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ABSTRACT 

Zeolitic imidazolate frameworks (ZIFs), which are porous crystalline materials 

composed of metal centers (mostly Zn (II) or Co (II)) and imidazole-based ligands, 

have garnered significant attention due to their versatile applications in gas separation 

and catalysis. In this regard, the mechanical properties of ZIFs are relevant to study, to 

obtain information on their flexibility and the effect on species adsorption and release. 

Traditional methods for predicting the properties of ZIFs are time-consuming and 

computationally intensive. This research explores the application of machine learning 

techniques to predict the mechanical properties of a set of ZIFs with sufficient accuracy 

and computational efficiency. By leveraging a dataset of ZIF structures and their 

corresponding mechanical properties, machine learning was trained and used to predict 

key mechanical attributes such as shear modulus (G) and bulk modulus (K). The results 

will be used not only to assess the potential of machine learning as a valuable tool for 

calculating and predicting the mechanical performance of ZIF materials but also to 

enable the design of novel ZIF-based materials with tailored mechanical characteristics 

for various applications. This research can offer valuable insights into the synergy 

between traditional computational chemistry and machine learning, opening new 

avenues for the efficient exploration and development of ZIFs with desired mechanical 

properties. 

 

Keywords: ZIFs, Machine learning, Molecular dynamics.    
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study  

Recently, there has been a growing focus on creating new materials with tailored 

properties for diverse technological applications. Computational research plays a 

crucial role in examining and comprehending the mechanical characteristics of these 

materials. Metal-organic frameworks (MOFs), discovered three decades ago, stand out 

as an exceptional class of materials that have garnered significant attention. MOFs are 

composed of metal ions or clusters (nodes) that are interconnected with organic 

molecules (ligands) through self-assembly processes. Zeolitic imidazolate frameworks 

(ZIFs) are a notable subset of these materials that have sparked considerable interest. 

ZIFs are a family of metal-organic frameworks composed of imidazole‐based organic 

ligands and zinc tetrahedra, which result in the formation of porous frameworks that 

mimic the topology of zeolites(Bennett et al., 2010).ZIFs have a unique structure that 

combines the properties of zeolites and MOFs, including high surface area, high 

crystallinity, and unimodal micropores(M. R. Ryder & Tan, 2016a). 

Understanding ZIFs mechanical characteristics is essential for assessing their suitability 

in real applications. These properties encompass elastic moduli, hardness, fracture 

toughness, and resistance to deformation under varying conditions.(Burtch et al., 2018) 

An inclusive investigation of the mechanical behavior of ZIFs can offer insights into 

their structural integrity, stability, and robustness during industrial processes or 

environmental changes(Gao et al., 2017). 

Due to the need for precise information about structural stability during material use, 

many studies are currently focused on the mechanical properties of MOFs. Although 

experimental studies of ZIFs' mechanical properties offer useful information, they are 

frequently hindered by issues like sample availability and the difficulties of carrying 

out experiments under adverse circumstances. Computational simulations, specifically 

molecular dynamics (MD) and density functional theory (DFT), offer a complementary 

approach to elucidating the mechanical behavior of ZIFs (Zheng et al., 2012). The 

timeline of major milestones in computational Metal-Organic Framework (MOF) 

research has witnessed a fascinating evolution over the years. In the early 2000s, 



2 

 

computational techniques began to gain traction in MOF research, aiding in the 

prediction of MOF structures and properties. 

Figure 1.1 

Contrasted Traditional (Based on Trial-and-Error) and Data-Driven (Based on ML) 

Approaches to MOF Synthesis. 

 

 

By the mid-2000s, density functional theory (DFT) advancements allowed for more 

accurate calculations of MOF properties, such as adsorption capacities and mechanical 

stability. The 2010s marked a significant turning point, with the development of high-

throughput screening methods, enabling the rapid discovery of novel MOFs with 

tailored properties. In recent years, machine learning and artificial intelligence have 

been integrated into MOF research, accelerating materials discovery and property 

prediction. Today, computational MOF research continues to expand its horizons, with 

the promise of designing custom-made MOFs for various applications, from gas storage 

and separation to catalysis and drug delivery. This timeline underscores the 

transformative role of computational tools in advancing our understanding and 

utilization of MOFs as versatile materials. 
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1.2 Statement of the Problem 

With the increasing demand for materials, there has been a significant focus on 

enhancing material properties to ensure their suitability across various applications. 

This has led to extensive research into improving the mechanical and electronic 

properties of ceramics, as they have garnered considerable attention for their potential 

benefits. Precisely forecasting the mechanical properties of materials, such as strength, 

stiffness, elasticity, plasticity, ductility, brittleness, toughness, and hardness, is crucial 

for their effective use in diverse engineering disciplines. (Song, Wang, Liu, Yin, & 

Long, 2023). Traditionally, the assessment of materials' mechanical properties has 

depended on extensive and costly experimental procedures, including tensile, 

compression, and impact tests. However, these experiments are time-intensive, 

expensive due to the necessary equipment, and susceptible to errors caused by testing 

inaccuracies, equipment malfunctions, or inconsistencies among different 

manufacturers.(Yu et al., 2021). 

This paper (H. Li et al., 2023) used solvent synthesis method where the method requires 

the use of CO2, which may contribute to greenhouse gas emissions if not properly 

managed as well as the method relies on the use of ZnO instead of Zn (NO3)2, which 

may limit the applicability of the method to specific ZIFs synthesis. The procedural 

steps necessitate the application of either heat or vacuum procedures to facilitate the 

removal of CO2, thereby potentially introducing supplementary energy consumption to 

the overall process. Furthermore, the method's feasibility for mass production may 

necessitate the deployment of specialized equipment or adherence to specific 

operational conditions, thereby potentially constraining its accessibility and 

implementation for smaller-scale operations. 

The conventional approaches involve the washing of filter cake, which can be time-

consuming and inefficient(M. Li et al., 2022). Additionally, these methods may not be 

environmentally friendly as they rely on the use of solvents that can be harmful to both 

the environment and human health(Pérez-Miana et al., 2021). Furthermore, the 

traditional methods may not be cost-effective for large-scale production of ZIFs(Yin et 

al., 2015). Near-field infrared nano-spectroscopy and density function theory 

calculations are used to examine local defects, such as missing ligands or metal 

vacancies, in ZIF-8 nano- and micro-crystals(Fan et al., 2023) which is costly.  
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The mechanical properties optimization of ZIF using solvothermal and solution 

techniques has been proven for ZIF-8 that shrinking crystals to nanoscale dimensions 

causes a 40% decrease in crystal stiffness, which could be utilized to explain previously 

documented variations in gas adsorption that are size-dependent.(A. Tiba et al., 

2019).The Rietveld technique was employed to enhance the mechanical characteristics 

of ZIF. A solvothermal method employing methanol or dimethylformamide (DMF) as 

solvents was utilized to synthesize the cobalt 2-methyl imidazolate framework (ZIF-

67) with an SOD topology, resulting in a yield of 2.5 grams of the material.(Ethiraj et 

al., 2020).  

Research on amorphous ZIFs is limited due to nanoindentation testing providing only 

isotropic mechanical properties (Tan & Cheetham, 2011). This restricts the ability to 

fully understand the anisotropic mechanical behavior of amorphous ZIFs. The 

symmetry of metal nodes in amorphous ZIFs is difficult to explore and identify using 

experimental techniques. Utilizing high-field nuclear magnetic resonance (NMR) can 

provide insights into the microstructural characterization, but this is still a challenging 

task. Structural order and complexity: The intricate nature and uncertain configuration 

of chemical bonds in non-crystalline ZIF formulations present heightened difficulties 

for theoretical simulations. Accurately depicting the structural development of ZIF 

glasses necessitates employing ab initio molecular dynamics or reactive force field 

dynamics to simulate melt-quenched ZIF glasses.(Shi et al., 2023). 

There is a noticeable absence of systematic comparisons and evaluations of classical 

force fields in addressing the guess of mechanical properties. (Acuna-Yeomans et al., 

2023).Studying the mechanical properties of MOFs is challenging due to the vast 

structural diversity, batch-to-batch variance, and the need for advanced techniques. 

Computational simulations are essential for studying these properties.(Redfern & 

Farha, 2019). Modifying the primary network of ZIF-4 by adding extra ligands is 

challenging but possible with computational study.(Moosavi et al., 2018). 

A time- and money-efficient technique to study and evaluate complex structures and 

phenomena is through computational investigations. Investigation of traits and 

behaviors that may be challenging or impossible to see experimentally can be done 

using computational studies. The atomic structure and mechanical characteristics of 

materials under various situations, such as high pressure, can be gleaned from 
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computational analyses. The design of novel materials with particular and adjustable 

physical properties is made possible by the application of computational research to 

anticipate and optimize the properties of materials. 

1.3 Objectives of the Study 

Understanding the mechanical properties of ZIF is crucial for harnessing their full 

potential and for the development of novel materials with tailored mechanical 

characteristics. The objective of the study is to optimize the topology, bond length, and 

angle between the node and ligand of ZIFs changing the ligands a mechanism using an 

MD-based FORCITE module. After collecting the required data of the new composition 

process the data as a descriptor to train an ML model so that mechanical properties of 

the new ZIF can be predicted by the machine. The specific objectives are as follows: 

1. Designed crystal structure and optimized the structure to evaluate the crystal 

elastic constants to find out the mechanical properties, specially, the shear 

modulus and bulk modulus. 

2. Feed data into the machine model to train the model and predict the mechanical 

properties of ZIF. 

1.4 Scope of the Study 

For improving the mechanical characteristics of materials, machine learning offers a 

number of advantages. First of all, it enables the identification of new materials with 

improved properties by allowing researchers to analyze vast amounts of material data 

gathered through simulations and tests. Additionally, machine learning is suited for 

comprehending the physics behind materials processing and behavior since it can model 

complicated non-linear interactions and behaviors. Additionally, it makes it easier to 

construct data-driven techniques for identifying trends and structure-property 

connections across a range of length and time scales. Additionally, machine learning 

can forecast material characteristics including tensile strength, fatigue behavior, and 

viscoelastic research, obviating the need for time-consuming and expensive testing. 

1.5 Limitations of the Study 

1. Small data sets may degrade the machine model accuracy. 

2. Studying the anisotropy of elastic properties or directional characteristics like 

Young’s modulus and Poisson’s ratio can be effectively predicted via 
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simulation, whereas achieving the same through machine learning poses 

significant challenges. 

1.6 Organizations of the Report 

This thesis comprises five chapters organized as outlined below: 

Chapter 1: The first chapter covers the study's background, problem statement, 

objectives, scope, thesis limitations, and organizational structure. 

Chapter 2: Various literature was reviewed in this chapter to gain knowledge of data 

collection and how to process them for train the machine model as well as for better 

understanding the effect of changes between the ligand bond length, angle, ZIF 

topology, and geometry.  

Chapter 3: Represent the computational mechanism and method for collecting data and 

elaborated discussion on the preprocessing of data. Machine model algorithm also 

discussed on which the model will be train and test. 

Chapter 4: This chapter provides a comprehensive overview of the results and 

discussion achieved from the molecular dynamics simulation and machine model. 

Chapter 5: The application and potentials of machine learning are discussed in this 

chapter and possible future work is also suggested. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction of ZIFs  

Metal-organic frameworks (MOFs) are formed by the self-assembly of metal ion nodes 

bridged by coordination bonds to multidentate ligands. Tetrahedrally-coordinated metal 

cations linked by imidazolate organic ligands create a structurally distinctive family of 

MOFs (Furukawa et al., 2013) known as zeolitic imidazolate frameworks (ZIFs), which 

come together to form porous crystalline solids (Y. Q. Tian et al., 2007). Similar to the 

connection of silicon and oxygen in zeolites, they take on porous crystalline structures 

made of metal ions and organic ligands. In particular, at the M-Im-M center [typically 

M= Zn (II) or Co (II)], tetrahedral metal centers subtend a 145° angle that is exclusively 

coordinated by nitrogen atoms in the 1,3-positions of the imidazolate bridging ligand 

(Im =C3N2H3). Because of their ability to adapt synthetically, a wide range of structures 

can be synthesized by combining metal nodes with organic ligands in numerous 

combinations. Their adaptability enables them to be used in numerous industrially 

significant applications, including gas separation(W. Wang & Yuan, 2014)(Zhang et 

al., 2013) and storage(Wu et al., 2007), catalysis(Gascon et al., 2014), drug 

delivery(Miller et al., 2010) and sensors(Chen et al., 2018). 

 

2.2 Topological Equivalents of ZIFs  

Computational analysis has played a crucial role in comprehending the mechanisms 

and consequences of high pressure on MOFs, complementing experimental research 

efforts. Ryder and Tan aimed to determine how topology affected a set of MOFs with 

the same chemical composition's mechanical characteristics. The extraordinarily low 

shear and Young's moduli of ZIF-3 [Zn(imidazolate)2] showed in their discoveries can 

significantly influence the stability of MOFs due to the spatial orientation of nodes and 

ligands. 

 

The bond structure of ZIF-1, which has a network topology called CRB and an 

orthorhombic crystal symmetry, plays a crucial role in determining its porosity. 

