Control Theory AT74.10

7 December, 2021

Open Book

Time: 9:00-11:00 hrs. Marks: 100

Attempt all questions.

Consider the system given in the midterm examination again. Input voltage of a proportional valve, v (volt), is used to control position of a pneumatic actuator, x (meter), as shown in the below figure and expressed by

a transfer function, $G = \frac{x}{v} = \frac{4}{20s^2 + 10s}$. **Pneumatic Actuator Proportional Valve** v Air Reservoir

(a) Determine a state-space representation of the system in the first-companion form when the state variables are numbered from right to left with the input, u, of the voltage, v, and the output, y, of the actuator position, х. (15)

Solution

Transfer function,

$$G = \frac{x}{v} = \frac{4}{20s^2 + 10s} = \frac{0.2}{s^2 + 0.5s} \tag{1}$$

Thus,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -0.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} u \end{bmatrix}$$
(2)

$$[y] = \begin{bmatrix} 0.2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
(3)

(b) If the output is controlled to a constant reference actuator position, x_r , remodel the state-space system in (a) by taking into consideration the reference. (15)

Solution

With exogenous input, the system is remodeled as,

$$\dot{e} = Ae + Bu + (A - A_r)x_r + Fx_d = Ae + Bu + Ex_0$$
(1)

For constant reference position of the first-companion from,

$$[x_r] = \begin{bmatrix} 0.2 & 0 \end{bmatrix} \begin{bmatrix} x_{1r} \\ x_{2r} \end{bmatrix} = \begin{bmatrix} 0.2 & 0 \end{bmatrix} \begin{bmatrix} x_{1r} \\ 0 \end{bmatrix}$$
(2)

$$E = A - A_r = \begin{bmatrix} 0 & 1 \\ 0 & -0.5 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -0.5 \end{bmatrix}$$
(4)

Thus,

$$\begin{bmatrix} \dot{e}_1 \\ \dot{e}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -0.5 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} u \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & -0.5 \end{bmatrix} \begin{bmatrix} x_{1r} \\ x_{2r} \end{bmatrix}$$
(5)

$$[y_e] = \begin{bmatrix} 0.2 & 0 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$
(6)

(c) Determine the formula for the input of the voltage, v, that minimizes the cost function expressed by

$$V = \int_{0}^{\infty} (10(x - x_r)^2 + v_1^2) dt$$

as a function of the actuator position, its derivative, and the position reference (x, \dot{x}, x_r) only, when $v = v_1 + \bar{v}$, and \bar{v} is used to keep the position error $(x - x_r)$, at zero at steady state under the position reference, x_r . Then determine characteristic equation of the regulated system. (35)

Solution

$$Q = C^T C = 10 \begin{bmatrix} 0.2\\0 \end{bmatrix} \begin{bmatrix} 0.2 & 0 \end{bmatrix} = \begin{bmatrix} 0.4 & 0\\0 & 0 \end{bmatrix}$$
(1)

$$R = [1] \tag{2}$$

Determine the gain for the state error

$$G = R^{-1} B^t \overline{M}_1 \tag{3}$$

$$R^{-1}B^{t}\overline{M}_{1} = [1]^{-1} \begin{bmatrix} 0\\1 \end{bmatrix}^{t} \begin{bmatrix} m_{1} & m_{2}\\m_{2} & m_{3} \end{bmatrix}$$
(4)

$$R^{-1}B^{t}\overline{M}_{1} = \begin{bmatrix} m_{2} & m_{3} \end{bmatrix}$$
(5)

When

$$0 = -\bar{M}_1 = \bar{M}_1 A + A^t \bar{M}_1 - \bar{M}_1 B R^{-1} B^t \bar{M}_1 + Q$$
(6)

Substitute all the concerned matrices,

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_2 & m_3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & -0.5 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & -0.5 \end{bmatrix} \begin{bmatrix} m_1 & m_2 \\ m_2 & m_3 \end{bmatrix} - \begin{bmatrix} m_1 & m_2 \\ m_2 & m_3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} m_2 & m_3 \end{bmatrix} + \begin{bmatrix} 0.4 & 0 \\ 0 & 0 \end{bmatrix}$$
(7)

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -m_2^2 + 0.4 & m_1 - 0.5m_2 - m_2m_3 \\ m_1 - 0.5m_2 - m_2m_3 & 2m_2 - m_3 - m_3^2 \end{bmatrix}$$
(8)

Thus,

$$\begin{bmatrix} m_1 & m_2 \\ m_2 & m_3 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.63 \\ 0.63 & 0.73 \end{bmatrix}$$
(9)

$$G = R^{-1} B^t \overline{M}_1 = \begin{bmatrix} 0.63 & 0.73 \end{bmatrix}$$
(10)

 $A_{c} = A - BG = \begin{bmatrix} 0 & 1 \\ 0 & -0.5 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0.63 & 0.73 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -0.5 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0.63 & 0.73 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.63 & -1.23 \end{bmatrix} (11)$

Determine the gain of the state reference,

$$G_0 = R^{-1} B^t \overline{M}_2 \tag{12}$$

$$R^{-1}B^{t}\overline{M}_{2} = [1]^{-1} \begin{bmatrix} 0\\1 \end{bmatrix}^{t} \begin{bmatrix} m_{21} & m_{22}\\m_{23} & m_{24} \end{bmatrix}$$
(13)

$$R^{-1}B^t \overline{M}_2 = \begin{bmatrix} m_{23} & m_{24} \end{bmatrix} \tag{14}$$

When

$$0 = -\bar{M}_2 = \bar{M}_1 E + \bar{M}_2 A_0 + (A^t - \bar{M}_1 B R^{-1} B^t) \bar{M}_2$$
(15)

