels by reducing the interval between orders, which helps to manage the holding cost and mitigate the risk of overstocking.

[bookmark: EffectOfTheAutoregressiveONEONE]4.2.6 Effect of the Autoregressive Parameter Phi 11 of the Retailer 1 
In this section, the autoregressive parameter phi 11 will vary from -0.3 to 0.3 while maintaining the baseline values for the remaining parameters. Table 4.2.6 illustrates the results.

[bookmark: TableEffectOfTheAutoregressiveONEONE]Table 4.6
Effect of the Autoregressive Parameter Phi 11
	
	Optimal T
	Total cost

	-0.3
	1.3538
	180.13

	-0.25
	1.3537
	180.53

	-0.2
	1.3535
	180.95

	-0.15
	1.3530
	181.39

	-0.1
	1.3522
	181.84

	-0.05
	1.3511
	182.31

	0
	1.3495
	182.78

	0.05
	1.3474
	183.28

	0.1
	1.3446
	183.78

	0.15
	1.3409
	184.30

	0.2
	1.3363
	184.85

	0.25
	1.3303
	185.42

	0.3
	1.3229
	186.04



Based on the findings, it becomes apparent that with an increase in phi11, there is a decrease in the optimal cycle length while an increase in the total cost. The above trends are reasonable. As phi11 increases, there is a corresponding rise in the total cost. This is understandable because a higher phi11 suggests stronger positive autocorrelation in demand, which could lead to larger fluctuates in demand over time, thus increasing both potential holding and shortage costs. However, the cycle length decreases slightly, indicating a shift toward more frequent ordering to mitigate the risks associated with these larger demand fluctuations on the total cost function.



[bookmark: EffectOfTheAutoregressiveONETWO]4.2.7 Effect of the Autoregressive Parameter Phi 12 of the Two Retailers 
In this section, the autoregressive parameter phi12 will vary from -0.6 to -0.2 with the remaining parameters remaining unchanged from the base case. Table 4.2.7 showcases the findings.

[bookmark: TableEffectOfTheAutoregressiveONETWO]Table 4.7
Effect of the Autoregressive Parameter Phi 12
	
	Optimal T
	Total cost

	-0.6
	1.4374
	172.21

	-0.55
	1.4061
	175.93

	-0.5
	1.3796
	179.25

	-0.45
	1.3566
	182.22

	-0.4
	1.3363
	184.85

	-0.35
	1.3178
	187.15

	-0.3
	1.3008
	189.15

	-0.25
	1.2850
	190.88

	-0.2
	1.2702
	192.37



Based on the findings, it is obvious that when as phi12 experiences an increase, it results in a reduction of the optimal cycle length, while leading to an escalation in the total cost. The trend illustrates that as phi12 becomes less negative, there has been an escalation in the total cost. This pattern is reasonable because as a less negative phi12 could imply a decrease in the competitive effect between two retailers, leading to less advantage taken from the competitor's demand fluctuations. The decrease in cycle length could be a strategy to maintain service levels and avoid stock outs in a less competitive environment. On the other hand, the total cost increases due to higher total demand.
[bookmark: EffectOfTheAutoregressiveTWOONE]4.2.8 Effect of the Autoregressive Parameter Phi 21 of the Two Retailers 
In this section, the autoregressive parameter phi21 will vary from -0.6 to -0.2 while maintaining the initial values for the remaining parameters. Table 4.2.8 outlines the results.
Based on the findings, it is obvious that when with an increase in phi21, there is a corresponding decrease in the optimal cycle length while an increase in the total cost. The trends observed here are the same as the trends observed on the effects of phi12.

[bookmark: TableEffectOfTheAutoregressiveTWOONE]Table 4.8
Effect of the Autoregressive Parameter Phi 21
	
	Optimal T
	Total cost

	-0.6
	1.3582
	181.61

	-0.55
	1.3524
	182.62

	-0.5
	1.3469
	183.49

	-0.45
	1.3415
	184.23

	-0.4
	1.3363
	184.85

	-0.35
	1.3310
	185.34

	-0.3
	1.3258
	185.74

	-0.25
	1.3206
	186.05

	-0.2
	1.3155
	186.28



Based on the findings, it is obvious that when with an increase in phi21, there is a corresponding decrease in the optimal cycle length while an increase in the total cost. The trends observed here are the same as the trends observed on the effects of phi12.
[bookmark: EffectOfTheAutoregressiveTWOTWO]4.2.9 Effect of the Autoregressive Parameter Phi 22 of the Retailer 2 
In this section, the autoregressive parameter phi22 will vary from -0.3 to 0.3 while maintaining the starting point values for the remaining parameters. Table 4.2.9 contains the results.
Based on the findings, it is evident that when as phi22 experiences an upward trend, the optimal cycle length decreases, while the total cost shows an upward trajectory. The trends observed here are the same as the trends observed on the effects of phi11.