Different modifications to the bond structure can lead to changes in the adsorptive 

properties and mechanical properties of ZIFs. This is significant for applications like 
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gas storage or encapsulation of guests. Furthermore, although ZIF-1 has the same 

chemical composition as ZIF-2 and ZIF-4, the way it is packed affects its porosity. The 

storage behavior of ZIF-1 as anode materials for lithium-ion batteries can also be 

influenced by the bond structure, with ZIFs containing more vertexes and edges 

exhibiting superior electrochemical performance. 

 

Researchers have discovered that ZIF-3 exhibits a negative Poisson's ratio, which gives 

it its unique auxetic behavior. This is due to its distinct DFT network topology, which 

contributes to its mechanical properties. ZIF-3 has a low shear resistance (G min = 0.1 

GPa) compared to other frameworks and is extremely prone to shear strain, making it 

more anisotropic. The presence of 8-membered rings (8MRs) in ZIF-3 is believed to 

play a role in its mechanical response. However, ZIF-3's structural shear instability, 

characterized by easy plane slippage, may limit its form to powder and hinder the 

growth of sizable crystals. Furthermore, different modifications to the bond structure 

can lead to changes in the mechanical properties, adsorptive properties, and 

electrochemical performance of ZIFs. Additionally, the storage behavior of ZIFs as 

anode materials for lithium-ion batteries can also be influenced by the bond structure, 

with ZIFs containing more vertexes and edges exhibiting superior electrochemical 

performance. (M. R. Ryder & Tan, 2016b). 

 

Table 2.1  

DFT Topology of ZIF-3 

 

MOF Organic linker Inorganic node Structure Topology 

ZIF-3 

 

  

DFT 

 

The mechanical properties of ZIF-4 are intrinsically related to its framework bonding 

topology. The unique DIA network of ZIF-4 results in a robust and mechanically stable 

framework due to the spatial configuration of its constituent nodes and ligands. This 
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topology, dominated by bond bending rather than bond stretching, contributes to the 

distinctive mechanical resilience of ZIF-4. 

 

The cohesive interactions in the ZIF-4 framework, particularly the durable bonds 

among the metal center and the organic ligands, provide mechanical robustness to the 

material. These bonds form a three-dimensional framework, which gives rise to unique 

mechanical attributes. The high shear modulus of ZIF-4, for instance, is a result of its 

CAG topology and the associated strong bond interactions within the network. 

 

Further, the isostructural nature of the ZIF-4 framework, wherein the structure remains 

unchanged under various chemical compositions, provides evidence of the link between 

framework bonding topology and mechanical performance. By selecting different 

organic ligands and metal ions, the mechanical characteristics of ZIF-4 can be adjusted 

while preserving its fundamental topological structure. In essence, the mechanical 

properties of ZIF-4 are intricately linked to its framework bonding topology. By 

understanding this relationship, one could potentially manipulate the mechanical 

performance of ZIF-4 and other similar MOFs through careful control of their synthesis 

and design (Moosavi et al., 2018). 

 

Table 2.2  

CAG Topology of ZIF-4 

 

MOF Organic linker Inorganic node Structure Topology 

ZIF-4 

 

 

 

CAG 

 

ZIF-8, a zeolitic imidazolate framework (ZIFs), stands out for its cubic symmetry and 

impressive porosity, characterized by Zn (II) ions coordinated with 2-

methylimidazolate (mIm) ligands. This framework's network topology aligns with the 

zeolite net known as gmelinite (GME), contributing to its structural stability. ZIF-8's 

high porosity is particularly noteworthy, providing it with a substantial surface area for 
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various applications. When considering its mechanical properties, ZIF-8 exhibits an 

elastic modulus ranging from 2.973 to 3.199 GPa and a hardness ranging from 0.501 to 

0.531 GPa, indicative of its mechanical robustness. When compared to existing metal-

organic frameworks (MOFs), like MOF-5, ZIF-8 exhibits better mechanical properties. 

The interplay between structure and mechanical properties is underscored, with the 

framework density and porosity emerging as influential factors in determining the 

mechanical characteristics of ZIFs, including ZIF-8. Furthermore, the study highlights 

the role of the rigidity and bulkiness of organic linkages in substituted imidazolate 

frameworks as additional contributors to their mechanical behavior, providing insights 

that are vital for tailoring these materials for specific applications.(Tan et al., 2010). 

 

Table 2.3  

SOD Topology of ZIF-8 

 

MOF Organic linker Inorganic node Structure Topology 

ZIF-8 

 

  

SOD 

 

Also, several studies give information about chemical structure and the physical data 

which helps to conduct the computational study that play a vital role to design a 

functional material. 

 

2.3 Correlation Between Mechanical Properties, Porosity, and Bond Structure 

Understanding the correlation between the bond structure, porosity, and mechanical 

properties of zeolitic imidazolate frameworks is essential for the design and 

development of efficient and functional materials. Several studies have focused on 

investigating the bond structure of ZIFs and its influence on their porosity and 

mechanical properties. This research(Tan et al., 2010) demonstrates a strong correlation 

among the elastic properties of ZIF crystal structures and the framework density and 

porosity. 
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The elastic behavior of ZIFs is directly related to their mechanical characteristics, 

showing a strong association with the density and porosity of the framework. As a 

result, ZIFs have elastic moduli values ranging from 3 to 10 GPa and hardness values 

ranging from 300 MPa to 1.1 GPa. In particular, ZIFs show superior mechanical 

properties over other metal-organic frameworks (MOFs), including MOF-5. The 

bulkiness and rigidity of the substituted organic links, which can be tailored for 

particular purposes, play a key role in the elastic properties of substituted imidazolate 

frameworks. Additionally, the complex pore morphology and general framework 

topology of ZIFs may introduce mechanical anisotropy, which will affect their 

adaptability and mechanical characteristics. Local order, which includes bond lengths 

and bond angles, within amorphous ZIFs further shapes this adaptability. 

 

Amorphous zeolite imidazolate frameworks (a-ZIFs) and their topological counterparts 

are studied in(Shi et al., 2023) for their bond structure, porosity, and mechanical 

characteristics. The study explores how short-range and mid-range local order impact 

the mechanical properties of a-ZIFs. The porosity of a-ZIFs can be altered, resulting in 

differences in Young's modulus and shear modulus. Various metal nodes can be 

combined with organic ligands to achieve this. The document emphasizes the 

relationship between structural order and mechanical properties of a-ZIFs. The local 

structures of various a-ZIF compositions are also compared, and their effects on the 

mechanical characteristics are discussed. The a-ZIFs' porosity structures are also 

studied, demonstrating variations in the ability of the pores to hold gas molecules.  

 

2.3.1 Bond Structure of ZIFs 

In recent years, ZIFs have arisen as an innovative subclass of MOF materials with 

unique structural and physicochemical properties. The bond structure of ZIFs plays a 

crucial role in determining their properties. There are several options for separation 

because of ZIFs' high structural diversity. 

 

ZIFs can change the spatial rearrangement of the construction basis (such as the Zn-

MeIm-Zn angle or network topology) (Liu et al., 2018) (Widmer et al., 2019) to exhibit 

amusing polymorphism for a specific chemical formula, in addition to changing the 

configuration of metals or ligands (Lu et al., 2014; Ban et al., 2016). 
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By manipulating the bond structure of ZIFs, their mechanical, adsorptive, and 

electrochemical performance can be effectively altered and optimized according to 

specific applications and requirements. In addition, a stiffer framework may arise from 

the inclusion of additional groups that reinforce the ZnN4 tetrahedron (Zheng et al., 

2017).The storage behavior of ZIFs as anode materials for lithium-ion batteries can also 

be influenced by the bond structure, with ZIFs containing more vertexes and edges 

exhibiting superior electrochemical performance (H. Wang et al., 2020). Moreover, the 

CO2 uptake capacity of ZIFs can be enhanced by tuning the bond structure, such as 

varying the Co/Zn ratio in bimetallic Co-Zn ZIFs(Imawaka et al., 2019). Overall, the 

bond structure of ZIFs plays a critical role in determining their mechanical, adsorptive, 

and electrochemical properties.(H. Baur & X. Fischer, 2019)  

 

In this extensive study, an analysis encompassing more than 7000 crystal structures of 

zeolites focused on critical parameters such as bond lengths (T−O, where T represents 

Si, Al, P, Zn, Be, Ge, B, As, Ga, Co) and the flexibility of bond angles (O−T−O). The 

average tetrahedral bond lengths were found to be 1.603(11) Å for Si−O, 1.736(8) Å 

for Al−O, and 1.522(9) Å for P−O, showing slight variations of approximately 0.07 Å 

across the studied samples. Remarkably, the study uncovered distinct differences in 

bond lengths between zeolites and non-zeolitic compounds, emphasizing that T−O 

distances exhibit variability across different inorganic compounds. This variance in 

bond lengths was attributed to diverse atomic displacement parameters of oxygen atoms 

within distinct zeolite framework types, indicating that mean bond lengths are 

inherently characteristic of specific framework configurations. Additionally, the 

research unveiled that O−T−O angles in zeolites ranged from 94.5° to 129.1°, centered 

around the tetrahedral angle of 109.5°, with larger deviations observed for tetrahedra 

featuring longer mean T−O distances. Notably, bond lengths in zeolites were 

consistently shorter compared to those in non-framework compounds, with differences 

ranging from 0.014 Å to 0.031 Å, underscoring the unique structural attributes of 

zeolitic materials. 

 

2.4 Investigating Mechanical Properties of ZIFs 

The bulk and elastic moduli of ZIFs have been experimentally determined with great 

effort. (Su et al., 2015);(Bennett et al., 2016);(Bennett et al., 2015). Nevertheless, the 

small number of reports represent that it is much more challenging to experimentally 
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determine the corresponding shear modulus(Tan et al., 2012) .Hence, the theoretical 

computation of the mechanical properties of ZIFs has become an imperative substitute 

(Tan et al., 2015)(Ortiz et al., 2013)even though it remains challenging to gain precise 

values over computational methods(M. R. Ryder et al., 2016) .Until now an assessment 

of the mechanical modulus values attained for different ZIFs might yield significant 

insights. Tan et al. carried out single-crystal nanoindentation experiments as part of a 

study on the mechanical stability of ZIFs (Gómez-Gualdrón et al., 2016). The stiffness 

and bulkiness of the substituted imidazolate ligands were discovered to be the primary 

determinants of ZIFs' mechanical properties, which they found to be superior to those 

of other MOFs. 

 

2.4.1 Size-Dependent Mechanical Properties 

ZIF-8 crystals of various sizes were subjected to atomic force microscopy (AFM) 

nanoindentation to evaluate their mechanical characteristics. Smaller crystals of ZIF-8 

have more flexible and less rigid mechanical characteristics than larger crystals. Crystal 

downsizing, which can be regulated by changing the synthesis conditions, can make 

ZIF-8 more flexible. Defects and impurities in the crystal structure have an impact on 

ZIF-8's mechanical properties. By understanding the size-dependent mechanical 

properties of MOFs, researchers can design materials with specific and tunable physical 

properties.(A. Tiba et al., 2019). 

 

2.4.2 Mechanical Instability of ZIFs Due to Pressure 

First molecular dynamics study on the softening under the shear mode of the 

mechanical instability responsible for the pressure-induced amorphization of the ZIF-

8. As the study reports, the presence of the shearing mode is the reason that ZIF-8 starts 

to turn from crystal to amorphous under the compression leading to the loss of 

mechanical stability. Based on the lack of evidence for amorphization upon heating of 

ZIF-8, this further accounts for why no softening was detected with an increase in 

temperature in this study. It was discovered that having adsorbate in the pores made the 

framework more shear stable, which in turn affected how compressible and 

mechanically stable it was. It was found that the crystalline porous ZIF phases to 

maintain the zeolite-like framework topologies are mechanically unstable due to the 

weak Zn-imidazolate coordinative bonds in contrast to the stabilizing Si-O link in 

zeolites. The very high porosity leads to low shear resistance, which uniquely causes 
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the low-pressure shear softening and leads to the third effect i.e., the mechanical 

instability at low pressure.(Ortiz et al., 2013). 

 

2.4.3 Adaptable Force Fields for Structural and Mechanical Properties 

The article investigates five established flexible force fields for ZIF-8 through 

molecular dynamics simulations in the isothermal-isobaric ensemble. The authors 

analyze the relationship between elastic constants at 0 K and how they vary with 

temperature and pressure with the lattice parameters of the framework. They compare 

their findings with current experimental data and quantum-mechanical simulations to 

elucidate the relationship between structural and elastic properties under the chosen 

parameterization. In conclusion, the article offers useful perspectives on the mechanical 

stability of MOFs and the importance of elastic constants in defining their structural 

stability in this Esteemed Contribution.(Acuna-Yeomans et al., 2023). 

 

 2.4.4 Mechanically and Chemically Robust ZIF 

The experiment, involving a simple synthetic procedure and without the need of binders 

or high pressure, matched ZIF-8 to develop big, crystalline rigid monolithic structures. 

