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Classical Control Theory

e Mechanism of feedback is the basic fundamental of control and automation.

e By the mechanism of feedback, a mammal maintains its body temperature.

e The temperature in a building is kept to a desired setting even though the fluctuation of outside temperature.

e An aircraft can maintain its heading and altitude and can even land, all without human intervention, through feedback.

e Feedback is the mechanism that makes it possible for a biped to stand erect on two legs and to walk without falling.
1 Control Theory Background

o Feedback control engineering is regarded as the conscious, intentional use of the mechanism of feedback to control the
behavior of a dynamic process.

e The history of control theory can be conveniently divided into three periods. The first, starting in prehistory and ending
in the early 1940s, is termed as the primitive period. This was followed by a classical period, lasting 20 years, and

finally came the modern period.
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Primitive Period

e The intentional use of feedback to improve the performance of dynamic system was started at around the beginning of
the industrial revolution in the late 18" and early 19" centuries.

e The benchmark development was the ball-governor invented by James Watt to control the speed of his steam engine.

Oil under
pressure

—f Engine Load

Figure 1-1 Watt’s Speed Governor

Fuel—

Control
valve

e By the mid 19" century it was understood that the stability of a dynamic system was determined by the location of the
roots of the algebraic characteristic equation. Routh invented the stability algorithm.
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Classical Period
e The classical period of control theory begins during World War 11 in the Radiation Laboratory of MIT.
e Knowledge in the frequency response methods was developed by people such as Nyquist and Bode.

e Use of frequency-domain (Laplace transform) methods made possible the representation of a process by its transfer
function.

Modern Period
e State-space methods are the cornerstone of modern control theory.

¢ In the modern approach the processes are characterized by systems of coupled, first-order differential equations.
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2 Some Definitions in Control Theory

Static and Dynamic System:

e A dynamic element is one whose present output depends on past inputs.

e A static element is one whose output at any given time depends on only the input at that time.

e The present position of a car depends on where it started and what its velocity has been from the start, and thus it is a
dynamic element.

e A resistor is a static element, because its present current depends on only the voltage applied at present, not on past

voltages.

Lumped- and Distributed-Parameter Models:

e The dynamic model of a system that depends on location as well as time is called a distributed-parameter model.

e The dynamic model of a system that depends only on time is called a lumped-parameter model.

Example

Consider the temperature T of a metal plate. If the plate is heated at one side, the temperature will be a function of
location and time, T = T(t, X, Y, z), and the model will have the form

F(T a OT 07T 0T
H d H d(z H @2 i) &2

)=0 (2-1)
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But if the plate temperature is lumped with a single value, the model will have the form

dT
f(T,—-)=0
T

(2-2)

WL

Figure 2-1 Temperature Distribution in a Plate (a) Distributed-Parameter Representation

(b) Lumped Parameter Representation Using Three Elements
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Linear and Nonlinear Models:

Consider a system

y=f(x) (2-3)
e The model is said to be linear if, for an input ax;+bx,, the output is
y = f (ax, +bx,) = af (x,) +bf (x,) = ay, + by, (2-4)

where a and b are arbitrary constants, x; and X, are arbitrary inputs, and
y: = f(x) (2-5)
Y2 = f(X,) (2-6)
e The definition of linearity can be extended to include functions of more than one variables, such as f(x,z). This function
is linear if and only if
y = f (ax, +bx,,az, +bz,) = af (x,,z,) +bf (x,,2,) (2-7)
e The linearity property is sometimes called the superposition principle, because it states that a linear combination of
inputs produces and output that is the superposition of the outputs that would be produced if each input term were
applied separately.
Examples
y = 5X + 4x + 4x: a linear system

y = x*: a nonlinear system
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Time- Variant and Invariant Models:
e Models with constant coefficients are called time-invariant or stationary models.

e Models with variable coefficients are time-variant or nonstationary.

Discrete- and Continuous-Time Models:
e Continuous-time model is represented by a differential equation. All the variables in the model are continuous.

e Discrete-time model is represented by a difference equation. All the variables in the model are discrete.

Model Order:

e Order of a model is the highest derivative order of a variable of that model.

Stochastic Models:

e |f uncertainty in the values of the model’s coefficients or inputs is great enough, it might justify using a stochastic
model.

e In stochastic model, the coefficients and inputs are described in terms of probability distributions involving, for

example, their means and variances.
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Figure 2-2 Classification of Mathematical Models
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3 Linearization

e Because of the usefulness of the superposition principle, some nonlinear models are linearized to linear models.
e Consider the small angle approximation. If the angle of rotation 6 of the lever is small, the rectilinear displacement of
its ends is roughly proportional to 6 such that x = L.

e The same is not true for a large enough value of 0.

Figure 3-1 Small-Angle Approximation for the Displacement of a Lever Endpoint
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e A systematic procedure based on the Taylor series expansion can be used for linearization.
w=f(y) (3-1)
e A model that is approximately linear near the reference point (wo, yo) can be obtained by expanding f(y) in a Taylor

series near this point and truncating the series beyond the first-order term.

df 1(d*f
w=f(y)= f(yo)+(@]o(y—yo)+§(

1) v 32)
I dy? )/,

e Ifyis close enough to Yo, the terms involving (y-yo) for i >2 are small compared to the first two terms.

w=f(y)= f(y0>+(%jo(y— Vo) (3-3)
Let
m- [%j (3-4)
2= wow, w1 (y,) (3-5)
X=Y—Y, (3-6)
Then
7= mx (3-7)
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Figure 3-2 Free Body Diagram of the Mass-Spring System

e Consider a nonlinear spring, f = y2.
e At the rest position yo, the weight of the mass will equal the spring force, so that mg = y¢?, or yo = (mg)*2.