[bookmark: TableEffectOfTheAutoregressiveTWOTWO]Table 4.9
Effect of the Autoregressive Parameter Phi 22
	
	Optimal T
	Total cost

	-0.3
	1.4435
	169.24

	-0.25
	1.4366
	170.17

	-0.2
	1.4293
	171.21

	-0.15
	1.4216
	172.37

	-0.1
	1.4132
	173.67

	-0.05
	1.4041
	175.11

	0
	1.3939
	176.70

	0.05
	1.3824
	178.45

	0.1
	1.3693
	180.38

	0.15
	1.3541
	182.50

	0.2
	1.3363
	184.85

	0.25
	1.3152
	187.44

	0.3
	1.2904
	190.36



[bookmark: EffectOfTheConstantDeltaONE]4.2.10 Effect of the Constant Parameter Delta 1 of the Retailer 1
In this section, the constant parameter delta 1 will vary from 5 to 15 while maintaining base values for the remaining parameters. The results are showcased in Table 4.2.10.
From the results, it can be seen that as delta 1 increases, there is a corresponding decrease in the optimal cycle length while leading to an increase in the total cost. The above trends are reasonable because an increase in mean demand would typically lead to a higher total cost due to the need for more inventory and the potential for increased holding costs. Furthermore, the reduction in cycle length suggests a strategy to order more frequently to match the higher rate of demand.





[bookmark: TableEffectOfTheConstantDeltaONE]Table 4.10
Effect of the Constant Parameter Delta 1
	
	Optimal T
	Total cost

	5
	1.478
	170.23

	6
	1.446
	173.27

	7
	1.416
	176.25

	8
	1.388
	179.17

	9
	1.361
	182.04

	10
	1.336
	184.85

	11
	1.313
	187.60

	12
	1.290
	190.32

	13
	1.269
	192.98

	14
	1.248
	195.60

	15
	1.229
	198.18



[bookmark: EffectOfTheConstantDeltaTWO]4.2.11 Effect of the Constant Parameter Delta 2 of the Retailer 2
[bookmark: TableEffectOfTheConstantDeltaTWO]In this section, the constant parameter delta 2 will vary from 15 to 25 while maintaining the initial values for the remaining parameters. The results are showcased in Table 4.2.11.

Table 4.11
Effect of the Constant Parameter Delta 2
	
	Optimal T
	Total cost

	15
	1.3363
	184.85

	16
	1.3125
	187.60

	17
	1.2900
	190.32

	18
	1.2687
	192.98

	19
	1.2483
	195.60

	20
	1.2290
	198.18

	21
	1.2105
	200.72

	22
	1.1928
	203.23

	23
	1.1759
	205.69

	24
	1.1596
	208.13

	25 
	1.1441
	210.53



From the results, it can be seen that as delta 2 increases, there is a corresponding decrease in the optimal cycle length while leading to an increase in the total cost. The trends here are the same as the trends observed on the effects of delta 1.
[bookmark: EffectOfTheVarianceOfDemandONE]4.2.12 Effect of the Variance of Demand Error Term of the Retailer 1
In this section, the variance of demand error term  will vary from 5 to 30 while maintaining the starting point values for the remaining parameters. Table 4.2.12 outlines the results.

[bookmark: TableFourTwoOneTwo]Table 4.12
Effect of the Variance of Demand Error Term Sigma 1 Squared
	
	Optimal T
	Total cost

	5
	1.3646
	160.90

	10
	1.3363
	184.85

	15
	1.3204
	199.14

	20
	1.3085
	210.39

	25
	1.2987
	219.97

	30
	1.2902
	228.46



From the results, it can be seen that with an increase in  , there is a decrease in the optimal cycle length while an increase in the total cost. The above trends are reasonable. This is understandable because higher variability in demand leads to increase in shortage cost, and cycle length should be reduced to mitigate the risk of stock outs.
[bookmark: EffectOfTheVarianceOfDemandTWO]4.2.13 Effect of the Variance of Demand Error Term of the Retailer 2
In this section, the variance of demand error term  will vary from 15 to 40 while maintaining the initial values for the remaining parameters. The outcomes can be found in Table 4.2.13.
From the results, it can be seen that with an increase in    , there is a corresponding decrease in the optimal cycle length while an increase in the total cost. These trends are similar to the trends observed on the effects of .


[bookmark: TableFourTwoOneThree]Table 4.13
Effect of the Variance of Demand Error Term Sigma 2 Squared
	
	Optimal T
	Total cost

	15
	1.3646
	160.90

	20
	1.3363
	184.85

	25
	1.3204
	199.14

	30
	1.3085
	210.39

	35
	1.2987
	219.97

	40
	1.2902
	228.46



[bookmark: EffectOfTheCovarianceTWORetailers]4.2.14 Effect of the Covariance between the Error Terms of the Two Retailers 
In this section, the covariance of demand between the error terms  will vary from -15 to -1 while maintaining the starting point values for the remaining parameters. The outcomes can be found in Table 4.2.14.
Based on the findings, it is apparent that with an increase in  there is a corresponding decrease in the optimal cycle length while an increase in the total cost. The above trends are reasonable. The increase of covariance term indicates a stronger relationship in demand fluctuations between retailers. The increase in total costs reflects the additional cost of maintaining inventories. Consequently, the reduction in cycle length is due to the potential overstock caused by competition.