The elasticity of these structures is at least two orders of magnitude larger compared to 

the material’s single crystals, while they preserve the outstanding and ultra-porous 

architectural space of ZIF-8 without destroying the micropore system. It additionally 

emerges that the volumetric adsorption capacity is more than twice the single crystal’s 

predicted value, whereas the bulk solidities and volumetric BET areas are three times 

larger than those measured on the partially deactivated powder material. The article 

states that these findings have a dramatic impact in the quest for potential practical 

applications of ZIFs and MOF for gas adsorption, separation, and catalysis and that 

being able to shape ZIFs and MOFs is essential to reduce to a minimum the pressure 

drops of an incoming gas flow in columns due to the powders’ dispersion.(T. Tian et 

al., 2015). 

 

2.4.5 Identical Composition and Distinct Performance ZIF 

The paper offers insightful knowledge into how ZIFs' chemical structure influences 

their olefin/paraffin adsorption behavior and could contribute to the development of 

nano-porous materials that have improved separation abilities. The study investigates 

the effects of ZIF-8 polymorph structures on ethane and ethene adsorption and 



15 

 

separation. From large Monte Carlo and ideal adsorbed solution theory simulations, the 

authors investigate the adsorption of the two molecules of ethane and ethene to several 

different types of ZIF-8 polymorphs, finding that the ethane or ethene adsorption 

behavior is very much dependent on the geometric characteristics of ZIF-8 polymorphs, 

and that adsorption mechanism may be fundamentally different under extreme pressure 

and near to the ground pressure. They find that high-pressure uptake depends closely 

on geometrical features (e.g., porosity or surface area) of the ZIFs, whereas low-

pressure uptake depends more directly upon ZIF-gas interaction. Along similar lines, 

the authors also compared the adsorption and separation of ethane/ethene and 

propane/propene.(Ke et al., 2021). 

 

2.4.6 Defects in Crystallization and Their Impact on Mechanical Properties 

The direct investigation of local flaws in ZIF-8 nano- and microcrystals and their impact 

on Young's modulus are covered in this article. The authors discovered that defects 

degrade the stability of the material by introducing local disorder into the otherwise 

highly structured 3-D framework, though their effects on the material properties may 

go even further. It was discovered that the mechanical characteristics of ZIF-8 

considerably changed in the presence of flaws, with a reduced stiffness and a higher 

local anisotropy. The authors conclude that creating and improving ZIF-8-based 

materials requires an understanding of the link between flaws and their effect on 

material performance.(Möslein et al., n.d.). 

 

2.4.7 Structural and Mechanical Insights into Zeolitic Metal-Organic Frameworks 

In this study, the authors explore the extensive elastic properties of ZIFs using density 

functional theory (DFT) calculations, providing a surprising insight into their 

mechanical behavior. Notably, their investigation reveals fascinating traits in particular 

ZIF variations. For instance, ZIF-3 stands out due to its extraordinarily low shear 

resistance and even negative Poisson's ratio, which indicate the existence of a flexible 

mechanism behind auxetic activity. Furthermore, for particular crystal orientations, 

ZIF-1, ZIF-2, and ZIF-4 show an intriguing phenomenon where they can display 

practically zero Poisson's ratios, resembling a "cork-like" characteristic that reduces 

lateral deformation under axial strain. The research also demonstrates the anisotropic 

mechanical response of ZIFs and demonstrates the axially dependent Young's and shear 

moduli characteristics. The research explores MOF mechanics and goes beyond these 
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elastic qualities to shed information on behaviors that exceed the elastic limit. This 

covers intermolecular rupture, fundamental yielding, irreversible plastic deformation, 

and cracking, and it offers essential insights into the mechanical behavior of MOFs. 

The study adds a great understanding of MOF mechanics by highlighting how crucial 

it is to take into account the mechanical and physical characteristics of MOFs in the 

context of practical applications.(M. Ryder & Tan, 2015). 

 

2.5 Artificial Intelligence Applications in Predicting Mechanical Characteristics 

In the field of AI-based prediction of mechanical properties of ZIFs, researchers have 

explored various algorithms and techniques. Studies have investigated the use of a 

combination of biologically inspired evolutionary algorithms and machine learning to 

tailor ZIFs for specific diffusivities, demonstrating the potential of AI in material 

design. Additionally, studies have compared various AI techniques—including linear 

regression, support vector regularized linear regression, support vector regression, 

multi-layer neural networks, random forest regression, and gradient boosting 

regression—to predict the mechanical properties of sheet metal during stamping 

processes, aiming to enhance predictive accuracy (Castel & Coudert, n.d.). Moreover, 

it has been demonstrated that alterations to ZIFs through terminal group substitutions 

greatly affect mechanical modulus; electron-withdrawing groups enhance stiffness, and 

charge distribution analyses explain the mechanism underlying the variations in elastic 

stiffness (Krokidas et al., n.d.). 

 

(Verpoort et al., 2018) The paper presents an artificial neural network that models and 

validates material properties using composition-property and property-property 

correlations. It demonstrates the ability to handle incomplete data sets and treat 

graphical data as a unified entity. The framework has been tested and applied to case 

studies involving alloys and polymers, identifying twenty errors within a commercial 

materials database. The paper emphasizes the effectiveness of machine learning 

techniques in predicting previously unseen materials. 

 

Machine learning offers a more accurate prediction of zeolite elastic behavior than 

traditional force field approaches. This approach extracts geometric features such as 

local geometry, porosity, and structural composition of zeolitic materials. The model 

reveals correlations between the elastic moduli of zeolite framework properties and 
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offers mechanistic insights into porous crystalline materials. Through the prediction of 

elastic response over a variety of theoretical zeolitic topologies, the approach exposes 

stability tendencies in porous materials. Analysis of the bulk and shear moduli 

distribution indicates that some hypothetical structures show reduced stiffness and 

shear resistance in comparison to existing zeolite frameworks.(D. Evans & Coudert, 

2017). 

 

2.6 Conclusions and Future Perspectives in ZIF Research 

In conclusion, the bond structure, porosity, and mechanical properties of Zeolitic 

Imidazolate Frameworks are closely interconnected and play a crucial role in 

determining the overall performance and functionality of these materials. Large-scale 

ab initio calculations and machine learning have provided valuable insights into these 

properties, revealing the influence of bond structure on porosity, mechanical modulus, 

and adsorption properties. 

 

However, it is important to note that although large-scale ab initio calculations have 

provided significant insights, further experimental studies are necessary to validate and 

confirm these findings to get good accuracy from the machine model. Additionally, 

more research is needed to explore the influence of different ligands and metal centers 

on the bond structure, porosity, and mechanical properties of ZIFs to make a large 

database. Furthermore, the development of new machine model algorithms and 

simulation techniques will enhance understanding of these materials and facilitate the 

design of ZIFs with tailored properties. Moreover, the application of ZIFs in various 

fields, such as gas adsorption, separation, catalysis, and electronics, highlights the need 

for further research in optimizing the bond structure, porosity, and mechanical 

properties to meet specific application requirements. Zeolitic Imidazolate Frameworks 

are at the forefront of scientific research and findings in this field. 
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CHAPTER 3 

METHODOLOGY 

The development of new materials through experimental methods alone is both costly 

and time-consuming, often requiring several years. However, advancements in the 

predictive capabilities of computer simulations have significantly expedited the 

material design and development process. The determination of mechanical properties 

is critical for the application of composite materials in various engineering disciplines. 

Recently, there has been considerable interest in utilizing artificial intelligence, 

particularly machine learning and deep learning, to accurately predict the mechanical 

properties of composite materials. This study demonstrates how machine learning, 

supported by multi-level simulations, can effectively predict the performance of Zeolite 

Imidazole Frameworks (ZIFs), representing a significant advancement in the field of 

porous materials science. 

3.1 Flowchart of Methodology 

Figure 3.1  

Methodology Process Map 

 

  

 

 

3.2 Specific Mechanical Properties 

Scientists and engineers working with materials are constantly trying to get better at 

understanding what makes materials behave the way they do. They want to be able to 

predict how a material will perform and even improve its properties for specific uses. 

These properties cover a wide range, as shown in Figure 1, including how a material 

reacts to chemicals, heat, force, electricity, light, and magnetism. But especially 

important is being able to predict how a material will handle physical stress and strain. 

This includes things like strength, flexibility, and how easily it breaks. Knowing these 

properties is crucial for engineers to choose the right material for different projects 

(Song et al., 2023). 
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Figure 3.2 

Basic Properties of Engineering Materials. 

 

 

Elastic constants are fundamental parameters in material science and mechanics that 

describe a material's response to mechanical deformation. These constants provide 

essential information about a material's stiffness, strength, and ability to return to its 

original shape after deformation. They play a crucial role in understanding a material's 

behavior under various conditions and are vital for designing and analyzing structures 

and components in engineering and science. 

 

There are several elastic constants, but the most common ones include: 

 

Young's Modulus (E): 

 

A measure of a material's resistance to elastic deformation, which refers to the 

temporary change in shape of a material when subjected to tensile or compressive loads 

known as Young’s modulus. A higher value indicates stiffer material, as it requires more 

force to stretch or compress. This property is specific to each material and is crucial for 

engineers and designers when selecting materials for specific applications, such as 

structural components or flexible components. 
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Shear Modulus (G or μ): 

 

Shear Modulus is a physical property of a material that describes its resistance to shear 

deformation or distortion. It is also known as the Modulus of Rigidity or the Elastic 

Shear Modulus. It is represented by the symbol G or μ (mu) and is measured in units of 

pressure like Pascals (Pa) or pounds per square inch (psi). The Shear Modulus is crucial 

for understanding how a material responds to shear forces, such as torsion or external 

stress. Materials with higher Shear Moduli are stronger and more rigid. 

 

Bulk Modulus (K): 

 

The Bulk Modulus (K) is a physical property of a material that measures its resistance 

to changes in volume under hydrostatic pressure. It measures the amount of pressure 

needed to compress a material by a certain amount. High Bulk Modulus materials are 

more resistant to compression and require more pressure, while low-modulus materials 

are easier to compress. Measured in pressure units like Pascals or psi, it is used in fields 

like materials science, engineering, and geology to understand material behavior under 

different conditions. 

 

Poisson's Ratio (ν): 

 

Poisson's Ratio is a material property that describes how a material deforms under 

stress. It is a dimensionless quantity that relates the lateral contraction of a material to 

its longitudinal extension under axial loading. It is defined as the negative ratio of 

transverse strain to longitudinal strain in a material under uniaxial stress. A value 

between 0 and 0.5 indicates incompressibility, while a negative value indicates 

expansion. Poisson's Ratio helps predict material behavior under different stress types 

and determines the elastic modulus, also known as Hooke's Law.(Burtch et al., 2018) 

 

Elastic constants are parameters that describe a material's response to stress and strain. 

They are used by engineers and material scientists to select materials for specific 

applications. Researchers use elastic constants to study materials' properties, 

developing innovative materials with specific mechanical properties. 

 



21 

 

In the realm of material science, ZIFs have garnered significant interest due to their 

unique properties. However, accurately predicting their mechanical behavior, 

specifically their bulk and shear modulus, remains a challenge. To address this, 

researchers are focusing on building robust datasets that leverage quantitative data. 

 

Larger data creation for MOFs would necessitate additional simulations, which would 

be computationally expensive(Lyu et al., 2020)(Jablonka et al., 2020). Quantitative 

structure-property relationships (QSPR) are a time-efficient and alternative method of 

correlating different chemical and structural attributes with a given performance 

parameter. By examining 137,953 hMOF (Fernandez et al., 2013), presented one of the 

earliest QSPR investigations and looked at how MOF structural characteristics affected 

their ability to store CH4. They demonstrated how highly accurate it is to develop 

various regression models based on data from less than 10% of the available hMOFs to 

forecast CH4 uptake for the remaining material set. 

 

The approach involves meticulously collecting data on the composition, structure, and 

density of various ZIFs. This data can be obtained through a combination of 

experimental techniques like X-ray diffraction and gas sorption measurements. 

Additionally, computational simulations can be employed to calculate theoretical 

values for these properties. Together, this comprehensive dataset encompassing 

composition, structure, and density serves as a strong foundation for predicting the 

mechanical response of ZIFs. 

 

Figure 3.3  

Data Type Process Map 
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Furthermore, the dataset is enriched by incorporating information on the mechanical 

properties themselves. This can involve measuring the bulk and shear modulus of 

various ZIF samples using a machine-learning model. By incorporating these 

computationally determined values, the dataset becomes even more powerful for 

establishing predictive models. With a robust dataset that combines structural, local and 

porosity-related descriptor researchers utilized machine learning algorithms to identify 

patterns and relationships between the ZIF's properties and its bulk and shear modulus. 

This paves the way for more accurate predictions of these crucial mechanical properties 

for novel ZIF materials. 

 

3.3 Collecting Data Through Designed ZIF Structure 

Machine learning models are essential for handling diverse jobs and require high-

quality data for optimal performance. However, challenges arise such as determining 

the appropriate amount of data, obtaining statistics, assessing input data quality, and 

improving it. These questions are crucial for designing mechanical materials using 

machine learning models. Information can be gathered from existing books or 

databases, or unprocessed datasets can be created through high-throughput experiments 

or simulations. 