Substitute all the concerned matrices,

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.63 \\ 0.63 & 0.73 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & -0.5 \end{bmatrix} + \begin{bmatrix} m_{21} & m_{22} \\ m_{23} & m_{24} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & -0.63 \\ 1 & -1.23 \end{bmatrix} \begin{bmatrix} m_{21} & m_{22} \\ m_{23} & m_{24} \end{bmatrix}$$
(16)

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0.47 \\ 0 & 0.27 \end{bmatrix} + \begin{bmatrix} -0.63m_{23} & -0.63m_{24} \\ m_{21} - 1.23m_{23} & m_{22} - 1.23m_{24} \end{bmatrix}$$
(17)

$$\begin{bmatrix} m_{21} & m_{22} \\ m_{23} & m_{24} \end{bmatrix} = \begin{bmatrix} 0 & 0.65 \\ 0 & 0.75 \end{bmatrix}$$
(18)

$$G_0 = R^{-1} B^t \overline{M}_2 = \begin{bmatrix} 0 & 0.75 \end{bmatrix}$$
(19)

Thus,

$$u = v = -[0.63 \quad 0.73] \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} - [0 \quad 0.75] \begin{bmatrix} x_{1r} \\ x_{2r} \end{bmatrix}$$
(20)

Since,

$$\begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} x_1 - x_{1r} \\ x_2 - x_{2r} \end{bmatrix} = \begin{bmatrix} x_1 - x_{1r} \\ x_2 \end{bmatrix}$$
(21)

and

$$[y] = \begin{bmatrix} 0.2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
(22)

Thus

$$\begin{bmatrix} x_{1r} \\ x_{2r} \end{bmatrix} = \begin{bmatrix} \frac{y_r}{0.2} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{x_r}{0.2} \\ 0 \end{bmatrix}$$
(23)

and

$$\begin{bmatrix} e_1\\ e_2 \end{bmatrix} = \begin{bmatrix} \frac{\dot{y}}{0.2} - \frac{\dot{y}_r}{0.2} \\ \frac{\dot{y}}{0.2} \end{bmatrix} = \begin{bmatrix} \frac{\dot{x}}{0.2} - \frac{\dot{x}_r}{0.2} \\ \frac{\dot{x}}{0.2} \end{bmatrix}$$
(24)

Finally,

$$u = v = -[0.63 \quad 0.73] \begin{bmatrix} \frac{x}{0.2} - \frac{x_r}{0.2} \\ \frac{\dot{x}}{0.2} \end{bmatrix} - [0 \quad 0.75] \begin{bmatrix} \frac{x_r}{0.2} \\ 0 \end{bmatrix}$$
(25)

Characteristic equation of the regulated system is determined from

$$|sI - A_c| = \begin{vmatrix} s & -1 \\ 0.63 & s + 1.23 \end{vmatrix}$$
(26)

$$|sI - A_c| = s^2 + 1.23s + 0.63 = 0$$
(27)

(d) Determine the Kalman Filter gain by assuming that power spectrum of the white noise disturbance in the state dynamic, *V*, is [10] and power spectrum of the white noise in the output, *W*, is [1]. Use $F = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ in the state dynamics. Then determine characteristic equation of the Kalman Filter. (35)

<u>Solution</u>

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -0.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} u \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} v \end{bmatrix}$$
(1)

$$[y] = [0.2 \quad 0] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + [w]$$
(2)

$$K = \bar{P}C^t W^{-1} \tag{3}$$

$$K = \begin{bmatrix} p_1 & p_2 \\ p_2 & p_3 \end{bmatrix} \begin{bmatrix} 0.2 & 0 \end{bmatrix}^t \begin{bmatrix} 1 \end{bmatrix}^{-1} = \begin{bmatrix} 0.2p_1 \\ 0.2p_2 \end{bmatrix}$$
(4)

When

$$0 = \dot{\bar{P}} = A\bar{P} + \bar{P}A^t - KC\bar{P} + FVF^t$$
(5)

Substitute all the concerned matrices,

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -0.5 \end{bmatrix} \begin{bmatrix} p_1 & p_2 \\ p_2 & p_3 \end{bmatrix} + \begin{bmatrix} p_1 & p_2 \\ p_2 & p_3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & -0.5 \end{bmatrix} - \begin{bmatrix} 0.2p_1 \\ 0.2p_2 \end{bmatrix} \begin{bmatrix} 0.2 & 0 \end{bmatrix} \begin{bmatrix} p_1 & p_2 \\ p_2 & p_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 10 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$$
(6)

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2p_2 - 0.04p_1^2 & -0.5p_2 + p_3 - 0.04p_1p_2 \\ -0.5p_2 + p_3 - 0.04p_1p_2 & p_3 - 0.04p_2^2 + 10 \end{bmatrix}$$
(7)

$$\begin{bmatrix} p_1 & p_2 \\ p_2 & p_3 \end{bmatrix} = \begin{bmatrix} 18.27 & 6.68 \\ 6.68 & 8.22 \end{bmatrix}$$
(8)

$$K = \begin{bmatrix} 3.65\\ 1.34 \end{bmatrix} \tag{9}$$

Characteristic equation of the Kalman filter is determined from

$$|sI - \hat{A}| = |sI - A + KC| = \left| \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & -0.5 \end{bmatrix} + \begin{bmatrix} 3.65 \\ 1.34 \end{bmatrix} \begin{bmatrix} 0.2 & 0 \end{bmatrix} \right|$$
(10)

$$\left|sI - \hat{A}\right| = \left|\begin{array}{cc}s + 0.73 & -1\\0.27 & s + 0.5\end{array}\right| = s^2 + 1.23s + 0.27 = 0 \tag{11}$$