[bookmark: TableFourTwoOneFour]Table 4.14
Effect of the Covariance of Demand between the Error terms GammaEpsilon
	
	Optimal T
	Total cost

	-15
	1.3856
	144.34

	-14
	1.3563
	167.75

	-13
	1.3448
	177.43

	-12
	1.3363
	184.85

	-11
	1.3292
	191.10

	-10
	1.3232
	196.60

	-9
	1.3178
	201.57

	-8
	1.3129
	206.14

	-7
	1.3085
	210.39

	-6
	1.3044
	214.38

	-5
	1.3005
	218.16

	-4
	1.2969
	221.75

	-3
	1.2934
	225.17

	-2
	1.2902
	228.46

	-1
	1.2871
	231.62





[bookmark: ChapterFive]CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS 
[bookmark: Conclusions]5.1 Conclusions
The aim of this research is to develop a Vendor Managed Inventory (VMI) system, operating on a base-stock level policy, for a supply network comprised of a single supplier and two retailers, where the demands of the two retailers are not only stochastic but also dependent. Using a first-order vector auto regression (VAR (1)) model, this interdependency can be captured.
Numerical experiments were carried out with the fmincon toolbox in MATLAB to verify the mathematical framework, which assist in determining the expected cycle length to minimize the total inventory cost. The main results of sensitivity analyses show that:
· Ordering Cost: As the ordering cost rises, there is a corresponding increase in both the optimal cycle length and the overall cost.
· Holding Cost: A rise in holding cost results in a shorter optimal cycle length and an increased total cost.
· Shortage Cost: Higher shortage cost yielded a slight increase in optimal cycle length and a steady rise in total cost.
· Lead Time: Extended lead times resulted in increases in both the optimal cycle length and total cost, reflecting the need for additional safety stock.
· Service Level: An increase in the service level (z-score) led to a reduction in the optimal cycle length and an increase in total costs, as higher service levels typically require higher stock levels.
· Mean demand: The surge in mean demand has led to a reduction in the optimal cycle length and an increase in total cost, consistent with the principle that higher demand requires more frequent ordering.
· Standard deviation of demand: Greater demand variability leads to the fact that the optimal cycle length nearly unchanged while total cost increases.
[bookmark: Recommendations]5.2 Recommendations
Considering the knowledge acquired from the sensitivity testing and model analyses, the following recommendations are proposed for supply chain practitioners and future research:
Real-time Data Integration: Establish integrated systems for real-time data sharing between the supplier and retailers to better anticipate and respond to stochastic demand.
Flexible Inventory Policy Design: Develop and implement inventory policies that can dynamically adjust to changes in ordering, holding, and shortage costs.
Lead Time Management: Implement strategies to manage lead times effectively, which may include supplier diversification or investment in faster transportation methods.
Service Level Optimization: Carefully consider service level increases, as they can significantly impact total costs.  A balance must be struck between service quality and cost management.
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[bookmark: Appendix]APPENDIX
COMPUTER PROGRAM (MATLAB)
% Define variables with actual values
Co = 100; 
Ch = 5;  
Cs = 40; 
z = 1.645;
L = 2; 
phi11 = 0.2; 
phi12 = -0.4; 
phi21 = -0.4; 
phi22 = 0.2; 
delta1 = 10; 
delta2 = 15; 
sigma_1_squared = 10; 
sigma_2_squared = 20; 
gammaEpsilon = -12; 

% Objective Function
function CT = objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared)

    % Compute the total mean (mu) and total standard deviation (sigma) for (T+L)
    mu = mu_x * (T + L);
    sigma = sigma_x * sqrt(T + L);

    % Check and ensure mu and sigma are finite
    if isnan(mu) || isinf(mu) || isnan(sigma) || isinf(sigma)
        error('Mu or sigma is non-finite, aborting calculation.');
    end

    % Calculate the base-stock level S
    S = max((T + L) * mu_x + z * sqrt(sigma_x_squared) * sqrt(T + L), 0);

    % Ensure S is finite
    if isinf(S) || isnan(S)
        error('Calculated S is non-finite, cannot proceed with calculation.');
end

orderingCost = Co / T;

    Area = 1/2 * (z * sigma_x * sqrt(T + L) + mu_x * L + z * sigma_x * sqrt(T + L)) * L + ...
           1/2 * (mu_x * T + z * sigma_x * sqrt(T + L) + mu_x * L + z * sigma_x * sqrt(T + L)) * (T - L);
    holdingCost = Ch * Area / T; 

    % Define the normal distribution probability density function
    normal_pdf = @(x) (1 / (sigma * sqrt(2 * pi))) * exp(-((x - mu).^2) / (2 * sigma^2));

    % Calculate the expected shortage amount (ES) using integration
    integrand_ES = @(x) max(x - S, 0) .* normal_pdf(x);
    ES = integral(integrand_ES, S, Inf);

    shortageCost = Cs * ES / T;

    CT = orderingCost + holdingCost + shortageCost;
end 
  
% Optimal cycle length T
  mu_1d = ((1 - phi22) * delta1 + phi12 * delta2) / ((1 - phi11) * (1- phi22) - phi12 * phi21);
  mu_2d = (phi21 * delta1 + (1 - phi11) * delta2) / ((1 - phi11) * (1- phi22) - phi12 * phi21);

sigma_1d_squared = ((phi11*phi22-phi11*phi22^3 + phi22^2 + phi12*phi21 + phi12*phi21*phi22^2 - 1) * sigma_1_squared +...
                   (phi12^3*phi21-phi12^2-phi11*phi12^2*phi22) * sigma_2_squared +...
                   (2*phi11*phi12*phi22^2-2*phi11*phi12-2*phi12^2*phi21*phi22)* gammaEpsilon) /(phi11^3*phi22^3-phi11^3*phi22 -...
                   3*phi11^2*phi12*phi21*phi22^2+phi11^2*phi12*phi21-phi11^2*phi22^2+phi11^2+3*phi11*phi12^2*phi21^2*phi22 -...
                   phi11*phi22^3+phi11*phi22-phi12^3*phi21^3+phi12^2*phi21^2+phi12*phi21*phi22^2+phi12*phi21+phi22^2-1);