 

Figure 3.4 

Crystal Structure Modification Process Flow 
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Start with an existing crystal structure represented in the Cambridge Crystallographic 

Data Centre (CCDC) format (.cif file). This initial structure serves as the starting point 

for modifications. Next, introduce different functional groups into the crystal structure 

to alter chemical properties, bonding interactions, and overall behavior. Replace metal 

atoms within the crystal lattice to impact material properties such as bulk and shear 

modulus. Choose a specific topology for the modified crystal, referring to the 

arrangement of atoms and bonds within the lattice. Finally, perform geometry 

optimization using computational methods to adjust atomic positions, minimize energy, 

and achieve stable configurations. Utilize the steepest descent optimization algorithm, 

iteratively adjusting atomic positions along the steepest energy gradient to reach a local 

minimum. Monitored the optimization quality to ensure convergence, energy stability, 

and reasonable atomic positions. Run the optimization for a specified number of 

iterations 5000 steps to ensure accurate results. Verify the optimized cell parameters 

(unit cell dimensions, angles) to ensure consistency with experimental data or desired 

properties. Adjust parallel computing on 14 or 16 CPU cores to speed up calculations 

by distributing tasks across multiple cores. Finally, assess the modified crystal's 

topology to confirm that the desired structural features, such as coordination 

environments and connectivity, align with expectations. By following this process, 

systematically modify crystal structures while considering functional groups, metals, 

and topology, ultimately achieving the desired material properties. 

 

3.4 Computational Representation 

The FORCITE module of Materials Studio is a computational tool used for simulating 

the behavior of materials at the molecular level. It is specifically designed for studying 

the mechanical properties of materials, such as their strength, elasticity, and 

deformation behavior. The FORCITE module uses a variety of computational 

techniques, including molecular dynamics simulations, quantum mechanical 

calculations, and force field methods, to model the performance of materials under 

unlike circumstances. It can simulate the behavior of materials under different 

temperatures, pressures, and strain rates, allowing researchers to study the effects of 

these variables on the mechanical properties of materials. 
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Figure 3.5 

Computational Representation of Crystal Structure and Selective Descriptor 

 

   

 

One of the key advantages of the FORCITE module is its ability to predict the 

mechanical properties of materials without the need for complex and time-consuming 

experiments. By inputting the molecular structure of a material into the FORCITE 

module, researchers can quickly generate predictions of its mechanical properties, such 

as its Young's modulus, shear modulus, and Poisson's ratio. The FORCITE module is 

particularly useful for studying ZIF, which are a class of porous materials composed of 

metal ions or clusters linked by organic ligands. ZIF have a wide range of potential 

applications, including gas storage, catalysis, and drug delivery, but their mechanical 

stability is a key factor in determining their suitability for these applications. By using 

the FORCITE module to study the mechanical properties of ZIF, it is possible to 

identify key structural features that influence their mechanical stability. This 

information can then be used to design new ZIF with improved mechanical properties 

or to optimize existing MOFs for specific applications. Overall, the FORCITE module 

of Materials Studio is a powerful tool for studying the mechanical properties of 

materials at the molecular level and has important applications in materials science, 

chemistry, and engineering. 

 

3.5 Data Preprocessing 

Data preprocessing and augmentation approaches are necessary to improve the quality 

of datasets used in machine learning models, which require structured data inputs. 
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Eliminating unnecessary data points that could negatively impact model performance 

is also essential.  

 

Figure 3.6 

Data Processing Process Map 

 

 

Zeolitic frameworks consist of a three-dimensional network of corner-sharing SiO4 

tetrahedra. Consequently, the local geometry of each atomic environment is typically 

characterized by straightforward parameters such as Si–O bond lengths and Si–O–Si 

bond angles. In contrast, for Zeolitic imidazole frameworks, the relevant parameters are 

the N-metal distances and N-metal-N bond angles. Numerous studies, including earlier 

research on structure-property relationships in zeolitic frameworks (Wragg et al., 2008), 

have demonstrated that these two parameters are crucial for understanding the physical 

and chemical properties. Previous research has demonstrated that ad hoc geometrical 

descriptors—developed based on chemical intuition and understanding of the 

systems—can be effectively utilized in supervised machine learning to predict 

mechanical properties. (D. Evans & Coudert, 2017; Gaillac et al., 2020). For each 

optimized zeolite structure, the distributions of bond distances, angles, and porosity 

were computed using the Mercury software provided free of charge by the CCDC. 

Statistical features of these distributions, such as various means, variances, maxima, 

minima, and average values, were then utilized as descriptors. 

 

 

Optimized structure Mercury Bond distance

Bond Angle Porosity Filter Through Excel
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3.6 Gradient-Boosting Regression Algorithm (GBR) 

A decision tree, a popular non-parametric supervised machine learning technique, 

serves both classification and regression tasks. These models consist of a root node, 

branches, and leaf nodes (depicted in Figure 5). The root node represents input data, 

while each branch signifies a potential decision. Ultimately, the leaves of the tree yield 

the algorithm's output. 

 

Figure 3.7 

General Schematic of Decision Tree Models 

 

 

The researchers have determined a method to establish a linear relationship between 

the mechanical properties of the composite materials using the decision tree approach. 

Qi et al. (Qi et al., 2019) used a decision tree model to predict the mechanical properties 

of carbon-fiber-reinforced plastic. (Kosicka et al., 2022) used a decision tree model to 

predict the mechanical potential of polymers with alumina modifiers. However, 

overfitting affects the prediction performance greatly in decision trees in this area 

domain. The concept of the random forest was introduced to improve the prediction 

performance of the decision tree. Random forest regression is an example of an 

ensemble learning technique for regression versions. The ensemble in a random forest 

which is a number 'k' of decision trees which are selected at random for the maximum 

number of cycles in order to give a final prediction from the specified dataset. It works 

on the principle of ensemble learning and is a combination of weak learners (often 

decision trees), and combines their outputs to create a strong predictive model. GBR: 

Each tree is built primarily based on the mistakes made by the collective previous 
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ensemble (previous tree), and hence trees are built in a sequential manner. In the context 

of GBR, decision trees are often used as base learners. The algorithm fits a tree to the 

data, calculates the residuals (differences between predicted and actual values), and 

then fits a new tree to these residuals. This process is repeated iteratively, and each new 

tree contributes to the overall model. (Pathan et al., 2019) used a gradient-boosting 

regression technique to forecast the unidirectional fiber composites' macroscopic elastic 

stiffness and yield strengths. 

 

3.7 Machine Learning Method and GBR Model 

The use of artificial intelligence (AI) techniques to forecast material qualities has grown 

significantly during the past few decades. This growth can be attributed to the greater 

accessibility of material data from numerical simulations and experimental 

observations. As a result, ML, a branch of AI, has made incredible strides and found 

wide use in the research of material properties. The primary idea behind utilizing ML 

to predict qualities is to examine and identify the nonlinear correlations between those 

properties and the factors associated with them using already available data. The 

knowledge of experimental properties of materials starts from a database, a list of 

entries data set, where each entry corresponds to a certain material.  

 

Figure 3.8 

GBR Model 
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The problem with feeding raw data into an ML model is that it would be unnecessary 

or challenging to use ML-based methods to solve the problem if the data were either 

too simple to collect or too complex to obtain. For example, if an existing method can 

traverse the full design space at a reasonable cost, there is no need for ML, and it is 

more likely that the datasets that were gathered only cover a tiny section of the design 

space. Another possibility is that the accumulated databases of images or texts make 

sense to people but not to computers. In those situations, the raw data must typically be 

preprocessed before being fed into the machine learning model highlighting the 

significance of utilizing the researchers' domain expertise to obtain representative data 

and carry out data preprocessing properly for better results from the ML model. 

 

3.8 Process of Prediction 

 In AI-based predictions of material properties, the raw experimental or simulated 

material data is consistently divided into three datasets: training, validation, and testing. 

The Artificial Intelligence Model is Trained using the Training Data The model uses 

this dataset to learn patterns and relationships during the training phase. At the same 

time, the validation dataset is used to keep a check on how well the model is performing 

and whether it may have started overfitting. 

 

Figure 3.9 

Standard Prediction Workflow for AI-Based Methods 
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When a model overfits, it becomes excessively dependent on the training set and cannot 

adapt well to new data. It is possible to optimize the model's hyperparameters by 

evaluating the model's performance on the validation dataset. Hyperparameters act as 

control variables that affect the learning process and the behavior of the model. After 

training and fine-tuning, the model can generate predictions on new input data, known 

as the testing dataset. This separate dataset enables the assessment of the model's 

predictive accuracy on previously unseen instances. 
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CHAPTER 4 

RESULT AND DISCUSSION 

4.1 Design of MOF 

Here in this study total of 126 MOF crystal subsets was designed with the seven 

imidazole-based ligands (2-methylimidazole, 2-ethyl imidazole, 2-nitroimidazole, 2-

methyl-4-nitroimidazole, Benzimidazole, Imidazole-2-carbaldehyde, and 3-Methyl-

1,2,4-triazole) with three individual metals as well as the composition of these metals 

(Zn, Cu, Co, ZnCu, CoZn and CuCo) and specially focused on SOD, CAG and DFT 

topology. 

 

4.2 Design of ZIF With Three Metals and Their Composition with Seven Ligands 

Here's a breakdown of the connectivity, impact, symmetry, and space group for each 

linker in ZIFs with Zn, Cu, and Co metal: 

 4.2.1 2-Methylimidazole (Hmim) with Zn, Cu, and Co  

In ZIF structure, Zn (II) ions act as nodes, connecting with four nitrogen atoms from 

the organic linkers. These nitrogen atoms typically come from the imidazole ring of the 

linker molecule. The bonding involves nitrogen donating its lone pair of electrons to a 

vacant orbital on the Zn (II) ion, forming a coordinate covalent bond. 

 

The methyl group (CH3) on the Hmim molecule doesn't directly participate in the 

bonding with Zn. The Zn-N bonds might have slightly different lengths and angles 

depending on the specific ZIF structure. These Zn-Hmim linkages act as building 

blocks, connecting into a porous, three-dimensional network that defines the ZIF 

framework.  

 

When it comes to Cu metal, there are ZIFs (Zeolitic Imidazolate Frameworks) built 

with copper (Cu) and imidazole linkers, 2-methylimidazole (Hmim) doesn't typically 

form a stable ZIF structure with Cu. It has partially filled d-orbitals that can participate 

in bonding. Imidazole, lacking readily available lone pairs on all its nitrogen atoms, 

might not offer the optimal bonding environment for Cu (II) compared to other linkers. 
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Table 4.1  

Connectivity of Three Metals with 2-Methylimidazole Ligand 

 

Zn Cu Co 

   

 

In a hypothetical scenario where Cu-Hmim ZIF exists, the most likely bonding would 

involve the nitrogen atom from the imidazole ring donating its lone pair to a vacant d-

orbital on Cu (II). The coordination geometry around Cu (II) would depend on the 

number of Hmim linkers coordinating and the influence of other factors like solvent 

molecules. It could be tetrahedral, square planar, or a more distorted geometry. Similar 

to Zn, Co (II) can form stable ZIFs with Hmim. The connectivity would involve the 

nitrogen atoms from Hmim donating lone pairs to Co (II) ions, likely forming a 

tetrahedral or octahedral geometry around Co depending on the specific ZIF structure. 

 

All 3 crystal structures contain the space group P b c a (61) where P indicates a primitive 

unit cell. A primitive unit cell is the smallest possible repeating unit that defines the 

crystal structure. In simpler terms, it's the basic building block that forms the entire 

crystal when stacked in a specific way. b, c, a these represent the crystallographic axes 

a, b, and c. These axes define the edges of the unit cell. This space group represents the 

Orthorhombic crystal system. This means the unit cell has three unequal edges, all 

perpendicular to each other. Hmim is the most common linker for ZIFs due to its 

optimal size and lack of steric hindrance. It offers good thermal and chemical stability. 

Based on the topology it represents different cages. 

 

 4.2.2 2-Ethylimidazole (EtHim) with Zn, Cu and Co 

The connection between EtHim and Zn in a ZIF is very similar to that of Hmim and Zn. 

The primary connection involves the lone pair of electrons on a nitrogen atom in the 

imidazole ring of EtHim donating to a vacant orbital on the Zn (II) ion. This forms a 

http://it.iucr.org/cgi-bin/gotosgtable.pl?number=61&tabletype=S
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coordinated covalent bond between nitrogen and zinc. Each Zn (II) ion is typically 

tetrahedrally coordinated by four nitrogen atoms from four separate EtHim molecules. 

 

The presence of the ethyl group (CH2CH3) in EtHim compared to the methyl group 

(CH3) in Hmim has minimal impact on the direct Zn-N bonding. The ethyl group is 

bulkier than methyl but isn't directly involved in coordinating with the metal center. 

Overall, the presence of the ethyl group doesn't significantly alter the fundamental Zn-

N connectivity in EtHim-based ZIFs. However, it can introduce subtle changes in pore 

size and packing efficiency compared to ZIFs built with Hmim. 

 

The thing about 2-ethylimidazole (EtHim) and Copper (Cu) in a ZIF structure similar 

to 2-methylimidazole (Hmim), Cu doesn't typically form a very stable ZIF with EtHim 

due to limitations in their interaction. The connection between EtHim and Co in a ZIF 

shares similarities with the Zn-EtHim system. The primary interaction involves the lone 

pair of electrons on a nitrogen atom in the imidazole ring of EtHim donating to a vacant 

orbital on the Co (II) ion. This forms a coordinate covalent bond between the nitrogen 

and cobalt. 