sigma_2d_squared = ((phi12*phi21^3-phi11*phi21^2*phi22-phi21^2) * sigma_1_squared +... 
                   (phi11*phi22+phi12*phi21+phi11^2+phi11^2*phi12*phi21-phi11^3*phi22-1) * sigma_2_squared +...
                   (2*phi11^2*phi21*phi22-2*phi11*phi12*phi21^2-2*phi21*phi22) * gammaEpsilon) / (phi11^3*phi22^3-phi11^3*phi22 -...
                    3*phi11^2*phi12*phi21*phi22^2+phi11^2*phi12*phi21-phi11^2*phi22^2+phi11^2+3*phi11*phi12^2*phi21^2*phi22 -...
                    phi11*phi22^3+phi11*phi22-phi12^3*phi21^3+phi12^2*phi21^2+phi12*phi21*phi22^2+phi12*phi21+phi22^2-1);

g  = ((phi11*phi21*phi22^2-phi12*phi21^2*phi22-phi11*phi21) * sigma_1_squared +...
                   (phi11^2*phi12*phi22-phi12*phi22-phi11*phi12^2*phi21) * sigma_2_squared +...
                   (phi12^2*phi21^2-phi11^2*phi22^2+phi11^2+phi22^2-1) * gammaEpsilon) / (phi11^3*phi22^3-phi11^3*phi22 -...
                    3*phi11^2*phi12*phi21*phi22^2+phi11^2*phi12*phi21-phi11^2*phi22^2+phi11^2+3*phi11*phi12^2*phi21^2*phi22 -...
                    phi11*phi22^3+phi11*phi22-phi12^3*phi21^3+phi12^2*phi21^2+phi12*phi21*phi22^2+phi12*phi21+phi22^2-1);

 mu_x = mu_1d + mu_2d; % Total mean of demand at two retailers
 sigma_x_squared =  sigma_1d_squared + 2*g + sigma_2d_squared; 
 % Total variance of demand at two retailers
 sigma_x = sqrt(sigma_x_squared);

% Optimize cycle length T
% Define an anonymous function for the objective function that takes only T as input
objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x,sigma_x_squared);

% Define the initial guess, lower and upper bounds for T
T0 = 1; % Initial guess for T
T_lb = 0.01; % Lower bound for T
T_ub = Inf; % Upper bound for T

% Set optimization options, if necessary
options = optimoptions('fmincon', 'Display', 'iter', 'Algorithm', 'sqp');

% Test the objective function at the initial point
try
    testVal = objectiveFun(T0);
    fprintf('The objective function value at the initial point is: %f\n', testVal);
catch ME
    error('The objective function failed at the initial point with error: %s', ME.message);
end

% Run the optimization
[T_optimal, cost_optimal] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);

% Display the optimal T and corresponding cost
fprintf('Optimal T is: %f\n', T_optimal);
fprintf('Optimal cost is: %f\n', cost_optimal);                    

% Sensitivity Co
% Fixed parameters
Ch = 5;  
Cs = 40; 
L = 2;   
z = 1.645; 
phi11 = 0.2; 
phi12 = -0.4; 
phi21 = -0.4; 
phi22 = 0.2; 
delta1 = 10; 
delta2 = 15; 
sigma_1_squared = 10; 
sigma_2_squared = 20; 
gammaEpsilon = -12; 

% Variable range of Co
Co_values = 80:10:120; % Assuming we analyze Co in increments of 10 from 80 to 120

% Initialize the result variable, storing the optimal T-value and minimum CT value for each Co
T_optimal = zeros(size(Co_values)); 
CT_min = zeros(size(Co_values)); 

% Optimization option
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

% Iterate over the different values of Co
for i = 1:length(Co_values)
    Co = Co_values(i);
    sigma_x = sqrt(sigma_x_squared); % Total standard deviation of demand

    % Define an objective function that takes T as its variable only
    objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);

    % Set the initial guess, lower bound, and upper bound for T
    T0 = 1; 
    T_lb = 0.01; 
    T_ub = 10; 

    % Optimization is performed to find the optimal T and the corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_Co_CT_table = table(Co_values', T_optimal', CT_min', 'VariableNames', {'Co', 'Optimal_T', 'Min_CT'});

% Display result table
disp(T_Co_CT_table);

% Visualized result
figure;
plot(Co_values, CT_min, '-o');
title('Effect of Ordering Cost Co on Minimum Total Cost CT');
xlabel('Ordering Cost Co ($)');
ylabel('Minimum Total Cost CT ($)');
grid on;

% Sensitivity Ch
% Fixed parameters
Co = 100; 
Cs = 40; 
L = 2;   
z = 1.645; 
phi11 = 0.2; 
phi12 = -0.4; 
phi21 = -0.4; 
phi22 = 0.2; 
delta1 = 10; 
delta2 = 15; 
sigma_1_squared = 10; 
sigma_2_squared = 20; 
gammaEpsilon = -12; 

% Variable range of Ch
Ch_values = 2:1:10; % Assuming we analyze Ch in increments of 1 from 2 to 10

% Initialize the result variable, storing the optimal T-value and minimum CT value for each Ch
T_optimal = zeros(size(Ch_values)); 
CT_min = zeros(size(Ch_values)); 

% Optimization option
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

% Iterate over the different values of Ch
for i = 1:length(Ch_values)
    Ch = Ch_values(i);
sigma_x = sqrt(sigma_x_squared);

% Define an objective function that takes T as its variable only
    objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);

    % Set the initial guess, lower bound, and upper bound for T
    T0 = 1; 
    T_lb = 0.01; 
    T_ub = 10; 

    % Optimization is performed to find the optimal T and the corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_Ch_CT_table = table(Ch_values', T_optimal', CT_min', 'VariableNames', {'Ch', 'Optimal_T', 'Min_CT'});

% Display result table
disp(T_Ch_CT_table);

% Visualized result
figure;
plot(Ch_values, CT_min, '-o');
title('Effect of Holding Cost Ch on Minimum Total Cost CT');
xlabel('Holding Cost Ch ($ per unit per time unit)');
ylabel('Minimum Total Cost CT ($ per time unit)');
grid on;

% Sensitivity Cs               
% Fixed parameters
Co = 100; 
Ch = 5;
L = 2;   
z = 1.645; 
phi11 = 0.2; 
phi12 = -0.4; 
phi21 = -0.4; 
phi22 = 0.2; 
delta1 = 10; 
delta2 = 15; 
sigma_1_squared = 10; 
sigma_2_squared = 20; 
gammaEpsilon = -12; 

% Variable parameter Cs range
Cs_values = 20:10:100; % Assuming we analyze Cs in increments of 10 from 20 to 100

% Initialize result variables to store optimal T and minimum CT for each Cs
T_optimal = zeros(size(Cs_values)); 
CT_min = zeros(size(Cs_values)); 

% Optimization options
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

% Loop over different Cs values
for i = 1:length(Cs_values)
    Cs = Cs_values(i);
    % Define the objective function that only varies with T
    objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);

    % Set initial guess, lower and upper bounds for T
    T0 = 1; 
    T_lb = 0.01; 
    T_ub = 10; 

    % Perform optimization to find the optimal T and corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_Cs_CT_table = table(Cs_values', T_optimal', CT_min', 'VariableNames', {'Cs', 'Optimal_T', 'Min_CT'});

% Display the result table
disp(T_Cs_CT_table);

% Visualize the results
figure;
plot(Cs_values, CT_min, '-o');
title('Effect of Shortage Cost Cs on Minimum Total Cost CT');
xlabel('Shortage Cost Cs ($ per unit short)');
ylabel('Minimum Total Cost CT ($ per time unit)');
grid on;

% Sensitivity L
% Fixed parameters
Co = 100; 
Ch = 5;
Cs = 40; 
z = 1.645;
phi11 = 0.2; 
phi12 = -0.4; 
phi21 = -0.4; 
phi22 = 0.2; 
delta1 = 10; 
delta2 = 15; 
sigma_1_squared = 10; 
sigma_2_squared = 20; 
gammaEpsilon = -12; 
 

% Variable parameter L range
L_values = 1:1:10; % Analyzing L from 1 to 10 days

% Initialize result variables to store optimal T and minimum CT for each L
T_optimal = zeros(size(L_values)); 
CT_min = zeros(size(L_values)); 

% Optimization options
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

for i = 1:length(L_values)
    L = L_values(i);

    % Define the objective function that only varies with T
    objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);

    % Set initial guess, lower and upper bounds for T
    T0 = 1; 
    T_lb = 0.01; 
    T_ub = 10; 

    % Perform optimization to find the optimal T and corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_L_CT_table = table(L_values', T_optimal', CT_min', 'VariableNames', {'L', 'Optimal_T', 'Min_CT'});

% Display the result table
disp(T_L_CT_table);

% Visualize the results
figure;
plot(L_values, CT_min, '-o');
title('Effect of Lead Time L on Minimum Total Cost CT');
xlabel('Lead Time L (days)');
ylabel('Minimum Total Cost CT ($ per time unit)');
grid on;

% Sensitivity z
% Fixed parameters
Co = 100; 
Ch = 5;
Cs = 40; 
L = 2;   
phi11 = 0.2; 
phi12 = -0.4; 
phi21 = -0.4; 
phi22 = 0.2; 
delta1 = 10; 
delta2 = 15; 
sigma_1_squared = 10; 
sigma_2_squared = 20; 
gammaEpsilon = -12; 

% Variable parameter z range
z_values = 1.28:0.05:1.88; % Analyzing z from 90% to 97% service level in increments of 0.05

% Initialize result variables to store optimal T and minimum CT for each z
T_optimal = zeros(size(z_values)); 
CT_min = zeros(size(z_values)); 

% Optimization options
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

for i = 1:length(z_values)
    z = z_values(i);

    % Define the objective function that only varies with T
 objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);

    % Set initial guess, lower and upper bounds for T
    T0 = 1; 
    T_lb = 0.01; 
    T_ub = 10;

    % Perform optimization to find the optimal T and corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_z_CT_table = table(z_values', T_optimal', CT_min', 'VariableNames', {'z', 'Optimal_T', 'Min_CT'});

% Display the result table
disp(T_z_CT_table);

% Visualize the results
figure;
plot(z_values, CT_min, '-o');
title('Effect of Safety Factor z on Minimum Total Cost CT');
xlabel('Safety Factor z');
ylabel('Minimum Total Cost CT ($ per time unit)');
grid on;

% Sensitivity phi11
% Fixed parameters
Co = 100; 
Ch = 5;
Cs = 40; 
L = 2;   
z = 1.645; 
phi12 = -0.4; 
phi21 = -0.4; 
phi22 = 0.2; 
delta1 = 10; 
delta2 = 15; 
sigma_1_squared = 10; 
sigma_2_squared = 20; 
gammaEpsilon = -12; 