 

Co (II) can exhibit various coordination geometries depending on the number of ligands 

and other factors. Likely geometries in a Co-EtHim ZIF include tetrahedral (with four 

EtHim linkers) or octahedral (with six EtHim linkers). Similar to Zn-EtHim ZIF, the 

ethyl group (CH2CH3) on EtHim has minimal influence on the direct Co-N bonding. It 

doesn't directly participate in coordinating with the metal center. 

 

Table 4.2  

Connectivity of Three Metals with 2-Ethyl Imidazole Ligand 

Zn Cu Co 
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The slightly larger size of the ethyl group compared to methyl (in Hmim) could lead to 

a small decrease in pore size compared to a Co-ZIF with Hmim. The increased steric 

bulk of the ethyl group might influence how EtHim linkers pack around the Co centers, 

potentially affecting the overall packing efficiency of the ZIF framework. 

 

Both Zn and Co can form ZIFs with EtHim through nitrogen atom donation from the 

imidazole ring. The ethyl group's influence on connectivity is minimal in both cases. 

The specific coordination geometry around the metal center might differ between Co-

EtHim and Zn-EtHim ZIFs due to the different electronic configurations of Zn (II) and 

Co (II). Overall, EtHim can connect with Co (II) to form a ZIF structure. The ethyl 

group has a minor effect on the direct metal-nitrogen bonding but could influence pore 

size and packing efficiency. 

 

4.2.3 2-Nitroimidazole (NIz) with Zn, Cu and Co 

The nitro group (NO2) can participate in hydrogen bonding with neighboring linkers or 

guest molecules, potentially affecting pore chemistry and stability. The primary 

connection between NIz and Zn in a ZIF involves the lone pair of electrons on a nitrogen 

atom in the imidazole ring donating to a vacant orbital on the Zn (II) ion. This forms a 

coordinated covalent bond similar to other imidazole-based ZIFs. The presence of the 

nitro group (NO2) on the imidazole ring introduces an additional functionality that 

influences the ZIF structure and properties. 

 

The nitro group doesn't directly participate in bonding with Zn (II). The oxygen atoms 

in the nitro group can act as hydrogen bond acceptors. This allows NIz to form hydrogen 

bonds with neighboring NIz linkers, guest molecules containing hydrogen bond donors. 

Hydrogen bonding interactions between NIz linkers can influence how they pack 

around the Zn centers, potentially affecting the overall pore size and arrangement within 

the ZIF framework. 

 

The Zn (II) ion remains tetrahedrally coordinated, with the nitrogen atom from the 

imidazole ring of each NIz molecule forming the primary bond. The nitro group doesn't 

directly affect the Zn-N bond but can introduce hydrogen bonding interactions that 

influence the ZIF structure. 
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Table 4.3 

Connectivity of Three Metals with 2-Nitroimidazole Ligand 

 

Zn Cu Co 

   

 

Similar to other ZIFs, Zn (II) is typically tetrahedrally coordinated by four nitrogen 

atoms. In a NIz-Zn ZIF, three of these nitrogen’s would come from the imidazole rings 

of separate NIz linkers, while the fourth nitrogen could come from another NIz or 

potentially from a solvent molecule coordinated to Zn (II). 2-nitroimidazole connects 

to Zn through the imidazole nitrogen, forming a ZIF structure. The nitro group 

introduces hydrogen bonding possibilities that can influence the packing, pore 

properties due to its larger size, and potentially the stability of the ZIF through hydrogen 

bonding. 

 

Here's the thing about 2-nitroimidazole (NIz) and Copper (Cu) in a ZIF structure similar 

to what was discussed previously for Cu with other imidazole linkers, Cu-NIz ZIFs are 

not very common due to limitations in their interaction. Cu (II) has partially filled d-

orbitals that favor specific geometries and orbital overlap for strong bonding. The 

arrangement of atoms in NIz, with its two nitrogens’ might not provide the optimal 

electron configuration for Cu (II) compared to other linkers. The nitro group's oxygen 

atoms are potential electron donors. This could introduce competition with the 

imidazole nitrogen for bonding with Cu (II) d-orbitals, potentially weakening the 

overall framework. 

 

Similar to other imidazole-based ZIFs, the primary connection between NIz and Co 

involves the lone pair of electrons on a nitrogen atom in the imidazole ring donating to 

a vacant orbital on the Co (II) ion. This forms a coordinate covalent bond, linking the 

NIz molecule to the central Co (II) center. The nitro group can act as a hydrogen bond 
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acceptor, potentially forming interactions with neighboring NIz linkers, guest 

molecules, or solvent molecules within the ZIF pores. These hydrogen bonds can 

influence framework stability and porosity. 

 

The nitro group is bulkier than a hydrogen atom (present in Hmim or EtHim). This can 

influence how NIz linkers pack around Co (II) ions, potentially affecting pore size and 

accessibility. While less likely to be the primary interaction, the oxygen atoms in the 

nitro group might weakly coordinate with Co (II) depending on the overall coordination 

geometry and electronic configuration. 

 

Co (II) exhibits various coordination geometries depending on the number of ligands 

and other factors. In a Co-NIz ZIF, tetrahedral is common with four NIz molecules 

coordinating through their imidazole nitrogen. Both Zn (II) and Co (II) can form ZIFs 

with NIz through nitrogen atom donation from the imidazole ring. The nitro group's 

influence on core connectivity is likely minimal in both cases. NIz can connect with Co 

(II) to form a ZIF structure. The presence of the nitro group adds complexity compared 

to simpler linkers. Hydrogen bonding capabilities, steric effects, and potential weak 

interaction with the nitro group can influence the stability, porosity, and functionalities 

of the Co-NIz ZIF. 

 

 4.2.4 2-Methyl-4-nitroimidazole (MNIz) with Zn, Cu and Co 

Similar to 2-nitroimidazole, the primary connection between MNIz and Zn involves the 

single pair of electrons on a nitrogen atom in the imidazole ring donating to a vacant 

orbital on the Zn (II) ion. This forms a coordinate covalent bond, linking the MNIz 

molecule to the central Zn (II) center. MNIz has two functional groups that can 

influence the ZIF structure and properties. The Methyl group is positioned at the second 

position of the imidazole ring and has minimal impact on the direct Zn-N bonding while 

nitro groups are located at the fourth position. The nitro group can act as a hydrogen 

bond acceptor, potentially forming interactions with neighboring MNIz linkers, guest 

molecules, or solvent molecules within the ZIF pores. 

 

These hydrogen bonds can influence framework stability and porosity. The nitro group 

is bulkier than a hydrogen atom (present in Hmim or EtHim). This can influence how 

MNIz linkers pack around Zn (II) ions, potentially affecting pore size and accessibility. 
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The presence of both the methyl and nitro groups adds complexity compared to simpler 

imidazole linkers like Hmim or EtHim. While the core Zn-N bonding remains similar, 

the steric effects of the nitro group and its potential for hydrogen bonding can influence 

the stability, porosity, and potential functionalities of the resulting Zn-MNIz ZIF. 

 

2-Methyl-4-nitroimidazole (MNIz) and Copper (Cu) in a ZIF structure similar to what 

was discussed previously for Cu with other functionalized imidazole. Cu (II) has 

partially filled d-orbitals that favor specific geometries and orbital overlap for strong 

bonding. The imidazole ring, even with the combined effects of the methyl and nitro 

groups, might not offer the optimal electronic configuration for Cu (II) compared to 

other linkers. The nitro group's oxygen atoms are potential binding sites. However, 

strong coordination between Cu (II) and the nitro group might compete with the desired 

coordination of MNIz's imidazole nitrogen to Cu (II), leading to an unstable framework. 

The methyl and nitro groups can create steric hindrance around the Cu (II) center, 

further complicating the formation of a stable and well-defined coordination geometry. 

 

Here it can explore the connectivity and geometry of 2-methyl-4-nitroimidazole 

(MNIz) with Cobalt (Co) in a Zeolitic Imidazole Framework (ZIF) Similar to other 

imidazole-based ZIFs, the primary connection between MNIz and Co involves the 

single pair of electrons on a nitrogen atom in the imidazole ring donating to a vacant 

orbital on the Co (II) ion. This forms a coordinate covalent bond, linking the MNIz 

molecule to the central Co (II) center.  

 

Table 4.4 

Connectivity of Three Metals with 2-Methyl-4-Nitroimidazole Ligand 

 

Zn Cu Co 
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The nitro group can act as a hydrogen bond acceptor, potentially forming interactions 

with neighboring MNIz linkers, guest molecules, or solvent molecules within the ZIF 

pores. These hydrogen bonds can influence framework stability and porosity. The nitro 

group is bulkier than a hydrogen atom (present in Hmim or EtHim). This can influence 

how MNIz linkers pack around Co (II) ions, potentially affecting pore size and 

accessibility. While less likely to be the primary interaction, the oxygen atoms in the 

nitro group might weakly coordinate with Co (II) depending on the overall coordination 

geometry and electronic configuration. 

 

 Both Zn (II) and Co (II) can form ZIFs with MNIz through nitrogen atom donation 

from the imidazole ring. The methyl group's influence on core connectivity is minimal 

in both cases. Zn (II) typically prefers tetrahedral geometry, while Co (II) can exhibit 

both tetrahedral and octahedral geometries. The final geometry in the ZIF might differ 

depending on the metal used. The possibility of weak coordination between the nitro 

group and Co (II) might influence the overall framework stability and electronic 

properties compared to Zn-MNIz ZIF. 

 

However, MNIz can connect with Co (II) to form a ZIF structure. The existence of the 

methyl and nitro groups adds complexity compared to simpler linkers. Hydrogen 

bonding capabilities, steric effects, and potential weak interaction with the nitro group 

can influence the stability, porosity, and functionalities of the Co-MNIz ZIF. 

 

 4.2.5 Benzimidazole (BIm) with Zn, Cu and Co 

This linker is larger than the previous ones due to the fused benzene ring. It can play a 

pivotal role in the formation of larger pores but might also affect the stability of the ZIF 

framework due to steric hindrance unlike typical imidazole linkers (like Hmim or 

EtHim), benzimidazole (BIm) doesn't have a direct available nitrogen atom on the 

aromatic ring for coordination with the metal center. However, BIm can still form ZIFs 

with Zn through a different mechanism. During ZIF synthesis, one of the ring nitrogens 

in BIm loses a proton (H+), becoming negatively charged. This deprotonated nitrogen 

then donates its lone pair of electrons to a vacant orbital on Zn (II), forming a coordinate 

covalent bond. Zn (II) typically prefers a tetrahedral coordination geometry. In a Zn-

BIm ZIF, the four coordination sites around Zn (II) would likely be occupied by 
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nitrogen atoms from deprotonated BIm molecules. Each Zn (II) center would bind to 

the deprotonated nitrogen atom of four separate BIm linkers. 

 

Table 4.5 

Connectivity of Three Metals with Benzimidazole Ligand 

 

Zn Cu Co 

   

 

The Zn-BIm ZIF would have a different structure compared to ZIFs with imidazole 

linkers like Hmim or EtHim. The connection points would be on the aromatic ring 

instead of the imidazole nitrogen. This can influence the pore size, shape, and overall 

properties of the ZIF. Both BIm and Hmim can form ZIFs with Zn. However, the 

connectivity mechanism differs. Hmim uses a lone pair directly on its imidazole 

nitrogen, while BIm relies on deprotonation and N-metalation. Hmim connects through 

the imidazole nitrogen, while BIm connects through a deprotonated aromatic nitrogen. 

The different connection points might lead to variations in pore size and shape between 

BIm-Zn and Hmim-Zn ZIFs. Due to its larger size compared to other linkers, 

benzimidazole can lead to the formation of larger pores. However, the increased steric 

bulk might affect framework stability. 

 

Benzimidazole (BIm) and Copper (Cu) in a ZIF structure Cu-BIm ZIFs are not very 

common. BIm lacks readily available nitrogen atoms on the aromatic ring for strong 

coordination with Cu (II). Unlike Zn (II) which can form a bond with the deprotonated 

nitrogen in BIm, Cu (II) prefers stronger interactions often involving multiple nitrogen 

atoms nearby. Cu (II) has partially filled d-orbitals that favor specific geometries and 

orbital overlap for optimal bonding. The arrangement of nitrogen atoms in BIm might 

not provide the ideal electronic configuration for stable Cu-BIm coordination. In a 
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hypothetical scenario where a Cu-BIm ZIF exists, the most likely interaction would 

involve deprotonation of BIm similar to Zn-BIm ZIF. However, the resulting bond 

between Cu (II) and the deprotonated nitrogen might be weaker than in Zn-BIm due to 

Cu (II)'s preference for stronger interactions. 

 

Core Connectivity is similar to Zn-BIm ZIFs, cobalt can potentially form ZIFs with 

BIm through deprotonation and N-metalation. Co (II) exhibits various coordination 

geometries depending on the number of ligands and other factors. Tetrahedral is a 

possibility with four deprotonated BIm molecules coordinating through their N1 

nitrogen atoms. Both Zn (II) and Co (II) can form ZIFs with BIm through deprotonation 

and N-metalation of the aromatic ring nitrogen. 

 

4.2.6 Imidazole-2-carbaldehyde (IC) with Zn, Cu and Co 

Imidazole-2-carbaldehyde (IC) with Zinc (Zn) when building ZIFs offers two potential 

coordination sites for Zn (II). Nitrogen atom (N1) in the imidazole ring is similar to 

other imidazole linkers (like Hmim or EtHim), the lone pair of electrons on N1 can 

donate to a vacant orbital on Zn (II), forming a coordinate covalent bond. The oxygen 

atom (O) from the aldehyde group (CHO) has lone pairs that can potentially coordinate 

with Zn (II). However, the competition between these sites and the overall stability of 

the ZIF depends on several factors. 

The N1 nitrogen in the imidazole ring is typically more acidic than the oxygen atom in 

the aldehyde group. This means deprotonation (loss of a proton) of N1 is more likely, 

favoring N1 coordination. Zn (II) generally prefers coordination with nitrogen atoms 

due to stronger interaction compared to oxygen. Zn (II) typically prefers a tetrahedral 

coordination geometry. The presence of the aldehyde group in IC introduces the 

possibility of hydrogen bonding, steric effects, and potential weak secondary 

interactions with Zn (II). These can influence the overall ZIF properties compared to 

the simpler Hmim linker. 

 

 

 

 

 

 



40 

 

Table 4.6 

Connectivity of Three Metals with Imidazole-2-Carbaldehyde Ligand 

 

Zn Cu Co 

   

 

The aldehyde group can act as a hydrogen bond donor, potentially forming interactions 

with guest molecules or solvent molecules within the ZIF pores. These hydrogen bonds 

can influence framework stability and potentially introduce specific functionalities. The 

aldehyde group is bulkier than a hydrogen atom (present in Hmim or EtHim). This can 

influence how IC linkers pack around Zn (II) ions, potentially affecting pore size and 

accessibility. While less likely to be the primary connection, the oxygen atom in the 

aldehyde group might weakly coordinate with Zn (II) under specific conditions. This 

could influence the overall framework stability or introduce additional functionalities 

depending on the guest molecules incorporated. 

 

IC can connect with Zn (II) to form a ZIF structure. The N1 nitrogen atom in the 

imidazole ring is the most likely coordination site. The presence of the aldehyde group 

can introduce hydrogen bonding capabilities, steric effects, and potential secondary 

interactions, influencing the ZIF's stability, porosity, and potential functionalities. 

 

While IC can connect with Zn to form a ZIF, Cu-IC ZIFs are not very common for a 

few reasons. IC offers two potential binding sites the nitrogen atom (N1) in the 

imidazole ring and the oxygen atom (O) from the aldehyde group (CHO). While N1 is 

generally preferred, strong coordination between Cu (II) and oxygen might compete 

with the desired N1-Cu (II) bond, leading to framework instability. Even if a Cu-IC ZIF 

could be formed, it might be less stable than ZIFs with linkers offering stronger and 

more well-defined coordination environments for Cu (II). While Cu can potentially 

interact with IC, the competition between coordination sites and the preference of Cu 
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(II) for specific bonding geometries make Cu-IC ZIFs challenging to synthesize and 

less common than other ZIF structures. 

 

Similar to Zn-IC ZIFs, IC offers two potential coordination sites for Co (II). Nitrogen 

atom (N1) in the imidazole ring has a lone pair of electrons on N1 that can donate to a 

vacant orbital on Co (II), forming a coordinate covalent bond. The oxygen atom has 

lone pairs that can potentially coordinate with Co (II). The N1 nitrogen is generally 

more acidic than the aldehyde oxygen. Deprotonation (loss of a proton) of N1 is more 

likely, favoring N1 coordination. o(II) exhibits some flexibility in coordination 

geometry and can interact with various donor atoms. However, nitrogen atoms often 

offer stronger interactions compared to oxygen. 

 

Co (II) can exhibit various coordination geometries depending on the number of ligands 

and other factors. This is a very common possibility, with four IC molecules 

coordinating through their N1 nitrogen atoms. The d-orbital electronic configuration of 

Co (II) allows for good orbital overlap with the lone pairs on the nitrogen in a tetrahedral 

arrangement, leading to a stable bonding geometry. IC can connect with Co (II) to form 

a ZIF structure. The N1 nitrogen atom in the imidazole ring is the most likely 

coordination site. The presence of the aldehyde group can introduce hydrogen bonding 

capabilities, steric effects, and potential secondary interactions, influencing the ZIF's 

stability, porosity, and potential functionalities. 

 

 4.2.7 3-Methyl-1,2,4-triazole (3-MTZ) with Zn, Cu and Co  

In the case of ZIFs with Zn metal and 3-MTZ ligands, the connectivity arises from the 

coordination bonds between Zn ions and 3-MTZ molecules. The 3-MTZ ligand acts as 

a bridge, connecting adjacent Zn ions to form a three-dimensional network. The 

resulting structure is porous, with channels and cavities that can host guest molecules. 

 

The 3-MTZ ligand coordinates with the Zn metal center through its nitrogen and carbon 

atoms. Specifically, the nitrogen atom of the triazole ring (the 1,2,4-triazole moiety) 

binds to the Zn ion, forming a Zn-N bond. Additionally, the carbon atoms of the triazole 

ring and the methyl group (from 3-MTZ) participate in π-bonding interactions with the 

Zn ion. Overall, the synchronized geometry around the Zn center is typically octahedral, 

with the 3-MTZ ligand occupying multiple coordination sites. The porous structure 
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allows for gas adsorption, separation, and catalysis. The specific ligand (in this case, 3-

MTZ) influences the pore size, surface area, and guest molecule interactions. 

 

Table 4.7 

Connectivity of Three Metals with 3-Methyl-1,2,4-Triazole Ligand 

 

Zn Cu Co 

   

 

Regarding copper (Cu) metal and 3-Methyl-1,2,4-triazole (3-MTZ) ligands to form 

ZIFs materials, the connectivity arises from coordination bonds between Cu ions and 

3-MTZ molecules. The 3-MTZ ligand acts as a bridge, connecting adjacent Cu ions to 

form a three-dimensional network. The resulting structure is porous, with channels and 

cavities that can host guest molecules. 

 

The 3-MTZ ligand coordinates with the Cu metal center through its nitrogen and carbon 

atoms. Specifically, the nitrogen atom of the triazole ring (the 1,2,4-triazole moiety) 

binds to the Cu ion, forming a Cu-N bond. Additionally, the carbon atoms of the triazole 

ring and the methyl group (from 3-MTZ) participate in π-bonding interactions with the 

Cu ion. The coordination geometry around the Cu center is typically octahedral, with 

the 3-MTZ ligand occupying multiple coordination sites. This octahedral geometry 

results from the arrangement of ligands around the central Cu ion, where the Cu ion is 

surrounded by six ligands (three from 3-MTZ and three water molecules in hydrated 

forms), forming a distorted octahedron. 

 

When building a ZIF with Co metal and 3-MTZ ligands, coordination bonds are formed 

between Co ions and 3-MTZ molecules. The 3-MTZ ligand acts as a bridge, connecting 

adjacent Co ions to create a three-dimensional network. The resulting structure is 

porous, with channels and cavities that can host guest molecules. 
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The 3-MTZ ligand coordinates with the Co metal center through its nitrogen and carbon 

atoms. Specifically, the nitrogen atom of the triazole ring binds to the Co ion, forming 

a Co-N bond. Additionally, the carbon atoms of the triazole ring and the methyl group 

participate in π-bonding interactions with the Co ion. Overall, the synchronized 

geometry around the Co center is typically octahedral, with the 3-MTZ ligand 

occupying multiple coordination sites. This octahedral geometry results from the 

arrangement of ligands around the central Co ion, with six ligands (three from 3-MTZ 

and three water molecules in hydrated forms) surrounding the Co ion and forming a 

distorted octahedron. 

 

4.3 Model Accuracy  

This study used a technique called gradient boosting regressor (GBR) to create the 

predictive model. GBR is a tool available in the Python scikit-learn package, a popular 

library for machine learning in Python. Gradient boosting is a machine learning 

technique that builds predictive models in a stepwise manner by combining multiple 

weak models, like decision trees, to create a strong predictive model. GBR is known 

for its accuracy and effectiveness in various fields, including web search ranking. In 

this study, GBR was chosen over other methods like support vector machines because 

it is considered robust, interpretable, and suitable for the small dataset used in this 

research. Well-established selection criteria and cross-validation techniques were 

rigorously applied to ensure the accuracy and reliability of the predictive model. 

 

Regression trees involve optimizing arbitrary loss functions during the training process. 

Regression trees are a type of decision tree used for regression tasks. In this context, 

the regression trees are being used to predict the elastic response of zeolites based on 

geometric features. The model was built gradually, with each step optimizing the loss 

function to improve accuracy. By training regression trees in this way, the model could 

effectively learn the relationships between the geometric features of zeolites and their 

elastic moduli. 

The process involves creating a regression tree at each stage based on the negative 

gradient of the loss function. The negative gradient guides the construction of the tree, 

which functions as a decision-making model to predict outcomes based on input 

features. By fitting the regression tree to the negative gradient, the model aims to 
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minimize errors in predicting the target variable. This iterative process refines the 

model's predictions and improves accuracy over successive stages. 

 

Here, 5-fold cross-validation was employed, a common technique in ML, to estimate 

the performance of the model. The 5-fold cross-validation technique entails splitting 

the data into five parts, using four parts for training the model and the remaining part 

for testing it. This process helps determine the model's ability to generalize to new data. 

To ensure robustness, the cross-validation was performed 100 times, offering a detailed 

evaluation of the model's accuracy across various iterations. Hyperparameters, listed in 

the table, were selected to maximize prediction accuracy and flexibility while 

minimizing overfitting. 

 

Table 4.8 

Hyperparameters of the Model 

 

Parameter Value 

Estimators  

Learning rate  

Maximum depth 

Minimum samples per leaf  

Random state  

1000 

0.01 

3 

3 
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The table provided outlines the hyperparameters utilized to train the Gradient Boosting 

Regressor model, which is an ML approach employed in the study. The 

hyperparameters include the number of estimators, learning rate, minimum samples for 

splitting, maximum depth, and other parameters that influence the model's 

performance.  

 

4.3.1 Evaluation of RMSE Value for Shear Modulus (G) 

In this work, the machine learning model's accuracy was tested using cross-validation 

against the training set. The results showed excellent accuracy and low variance, 

indicating the model's reliability. The figure below illustrates the comparison among 

the model results and the MD training set for the 126-imidazole zeolite framework. The 

plot in Figure demonstrates how well the machine learning model performed in 
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predicting the mechanical properties of the ZIFs. The high accuracy and low variance 

of the model's predictions represent that it effectively estimates the elastic response of 

zeolites based on geometric features 

 

The average RMSE across all folds is 2.96. This value is a general measure of the 

model's predictive performance and represents the typical magnitude of prediction 

errors observed across the different cross-validation folds. It indicates a balanced view 

of the model's performance, averaging out the variations seen in individual folds. 

 

Figure 4.1 

Evaluating GBR Predictions Against Cross-Validated MD Training Data. 

 

 

Figure 4.2 

Best-Fitted Line for Shear Modulus G (Fold-1). 
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The lowest Root Mean Squared Error (RMSE) observed in this fold is 1.24. This 

indicates that the model performed exceptionally well on this specific subset of the data, 

suggesting that the training and test sets in Fold 1 were particularly well-suited for 

accurate predictions by the model. 

 

Figure 4.3  

Best-Fitted Line for Shear Modulus G (Fold-2). 

 

 

 

In contrast, Fold 2 exhibits the highest RMSE value of 3.74. This significant increase 

in error suggests that the model encountered substantial difficulties in accurately 

predicting outcomes within this fold. The discrepancy may be due to greater variability 

or complexity in the test data for Fold 2, which the model struggled to generalize 

effectively. 
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Figure 4.4 

Best-Fitted Line for Shear Modulus G (Fold-3). 

 

 

 

The RMSE values for Folds 3, 4, and 5 are 2.61, 3.52, and 3.71, respectively. These 

values fall within a moderate performance range, indicating varying levels of prediction 

accuracy across these folds. Fold 3 is closer to the lower end of the error spectrum with 

an RMSE of 2.61, suggesting relatively better performance than Folds 4 and 5. 

 

Figure 4.5  

Best-Fitted Line for Shear Modulus G (Fold-4). 

 

 

Fold 4 and Fold 5, with RMSE values of 3.52 and 3.71 respectively, are positioned 

toward the higher end of the error distribution, indicating that the model faced 

challenges in these folds similar to those encountered in Fold 2. 
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Figure 4.6 

Best-Fitted Line for Shear Modulus G (Fold-5). 

 

 

In summary, understanding the variation in RMSE across folds provides valuable 

insights into the model's robustness and its ability to generalize to unobserved data. The 

lower RMSE in Fold 1 highlights the model's potential for high accuracy under 

favorable conditions, while the higher errors in Folds 2, 4, and 5 indicate areas where 

the model may need improvement or further tuning. Researchers and practitioners can 

use these results to inform model selection and further improvements, ensuring that the 

predictive model is both reliable and effective across diverse datasets. 