% Variable parameter phi11 range
phi11_values = -0.3:0.05:0.3; % Analyzing phi11 in increments of 0.05 from -0.3 to 0.3

% Initialize result variables to store optimal T and minimum CT for each phi11
T_optimal = zeros(size(phi11_values)); 
CT_min = zeros(size(phi11_values)); 

% Optimization options
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

% Loop over different phi11 values
for i = 1:length(phi11_values)
    phi11 = phi11_values(i);
    
    % Define the objective function that only varies with T
    objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);
    % Set initial guess, lower and upper bounds for T
    T0 = 1; % Initial guess
    T_lb = 0.01; % Lower bound
    T_ub = 10; % Upper bound

    % Perform optimization to find the optimal T and corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_phi11_CT_table = table(phi11_values', T_optimal', CT_min', 'VariableNames', {'phi11', 'Optimal_T', 'Min_CT'});

% Display the result table
disp(T_phi11_CT_table);

% Visualize the results
figure;
plot(phi11_values, CT_min, '-o');
title('Effect of Parameter phi11 on Minimum Total Cost CT');
xlabel('Parameter phi11');
ylabel('Minimum Total Cost CT ($ per time unit)');
grid on;

% Sensitivity phi12
% Fixed parameters
Co = 100; 
Ch = 5;
Cs = 40; 
L = 2;   
z = 1.645; 
phi11 = 0.2; 
phi21 = -0.4; 
phi22 = 0.2; 
delta1 = 10; 
delta2 = 15; 
sigma_1_squared = 10; 
sigma_2_squared = 20; 
gammaEpsilon = -12; 

% Variable parameter phi12 range
phi12_values = -0.6:0.05:-0.2; % Analyzing phi12 from -0.6 to -0.2 in decrements of 0.05, ensuring negative values

% Initialize result variables to store optimal T and minimum CT for each phi12
T_optimal = zeros(size(phi12_values)); 
CT_min = zeros(size(phi12_values)); 

% Optimization options
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

% Loop over different phi12 values
for i = 1:length(phi12_values)
    phi12 = phi12_values(i);
    
    
    % Define the objective function that only varies with T
    objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);
    % Set initial guess, lower and upper bounds for T
    T0 = 1; 
    T_lb = 0.01; 
    T_ub = 10; 

    % Perform optimization to find the optimal T and corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_phi12_CT_table = table(phi12_values', T_optimal', CT_min', 'VariableNames', {'phi12', 'Optimal_T', 'Min_CT'});

% Display the result table
disp(T_phi12_CT_table);

% Visualize the results
figure;
plot(phi12_values, CT_min, '-o');
title('Effect of Parameter phi12 on Minimum Total Cost CT');
xlabel('Parameter phi12');
ylabel('Minimum Total Cost CT ($ per time unit)');
grid on;

% Sensitivity phi21
% Fixed parameters
Co = 100; 
Ch = 5;
Cs = 40; 
L = 2;   
z = 1.645; 
phi11 = 0.2; 
phi12 = -0.4; 
phi22 = 0.2; 
delta1 = 10; 
delta2 = 15; 
sigma_1_squared = 10; 
sigma_2_squared = 20; 
gammaEpsilon = -12; 

% Variable parameter phi21 range
phi21_values = -0.6:0.05:-0.2; % Analyzing phi21 from -0.6 to -0.2 in increments of 0.05, ensuring negative values

% Initialize result variables to store optimal T and minimum CT for each phi21
T_optimal = zeros(size(phi21_values)); 
CT_min = zeros(size(phi21_values)); 

% Optimization options
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

% Loop over different phi21 values
for i = 1:length(phi21_values)
    phi21 = phi21_values(i);
    
    % Define the objective function that only varies with T
    objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);
    % Set initial guess, lower and upper bounds for T
    T0 = 1; 
    T_lb = 0.01; 
    T_ub = 10; 

    % Perform optimization to find the optimal T and corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_phi21_CT_table = table(phi21_values', T_optimal', CT_min', 'VariableNames', {'phi21', 'Optimal_T', 'Min_CT'});

% Display the result table
disp(T_phi21_CT_table);

% Visualize the results
figure;
plot(phi21_values, CT_min, '-o');
title('Effect of Parameter phi21 on Minimum Total Cost CT');
xlabel('Parameter phi21');
ylabel('Minimum Total Cost CT ($ per time unit)');
grid on;

% Sensitivity phi22
% Fixed parameters
Co = 100; 
Ch = 5;
Cs = 40; 
L = 2;   
z = 1.645; 
phi11 = 0.2; 
phi12 = -0.4; 
phi21 = -0.4; 
delta1 = 10; 
delta2 = 15; 
sigma_1_squared = 10; 
sigma_2_squared = 20; 
gammaEpsilon = -12; 

% Variable parameter phi22 range
phi22_values = -0.3:0.05:0.3; % Analyzing phi22 from -0.3 to 0.3 in increments of 0.05

% Initialize result variables to store optimal T and minimum CT for each phi22
T_optimal = zeros(size(phi22_values)); 
CT_min = zeros(size(phi22_values)); 

% Optimization options
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

% Loop over different phi22 values
for i = 1:length(phi22_values)
    phi22 = phi22_values(i);
    
    
    % Define the objective function that only varies with T
    objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);

    % Set initial guess, lower and upper bounds for T
    T0 = 1; 
    T_lb = 0.01; 
    T_ub = 10; 