 

4.3.2 Evaluation of RMSE Value for Bulk Modulus (K) 

 

Figure 4.7  

Evaluating GBR Predictions Against Cross-Validated MD Training Data for K. 
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The average RMSE across all folds is 2.80, which provides a general measure of the 

model's predictive performance. This average value indicates that, on average, the 

model's predictions are within 2.80 units of the actual values across all folds. 

 

Figure 4.8 

Best-Fitted Line for Bulk Modulus K (Fold-1). 

 

 

The RMSE of 1.44 is the lowest among all folds, indicating the model performed very 

well on this subset of data. This suggests that the data distribution in Fold 1 was more 

conducive to accurate predictions by the model. 

 

Figure 4.9 

Best-Fitted Line for Bulk Modulus K (Fold-2). 
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With an RMSE of 1.99, the performance in Fold 2 is slightly lower than in Fold 1 but 

still relatively good. The data in Fold 2 posed more challenges to the model, but it still 

maintained reasonable predictive accuracy. 

 

Figure 4.10 

Best-Fitted Line for Bulk Modulus K (Fold-3). 

 

 

The RMSE of 1.61 is closer to the RMSE in Fold 1, indicating similar model 

performance. The model effectively captured the underlying patterns in the data for this 

fold. 

 

Figure 4.11 

Best-Fitted Line for Bulk Modulus K (Fold-4). 
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An RMSE of 3.17 shows a noticeable increase in prediction error. The data in Fold 4 

might have been more complex or had a different distribution, leading to a higher error 

rate. 

 

Figure 4.12 

Best-Fitted Line for Bulk Modulus K (Fold-5). 

 

 

With the highest RMSE of 5.80, Fold 5 represents the most challenging subset for the 

model. This significant increase in error suggests that the model struggled to generalize 

well to the data in this fold. 

 

Understanding the RMSE values for each fold highlights the variability in model 

performance across different subsets of the data. The lower RMSE in folds 1, 2, and 3 

demonstrates the model's potential for high accuracy under certain conditions. In 

comparison, the higher RMSE in folds 4 and 5 indicates areas where the model may 

need improvement or further tuning. The average RMSE value of 2.80 is a useful 

benchmark for the model's overall performance, providing insights into its 

generalization ability and robustness. 
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4.4 Without Validation the Test Data  

 

Figure 4.13  

Best-Fitted Line of Test Data Set for Shear Modulus (K) For Fold. 

 

 

Without cross-validation, the RMSE value obtained was 1.24 for predicting the shear 

modulus of ZIFs. The training and test data were divided into 80% and 20% 

respectively. Thus, the training data was 100 from the 126 zeolitic imidazole 

frameworks and 26 data used for the test.  

 

Figure 4.14 

Best-Fitted Line of Test Data Set for Shear Modulus (K) for Fold. 

 

 

Similar to the shear modulus the model was fed with 100 data while 26 were used for 

the test data and the gained RMSE value for bulk modulus (K) obtained 1.44 which 
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represents the good performance of the model in terms of forecasting the elastic moduli 

of ZIFs. 

 

4.5 Model Feature 

In a machine learning model, descriptors refer to the features or characteristics of the 

data that are used to make predictions or classifications. Not all descriptors have the 

same level of importance or influence on the model's performance. Some descriptors 

may have a stronger correlation or relationship with the target variable, while others 

may have little to no impact. Certain descriptors may provide more valuable 

information for accurate predictions, while others may be less relevant or misleading. 

 

After training a machine learning model, it is possible to interpret the model to 

understand which descriptors or features are most significant for assembly forecasts. 

By analyzing the model's internal workings, such as the weights assigned to each 

descriptor or the feature importance scores, we can identify the crucial features that 

have the weightiest effect on the model's predictions. This interpretation helps in 

understanding the underlying relationships between the descriptors and the target 

variable, providing insights into which features are driving the predictions and why. 

 

Feature selection is the process of selecting the most related features (or variables) that 

subsidize the most to the prediction task. In the context of the GBR model, feature 

selection is important because it helps to identify which geometric features of zeolites 

are most important for predicting their elastic response. By using regression trees, the 

GBR model automatically determines which features are most informative and includes 

them in the model, while disregarding less important features. 

 

Intrinsic feature selection has several advantages in the context of guessing the 

mechanical properties of zeolite imidazole frameworks. Firstly, it reduces the 

complexity of the model by excluding irrelevant or redundant features, which can help 

to prevent overfitting. By automatically selecting the most important features, the GBR 

model with regression trees can avoid overfitting and generalize well to new imidazole 

zeolite samples. Secondly, intrinsic feature selection improves the interpretability of the 

model by focusing on the most meaningful features. By identifying the key geometric 

features that are strongly correlated with the elastic response of imidazole-based 
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zeolites, academics can expansion valuable insights into the underlying mechanics of 

zeolitic frameworks. These insights can then be used to guide further research and 

development of zeolite materials with desired mechanical properties. 

 

4.5.1 Descriptors and Their Importance to Predict Shear Modulus Accurately 

Local descriptors refer to specific parameters or characteristics of a zeolite's local 

geometry, structure, and porosity. These local descriptors play a pivotal role in guessing 

the mechanical properties of zeolites using ML. 

 

Parameters related to the porosity showed the largest weight in the model to predict the 

shear modulus. Compressibility refers to how much a material can be compressed under 

pressure, which is directly related to its mechanical stability and rigidity.  

 

Figure 4.15 

Relative Importance of The Descriptors Used to Produce the GBR Model for G. 

 

 

Compressibility, defined as the extent to which a material can be compacted under 

pressure, is a fundamental descriptor in evaluating the mechanical properties of ZIFs. 

Lower compressibility signifies enhanced rigidity and mechanical stability, which are 

critical attributes for applications necessitating structural integrity, such as high-

pressure gas storage and structural components. Similarly, the pore-limiting diameter, 
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which is the maximum size of pores within the ZIF structure, plays a pivotal role in 

determining gas sorption, diffusion, and accessibility. Larger pore sizes facilitate the 

adsorption of guest molecules, thereby enhancing the effectiveness of ZIFs in 

applications like gas storage and separation processes. 

 

In addition, the maximum pore diameter, representing the size of the most expansive 

cavity within the ZIF framework, significantly influences the adsorption capacity and 

selectivity. This characteristic is particularly crucial for applications that require the 

selective adsorption of large molecules. Moreover, the network-accessible surface area 

per volume, which quantifies the surface area available to guest molecules relative to 

the framework volume, directly correlates with the adsorption capacity and catalytic 

activity of ZIFs. A higher network-accessible surface area per volume is essential for 

optimizing the efficiency of ZIFs in catalytic and adsorption processes. Furthermore, 

system density, defined as the mass per unit volume of the ZIF, affects its mechanical 

stability and packing efficiency. A higher density often correlates with increased 

structural robustness, vital for maintaining integrity under mechanical stress. 

 

Total surface area per volume and network-accessible volume are also significant 

descriptors influencing the performance of ZIFs. The total surface area per volume, 

indicating the overall surface area relative to the framework volume, suggests a greater 

potential for adsorption performance, which is vital for applications involving gas 

storage and separation. The network-accessible volume, or the volume within the ZIF 

framework accessible to guest molecules, enhances the material's capacity for gas 

storage and adsorption applications. The system mass, or the total mass of the ZIF 

system, affects mechanical properties and stability, with heavier systems exhibiting 

greater mechanical stability, important for applications requiring structural integrity. 

Lastly, the total surface area, encompassing the overall surface area of the ZIF, enhances 

adsorption capacity and catalytic activity, crucial for optimizing the material's 

performance in gas adsorption and catalytic applications. These descriptors collectively 

play pivotal roles in determining the mechanical stability, adsorption properties, and 

overall performance of ZIFs, guiding engineers in designing frameworks optimized for 

specific applications by ensuring desired properties such as mechanical robustness, 

adsorption capacity, and selectivity. The relationship between these descriptors and 
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their importance is essential for advancing the development and application of ZIFs in 

various fields. 

 

4.5.2 Descriptors and Their Importance to Predict Bulk Modulus Accurately 

The compressibility index is a vital descriptor in evaluating a framework's mechanical 

response to external pressure. A higher compressibility index signifies greater 

flexibility within the material, which directly impacts its bulk modulus, a measure of 

the material's resistance to uniform compression. Additionally, system volume is a 

crucial factor, as larger volumes tend to result in lower bulk moduli. This relationship 

occurs because larger volumes allow more deformation under pressure, thereby 

reducing the material's overall stiffness. Moreover, the network-accessible surface area 

significantly influences the framework’s mechanical properties by affecting 

interactions with guest molecules. This descriptor determines how well the framework 

can interact with and accommodate guest molecules, thereby influencing its structural 

integrity and mechanical stability. 

 

Figure 4.16 

Relative Importance of The Descriptors Used to Produce the GBR Model for Bulk 

Modulus (K). 
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The maximum pore diameter is another important descriptor affecting the bulk 

modulus. Larger pores within the framework can lead to reduced stiffness, as the 

material becomes more deformable under pressure. This reduction in stiffness can 

negatively impact the bulk modulus, making the material less resistant to uniform 

compression. Understanding these relationships is crucial for predicting the bulk 

modulus of ZIFs, as it allows for the design of frameworks with tailored mechanical 

properties for specific applications.  

 

ML models play a pivotal role in guessing the bulk modulus by analyzing various 

descriptors to discern patterns and determine feature importance. These models, 

including techniques such as linear regression, support vector regression, and neural 

networks, are employed to effectively learn the intricate relationships between 

descriptors and the bulk modulus. The success of these regression models relies heavily 

on high-quality training data with accurately labeled bulk modulus values. This ensures 

that the models capture underlying trends and generalize well to unseen ZIFs, enabling 

accurate predictions of their mechanical properties. Through the application of machine 

learning, researchers can optimize the design and functionality of ZIFs for a wide range 

of industrial applications. 

 

4.5.3 Correlation Between K and N−M−N Min in The MD Training Set 

There is a robust connection between the minimum value of the N-M-N angles and the 

K of the zeolitic imidazole frameworks. The correlation suggests that zeolitic imidazole 

frameworks with mostly linear N-M-N angles for tetrahedral geometry, such as those 

found in the CAG framework, tend to be very stiff materials with large bulk moduli for 

Benzimidazole CuCo. In an ideal zeolitic structure, the angle is typically around 109.5 

degrees, representing tetrahedral geometry. Any deviation from this ideal angle, such 

as the 90.24-degree angle observed in this study, indicates a more rigid and strained 

structure. The smaller N-m-N angle (90.24 degrees) suggests a more condensed and 

less flexible arrangement of atoms in the ZIF framework. This condensed structure 

makes it harder to compress the material, resulting in a higher bulk modulus (k) of 

49.1836 GPa. Due to different ligands and their connection distinct angle distortion 

happens.  
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Figure 4.17 

Correlation Between K and N−M−N Min 

 

 

 

4.5.4 Correlation Between G and Pore Limiting Diameter in The MD Training Set 

 

Figure 4.18 

Correlation Between G and Pore Limiting Diameter 

 

 

CAG 

dft 



59 

 

"Porosity descriptor" and a " Pore limiting diameter (PLD)" are important factors in 

predicting the shear modulus (G) of zeolite structures. A porosity descriptor is a 

characteristic that describes the amount of space or pores within a zeolite structure. It 

provides information about the porosity or voids present in the material. The pore-

limiting diameter refers to the maximum size of pores within a ZIF. It is measured in 

terms of its diameter, which represents the maximum distance between two points on 

the surface of the cavity. 

 

It can be found in this study that zeolitic imidazole framework with PLD, such as the 

dft structure, which has a cage greater than 4.5 Å (angstroms) in diameter, show really 

low shear modulus values of -12.80 GPa for 2-ethyl imidazole where the metal was Co. 

However, a negative shear modulus implies that the material responds in the opposite 

direction to the applied shear stress. 

 

 

4.6 Discussion 

In this work, the RMSE value from the cross-validation of the MD training set and GBR 

model predictions for K of 126 pure zeolite imidazole framework obtained 2.80, and 

for shear modulus (G) 2.96 which represents a good performance of the model 

compared to (D. Evans & Coudert, 2017)this paper. They showed a good performance 

in terms of RMSE value for 121 pure silica zeolites but I observed from their code they 

used all data for cross-validation which represents a good performance. Normally cross-

validation should have the test and train data. (Ducamp & Coudert, 2022) The authors 

of this paper predict the thermal properties of the zeolite through ML and the result 

showed an average RMSE value of 4.28 10-6 k-1 and they consider it is reasonable for 

the small data set. In a comparison, in this study can claim the model performance is 

quite well for this small data set of 126 zeolite imidazole framework. 