    % Perform optimization to find the optimal T and corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_phi22_CT_table = table(phi22_values', T_optimal', CT_min', 'VariableNames', {'phi22', 'Optimal_T', 'Min_CT'});

% Display the result table
disp(T_phi22_CT_table);

% Visualize the results
figure;
plot(phi22_values, CT_min, '-o');
title('Effect of Parameter phi22 on Minimum Total Cost CT');
xlabel('Parameter phi22');
ylabel('Minimum Total Cost CT ($ per time unit)');
grid on;

% Sensitivity delta1
% Fixed parameters
Co = 100; 
Ch = 5;
Cs = 40; 
L = 2;   
z = 1.645; 
phi11 = 0.2; 
phi12 = -0.4; 
phi21 = -0.4; 
phi22 = 0.2; 
delta2 = 15; 
sigma_1_squared = 10; 
sigma_2_squared = 20; 
gammaEpsilon = -12; 

% Variable parameter delta1 range
delta1_values = 5:1:15; % Analyzing delta1 from 5 to 15 in increments of 1

% Initialize result variables to store optimal T and minimum CT for each delta1
T_optimal = zeros(size(delta1_values)); 
CT_min = zeros(size(delta1_values)); 

% Optimization options
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

% Loop over different delta1 values
for i = 1:length(delta1_values)
    delta1 = delta1_values(i);
    
    % Define the objective function that only varies with T
    objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);

    % Set initial guess, lower and upper bounds for T
    T0 = 1; 
    T_lb = 0.01; 
    T_ub = 10; 

    % Perform optimization to find the optimal T and corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_delta1_CT_table = table(delta1_values', T_optimal', CT_min', 'VariableNames', {'delta1', 'Optimal_T', 'Min_CT'});

% Display the result table
disp(T_delta1_CT_table);

% Visualize the results
figure;
plot(delta1_values, CT_min, '-o');
title('Effect of Baseline Demand delta1 on Minimum Total Cost CT');
xlabel('Baseline Demand delta1');
ylabel('Minimum Total Cost CT ($ per time unit)');
grid on;

% Sensitivity delta2
% Fixed parameters
Co = 100; 
Ch = 5;
Cs = 40; 
L = 2;   
z = 1.645; 
phi11 = 0.2; 
phi12 = -0.4; 
phi21 = -0.4; 
phi22 = 0.2; 
delta1 = 10; 
sigma_1_squared = 10; 
sigma_2_squared = 20; 
gammaEpsilon = -12; 

% Variable parameter delta2 range
delta2_values = 15:1:25; % Analyzing delta2 from 15 to 25 in increments of 1

% Initialize result variables to store optimal T and minimum CT for each delta2
T_optimal = zeros(size(delta2_values)); 
CT_min = zeros(size(delta2_values)); 

% Optimization options
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

% Loop over different delta2 values
for i = 1:length(delta2_values)
    delta2 = delta2_values(i);
   
    % Define the objective function that only varies with T
    objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);

    % Set initial guess, lower and upper bounds for T
    T0 = 1; 
    T_lb = 0.01; 
    T_ub = 10; 

    % Perform optimization to find the optimal T and corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_delta2_CT_table = table(delta2_values', T_optimal', CT_min', 'VariableNames', {'delta2', 'Optimal_T', 'Min_CT'});

% Display the result table
disp(T_delta2_CT_table);

% Visualize the results
figure;
plot(delta2_values, CT_min, '-o');
title('Effect of Baseline Demand delta2 on Minimum Total Cost CT');
xlabel('Baseline Demand delta2');
ylabel('Minimum Total Cost CT ($ per time unit)');
grid on;

% Sensitivity sigma_1_squared
% Fixed parameters
Co = 100; 
Ch = 5;
Cs = 40; 
L = 2;   
z = 1.645; 
phi11 = 0.2; 
phi12 = -0.4; 
phi21 = -0.4; 
phi22 = 0.2; 
delta1 = 10; 
delta2 = 15; 
sigma_2_squared = 20; 
gammaEpsilon = -12; 

% Variable parameter sigma_1_squared range
sigma_1_squared_values = 5:5:30; % Analyzing sigma_1_squared from 5 to 30 in increments of 5

% Initialize result variables to store optimal T and minimum CT for each sigma_1_squared
T_optimal = zeros(size(sigma_1_squared_values)); 
CT_min = zeros(size(sigma_1_squared_values)); 

% Optimization options
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

% Loop over different sigma_1_squared values
for i = 1:length(sigma_1_squared_values)
    sigma_1_squared = sigma_1_squared_values(i);
    
% If sigma_x_squared is not positive, log a warning and use NaN for this iteration's results
    if sigma_x_squared <= 0
        warning('Negative or zero sigma_x_squared encountered for gammaEpsilon = %f. Skipping this iteration.', gammaEpsilon);
        T_optimal(i) = NaN;  % Indicate that this iteration's result is invalid
        CT_min(i) = NaN;     % Indicate that this iteration's result is invalid
        continue;  % Skip to the next iteration of the loop
    end

    % Proceed with the remaining calculations knowing sigma_x_squared is positive
    sigma_x = sqrt(sigma_x_squared);
    
    % Define the objective function that only varies with T
    objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);

    % Set initial guess, lower and upper bounds for T
    T0 = 1; 
    T_lb = 0.01; 
    T_ub = 10; 

    % Perform optimization to find the optimal T and corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_sigma1_CT_table = table(sigma_1_squared_values', T_optimal', CT_min', 'VariableNames', {'sigma_1_squared', 'Optimal_T', 'Min_CT'});

% Display the result table
disp(T_sigma1_CT_table);

% Visualize the results
figure;
plot(sigma_1_squared_values, CT_min, '-o');
title('Effect of Demand Variance sigma_1_squared on Minimum Total Cost CT');
xlabel('Demand Variance sigma_1_squared');
ylabel('Minimum Total Cost CT ($ per time unit)');
grid on;

% Sensitivity sigma_2_squared
% Fixed parameters
Co = 100; 
Ch = 5;
Cs = 40; 
L = 2;   
z = 1.645; 
phi11 = 0.2; 
phi12 = -0.4; 
phi21 = -0.4; 
phi22 = 0.2; 
delta1 = 10; 
delta2 = 15; 
sigma_1_squared = 10; 
gammaEpsilon = -12; 

% Variable parameter sigma_2_squared range
sigma_2_squared_values = 15:5:40; % Analyzing sigma_2_squared from 15 to 40 in increments of 5

% Initialize result variables to store optimal T and minimum CT for each sigma_2_squared
T_optimal = zeros(size(sigma_2_squared_values)); 
CT_min = zeros(size(sigma_2_squared_values)); 

% Optimization options
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

% Loop over different sigma_2_squared values
for i = 1:length(sigma_2_squared_values)
    sigma_2_squared = sigma_2_squared_values(i);
    
% If sigma_x_squared is not positive, log a warning and use NaN for this iteration's results
    if sigma_x_squared <= 0
        warning('Negative or zero sigma_x_squared encountered for gammaEpsilon = %f. Skipping this iteration.', gammaEpsilon);
        T_optimal(i) = NaN;  % Indicate that this iteration's result is invalid
        CT_min(i) = NaN;     % Indicate that this iteration's result is invalid
        continue;  % Skip to the next iteration of the loop
    end

    % Proceed with the remaining calculations knowing sigma_x_squared is positive
    sigma_x = sqrt(sigma_x_squared);
    
    % Define the objective function that only varies with T
    objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);

    % Set initial guess, lower and upper bounds for T
    T0 = 1; 
    T_lb = 0.01; 
    T_ub = 10; 
    % Perform optimization to find the optimal T and corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_sigma2_CT_table = table(sigma_2_squared_values', T_optimal', CT_min', 'VariableNames', {'sigma_2_squared', 'Optimal_T', 'Min_CT'});

% Display the result table
disp(T_sigma2_CT_table);

% Visualize the results
figure;
plot(sigma_2_squared_values, CT_min, '-o');
title('Effect of Demand Variance sigma_2_squared on Minimum Total Cost CT');
xlabel('Demand Variance sigma_2_squared');
ylabel('Minimum Total Cost CT ($ per time unit)');
grid on;

% Sensitivity gammaEpsilon
% Fixed parameters
Co = 100; 
Ch = 5;
Cs = 40; 
L = 2;   
z = 1.645; 
phi11 = 0.2; 
phi12 = -0.4; 
phi21 = -0.4; 
phi22 = 0.2; 
delta1 = 10; 
delta2 = 15; 
sigma_1_squared = 10; 
sigma_2_squared = 20; 

% Variable parameter gammaEpsilon range
gammaEpsilon_values = -15:1:-1; % Analyzing gammaEpsilon from -15 to -1 in increments of 1

% Initialize result variables to store optimal T and minimum CT for each gammaEpsilon
T_optimal = zeros(size(gammaEpsilon_values)); 
CT_min = zeros(size(gammaEpsilon_values)); 

% Optimization options
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');

% Loop over different gammaEpsilon values
for i = 1:length(gammaEpsilon_values)
    gammaEpsilon = gammaEpsilon_values(i);
    
% If sigma_x_squared is not positive, log a warning and use NaN for this iteration's results
    if sigma_x_squared <= 0
        warning('Negative or zero sigma_x_squared encountered for gammaEpsilon = %f. Skipping this iteration.', gammaEpsilon);
        T_optimal(i) = NaN;  % Indicate that this iteration's result is invalid
        CT_min(i) = NaN;     % Indicate that this iteration's result is invalid
        continue;  % Skip to the next iteration of the loop
    end
    % Proceed with the remaining calculations knowing sigma_x_squared is positive
    sigma_x = sqrt(sigma_x_squared);
    
    % Define the objective function that only varies with T
    objectiveFun = @(T) objectiveFunction(Co, Ch, Cs, T, L, z, mu_x, sigma_x, sigma_x_squared);

    % Set initial guess, lower and upper bounds for T
    T0 = 1; 
    T_lb = 0.01; 
    T_ub = 10; 

    % Perform optimization to find the optimal T and corresponding minimum CT
    [T_optimal(i), CT_min(i)] = fmincon(objectiveFun, T0, [], [], [], [], T_lb, T_ub, [], options);
end

% Create result table
T_gammaEpsilon_CT_table = table(gammaEpsilon_values', T_optimal', CT_min', 'VariableNames', {'gammaEpsilon', 'Optimal_T', 'Min_CT'});

% Display the result table
disp(T_gammaEpsilon_CT_table);

% Visualize the results
figure;
plot(gammaEpsilon_values, CT_min, '-o');
title('Effect of Covariance gammaEpsilon on Minimum Total Cost CT');
xlabel('Covariance gammaEpsilon (negative values)');
ylabel('Minimum Total Cost CT ($ per time unit)');
grid on;                 
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