 

Parameters related to the N-M-N angles also have a significant weight in the model. N-

M-N angles refer to the angles formed between Nitrogen (N) and metal (M=Co, Cu, 

Zn) atoms in the zeolite framework. The specific angles at which these atoms are 

arranged affect zeolites' overall stability and mechanical properties. This study achieved 

accurate predictions of the bulk and shear moduli by incorporating these parameters 

into the ML model. 
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The results of the analysis of feature importances are consistent with the findings of a 

previous study conducted in 2004 by Monson and co-workers. The previous study 

focused on five different types of silica zeolites: SOD, LTA, CHA, MOR, and MFI 

(Astala et al., 2004). Here, in this study it has been demonstrated that the N−M−N bond 

angles, volume per unit for metal and nitrogen, and space group collectively influence 

the bulk modulus (K) of ZIFs. N−M−N angles and volume per unit for metal and 

nitrogen are similarly essential for forecasting G, but porosity and other N−M bond 

lengths are significant additional descriptors. 

 

Zeolite structures with larger cavities or pores tend to have lower shear modulus values. 

This is because larger voids allow for more flexibility and easier deformation of the 

material under shear stress. On the other hand, zeolitic imidazole framework structures 

with smaller or fewer pores have higher shear modulus values, indicating greater 

rigidity and resistance to deformation. There is a specific type of zeolite α-cristobalite 

shown that the Si−O−Si angles have a significant impact on its elastic properties. This 

suggests that the same principle may apply to other zeolites as well, indicating a general 

relationship between Si−O−Si angles and the resulting mechanical properties of zeolite 

frameworks(Yeganeh-Haeri et al., 1992) . 

 

In this study, a few negative shear moduli were observed from the molecular dynamics 

calculation which can be counted as a metamaterial in terms of application in the field 

of engineering and industry.(Shaat & El Dhaba, 2019) Explained well how the shear 

modulus of metamaterials can change based on material size and microstructure 

topology, defining conditions for zero, negative, or positive shear modulus values. 

 

Examining the local geometry, structure, and porosity of zeolites enables the 

determination of their influence on the material's properties. The correlation between 

these characteristic features and the properties of zeolites offers an unparalleled level 

of understanding compared to previous methods. 
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CHAPTER 5 

CONCLUSION 

In this research study, 126 porous zeolite imidazole structures were systematically 

optimized using molecular dynamics simulations. These optimized structures served as 

the training dataset for a machine-learning model. The 1st objective of this study was to 

build the primary data set by utilizing the Avogadro, forecite module, and mercury 

software and 2nd objective was to train the machine model for predicting the elastic 

properties of zeolites, including both the bulk modulus and shear modulus. By 

leveraging computational simulations and machine learning techniques, aimed to 

enhance the understanding of zeolite elastic properties and contribute to the field of 

materials science and industry. 

 

Upon determining the optimal hyperparameters for the gradient-boosting regression 

models, the accuracy of models constructed using various types of structure descriptors 

was compared. These included geometric descriptors (based on N–M distances and N–

M–N angles), porosity-related descriptors, and structural descriptors. Through the 

training of machine learning models, acquired valuable insights into the intricate 

structure-property correlations within ZIFs. Notably, the investigation of geometric 

descriptors revealed that angle descriptions hold greater significance than distances for 

these frameworks. Indeed, angles emerged as the pivotal parameter during model 

training. The angle between the N-M-N showed the highest feature importance in bulk 

modulus while the porosity descriptor played a pivotal role in measuring the shear 

modulus. 

 

By integrating computational simulations with machine learning techniques, this 

research sheds light on the elastic properties of ZIFs. It emphasizes the critical role of 

accurately labeled training data and the thoughtful selection of relevant material 

descriptors for successful machine learning models. Furthermore, this work contributes 

to the broader field of materials science, opening new avenues for designing novel ZIF-

based materials with tailored properties. 
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5.1 Future Suggestion 

Building upon the findings of this research, several promising avenues can be explored 

to enhance our understanding and practical application of ZIFs: 

 

1. Expanded Dataset: To gain a more comprehensive understanding of how variations 

in ligands and metal centers influence mechanical properties, we should expand the 

dataset to include a wider variety of ZIF structures. This expansion would involve 

synthesizing new ZIF structures and conducting extensive molecular dynamics 

simulations. 

 

2. Refined Machine Learning Models: Exploring advanced algorithms, such as deep 

learning and ensemble methods, could further refine our predictive models. 

Additionally, incorporating electronic properties and surface chemistry descriptors 

would provide a holistic view of the factors influencing mechanical behavior. 

 

3. Experimental Validation: Collaborating with experimental researchers to synthesize 

selected ZIF structures and measure their mechanical properties is essential for 

validating the accuracy and reliability of our machine-learning models. Their feedback 

will help refine the models and enhance their predictive capabilities. 

 

4. Beyond Elastic Properties: We should extend our predictive models to explore other 

physical properties of ZIFs, including thermal stability, adsorption capacity, and 

catalytic activity. By doing so, we can design ZIF tailored for specific applications in 

gas separation, catalysis, and electronics 
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APPENDIX A 

SEVEN LIGANDS, THREE TOPOLOGY AND THREE METALS 

WITH THEIR COMPOSITION 

Table A1 CAG topology with 7 ligands and 3 metals with their composition 

CAG topology with 7 ligands and Co metal 

2-ethylimidazole_cag_Co 2-methyl-4-nitroimidazole_cag_Co 

  

2-methylimidazole_cag_Co 2-nitroimidazole_cag_Co 

  

3-Methyl-1,2,4-triazole_cag_Co Benzimidazole_cag_Co 
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Imidazole-2-carbaldehyde_cag_Co 
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CAG topology with 7 ligands and Cu metal 

2-ethylimidazole_cag_Cu 2-methyl-4-nitroimidazole_cag_ Cu 

  

2-methylimidazole_cag_ Cu 2-nitroimidazole_cag_ Cu 

  

3-Methyl-1,2,4-triazole_cag_ Cu Benzimidazole_cag_ Cu 

  

Imidazole-2-carbaldehyde_cag_ Cu 
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CAG topology with 7 ligands and Zn metal 

2-ethylimidazole_cag_ Zn 2-methyl-4-nitroimidazole_cag_ Zn 

  

2-methylimidazole_cag_ Zn 2-nitroimidazole_cag_ Zn 

  

3-Methyl-1,2,4-triazole_cag_ Zn Benzimidazole_cag_ Zn 

  

Imidazole-2-carbaldehyde_cag_ Zn 
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CAG topology with 7 ligands and CoZn metal 

2-ethylimidazole_cag_ CoZn 2-methyl-4-nitroimidazole_cag_ CoZn 

  

2-methylimidazole_cag_ CoZn 2-nitroimidazole_cag_ CoZn 

  

3-Methyl-1,2,4-triazole_cag_ CoZn Benzimidazole_cag_ CoZn 

  

Imidazole-2-carbaldehyde_cag_ CoZn 
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CAG topology with 7 ligands and CuCo metal 

2-ethylimidazole_cag_ CuCo 2-methyl-4-nitroimidazole_cag_ CuCo 

  

2-methylimidazole_cag_ CuCo 2-nitroimidazole_cag_ CuCo 

  

3-Methyl-1,2,4-triazole_cag_ CuCo Benzimidazole_cag_ CuCo 

  

Imidazole-2-carbaldehyde_cag_ CuCo 

 

 

  



76 

 

 

CAG topology with 7 ligands and ZnCu metal 

2-ethylimidazole_cag_ ZnCu 2-methyl-4-nitroimidazole_cag_ ZnCu 

  

2-methylimidazole_cag_ ZnCu 2-nitroimidazole_cag_ ZnCu 

  

3-Methyl-1,2,4-triazole_cag_ ZnCu Benzimidazole_cag_ ZnCu 

  

Imidazole-2-carbaldehyde_cag_ ZnCu 
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Table A2 DFT topology with 7 ligands and 3 metals with their composition 

DFT topology with 7 ligands and Co metal 

2-ethylimidazole_DFT_Co 2-methyl-4-nitroimidazole_DFT_Co 

  

2-methylimidazole_DFT_Co 2-nitroimidazole_DFT_Co 

  

3-Methyl-1,2,4-triazole_DFT_Co Benzimidazole_DFT_Co 

  

Imidazole-2-carbaldehyde_DFT_Co 
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DFT topology with 7 ligands and Cu metal 

2-ethylimidazole_DFT_Cu 2-methyl-4-nitroimidazole_DFT_ Cu 

  

2-methylimidazole_DFT_ Cu 2-nitroimidazole_DFT_ Cu 

  

3-Methyl-1,2,4-triazole_DFT_ Cu Benzimidazole_DFT_ Cu 

  

Imidazole-2-carbaldehyde_DFT_ Cu 
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DFT topology with 7 ligands and Zn metal 

2-ethylimidazole_DFT_ Zn 2-methyl-4-nitroimidazole_DFT_ Zn 

  

2-methylimidazole_DFT_ Zn 2-nitroimidazole_DFT_ Zn 

  

3-Methyl-1,2,4-triazole_DFT_ Zn Benzimidazole_DFT_ Zn 

  

Imidazole-2-carbaldehyde_DFT_ Zn 

 

  



80 

 

 

DFT topology with 7 ligands and CoZn metal 

2-ethylimidazole_DFT_ CoZn 2-methyl-4-nitroimidazole_DFT_ CoZn 

  

2-methylimidazole_DFT_ CoZn 2-nitroimidazole_DFT_ CoZn 

  

3-Methyl-1,2,4-triazole_DFT_ CoZn Benzimidazole_DFT_ CoZn 

  

Imidazole-2-carbaldehyde_DFT_ CoZn 
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DFT topology with 7 ligands and CuCo metal 

2-ethylimidazole_DFT_ CuCo 2-methyl-4-nitroimidazole_DFT_ CuCo 

  

2-methylimidazole_DFT_ CuCo 2-nitroimidazole_DFT_ CuCo 

  

3-Methyl-1,2,4-triazole_DFT_ CuCo Benzimidazole_DFT_ CuCo 

  

Imidazole-2-carbaldehyde_DFT_ CuCo 
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DFT topology with 7 ligands and ZnCu metal 

2-ethylimidazole_DFT_ ZnCu 2-methyl-4-nitroimidazole_DFT_ ZnCu 

  

2-methylimidazole_DFT_ ZnCu 2-nitroimidazole_DFT_ ZnCu 

  

3-Methyl-1,2,4-triazole_DFT_ ZnCu Benzimidazole_DFT_ ZnCu 

  

Imidazole-2-carbaldehyde_DFT_ ZnCu 
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Table A3 SOD topology with 7 ligands and 3 metals with their composition 

SOD topology with 7 ligands and Co metal 

2-ethylimidazole_SOD_Co 2-methyl-4-nitroimidazole_SOD_Co 

  

2-methylimidazole_SOD_Co 2-nitroimidazole_SOD_Co 

  

3-Methyl-1,2,4-triazole_SOD_Co Benzimidazole_SOD_Co 

  

Imidazole-2-carbaldehyde_SOD_Co 
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SOD topology with 7 ligands and Cu metal 

2-ethylimidazole_SOD_Cu 2-methyl-4-nitroimidazole_SOD_ Cu 

  

2-methylimidazole_SOD_ Cu 2-nitroimidazole_SOD_ Cu 

  

3-Methyl-1,2,4-triazole_SOD_ Cu Benzimidazole_SOD_ Cu 

  

Imidazole-2-carbaldehyde_SOD_ Cu 
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SOD topology with 7 ligands and Zn metal 

2-ethylimidazole_SOD_ Zn 2-methyl-4-nitroimidazole_SOD_ Zn 

  

2-methylimidazole_SOD_ Zn 2-nitroimidazole_SOD_ Zn 

  

3-Methyl-1,2,4-triazole_SOD_ Zn Benzimidazole_SOD_ Zn 

  

Imidazole-2-carbaldehyde_SOD_ Zn 
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SOD topology with 7 ligands and CoZn metal 

2-ethylimidazole_SOD_ CoZn 2-methyl-4-nitroimidazole_SOD_ CoZn 

  

2-methylimidazole_SOD_ CoZn 2-nitroimidazole_SOD_ CoZn 

  

3-Methyl-1,2,4-triazole_SOD_ CoZn Benzimidazole_SOD_ CoZn 

  

Imidazole-2-carbaldehyde_SOD_ CoZn 
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SOD topology with 7 ligands and CuCo metal 

2-ethylimidazole_SOD_ CuCo 2-methyl-4-nitroimidazole_SOD_ CuCo 

  

2-methylimidazole_SOD_ CuCo 2-nitroimidazole_SOD_ CuCo 

  

3-Methyl-1,2,4-triazole_SOD_ CuCo Benzimidazole_SOD_ CuCo 

  

Imidazole-2-carbaldehyde_SOD_ CuCo 
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SOD topology with 7 ligands and ZnCu metal 

2-ethylimidazole_SOD_ ZnCu 2-methyl-4-nitroimidazole_SOD_ ZnCu 

  

2-methylimidazole_SOD_ ZnCu 2-nitroimidazole_SOD_ ZnCu 

  

3-Methyl-1,2,4-triazole_SOD_ ZnCu Benzimidazole_SOD_ ZnCu 

  

Imidazole-2-carbaldehyde_SOD_ ZnCu 
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APPENDIX B 

GITHUB LINK FOR THE MACHINE MODEL 

 

https://github.com/sarmin-khan/ZIF-Mechanical-Properties 

 

https://github.com/sarmin-khan/ZIF-Mechanical-Properties