e The Taylor series applied to the spring relation f = y? gives

2

d
f = y2 = YO2 +(ci/_yj (y_ yo) = yo2 +ZYO(y_ yo) (3'8)
0
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Letz=f-fo=f-yo2and x =y - yo. Thus,
Z=2Y,X
e The Taylor series linearization technique can be extended to any number of variables.

w=f(y.Yy,)

a a
Wzf(wmw0+(5étwy—wa+&§ﬂowz—w&
Let
Z=W—W, =W—f(yy,¥5)

X =Y1=Yuo

X, =Y, =Y

(5«5
22— X, +|—| X,
@10 0’3,2 0

The linearized approximation is

The partial derivatives are the slopes of the function f in the y; and y, directions at the reference point.

(3-9)

(3-10)

(3-11)

(3-12)
(3-13)
(3-14)

(3-15)
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4 Process Modeling

Mathematic model of a system can be determined by
e Experimental approach
o Step response

o Frequency response

-(n-1) -(n-2) ]
a, ,Z +a,_,Z +--+az+
o Random response Y _ 8 n-2 & a,

X b,z"+b, ;27" +...+bz " +hy

8, X(k=(n=1)+a, ,x(k—=(n=2)) +---+ax(k=1) +ax(k) =b,y(k =n) +b, ,y(k = (n=1)) +---+ b y(k —1) + by (k)

e Theoretical approach

e |f the model is too simplistic, the control system will not function as desired.

o If the model is too detailed, its complexity will hinder the application of design methods and prevent the designer from
understanding the essential behavior of the system.
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Figure 4-1 General Model Structure for an Arbitrary Physical System
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Type Rater Quantity Q=frdt  Efforte Flux ¢ = [ e dt
Electrical Current i Charge Q Voltage v Flux ¢
Mechanical Velocity v Displacement x Force f Impulse M,
(translation)

Mechanical Angular Angular Torque T Angular
(rotation) velocity w displacement 8 impulse M,
Fluid Mass flow rate g,, _Mass Q (or m) Pressure p None
(incompressible)* or volume flow rate ¢ or volume ¥

Fluid Mass flow rate g, Mass Q (or m) Pressure p None
(compressible)

Thermal Heat flow rate g, Heat energy Q, Temperature T None

*Mass and volume are readily interchangeable for incompressible fluids; frequently, the symbol Q denotes
volume and g mass flow rate.

Table 4-1 Primary System Variables and Their Usual Symbols
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4.1 Electrical Systems

B — 0
t—')l
w. M
b
F—>= 0

o

O

Figure 4.1-1 (a) A Series RC Circuit, (b) Its block diagram, (c) The Simplified Diagram

Conservation of energy: vy =V,+vz (a) Capacitor: vz =Q/C (d)
Conservation of charge: b =1y (b) Resistor: I =V2/R (e)

ir = i3 (c) Integral Causality: ~ Q =i sdt (f)
1
v [ AL

or Rc% v, =V, (4.1-1)
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Figure 4.1-2 (a) A Parallel RC Circuit, (b) Its block diagram, (c) The Simplified Diagram

Conservation of energy: vi=V, (a) Capacitor: v3=Q/C (d)
v;=vs (b) Resistor: I = Vo/R (e)
Conservation of charge: Iy = i+i3 (c) Integral Causality: Q= J’ i adt (M
1o, 1
Vv, = c (Il ——v3)dt
or RC L} +Vv, =Ri;
dt

(4.1-2)
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Figure 4.1-3 A Series RLC Circuit

Conservation of energy:

Inductance:

or

V=vi+v+vy () Integral Causality: ¢ =[vdt

é=Li

(b)
v, = Ri
i
ot
1.
Va—EI'dt

v:Ri+Lﬂ+1jidt
dt C

d% _di 1. dv

+ R
dt? dt

c dt

(©)

(4.1-3)
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4.2 Electromechanical Systems

Figure 4.3-1Armature-Controlled DC Motor with a Load and Its Block Diagram

For armature-controlled motor, a torque T is proportional to the armature current i,.

T =K,
The back emf (electromotive force) is proportional to the speed and is given by

e, = Ko
Kirchoff’s voltage law gives

v=i,R+ L%-l- K.@
dt

From Newton’s law applied to the inertia I,

| =2 = K

at . —Cw

(4.2-1)

(4.2-2)

(4.2-3)

(4.2-4)
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5 Frequency-Domain Analysis

F(s) = j e f (t)dt f(t)
0

1. 1 a(t)
2. 1 1

S
3. 3
4. 1 o2t

S+a

b .
5. b sin( bt)
6 > cos(bt)
' s% +b?

Table 5-1 Laplace Transform Pairs

When e™ = cos(bt) + isin( bt)
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f(t)

1. af, (t) +bf, (1)

df
2 gt

d2f
3 dt?

d" f
4, qt"
5, jf(t)dt

0 t<D

6. f(t—-D) :t>D

F(s) = Te—st f(O)dt

aF, (s) +bF,(s)
sF(s)— f(0)
s*F(s)—sf (0) —% »

n \ n—k d “ f
s"F(s)— .Z‘S S |t:0
F(s), J TOd]

S S
e *°F(s)

Table 5-2 Properties of the Laplace Transform
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y(s) = H(s)u(s) + f(¥(0),y(0),---,u(0),1u(0),-) (5-1)
y(s) = H(s)u(s) (5-2)
y(t) = j H(t - 7)u(r)dr (5-3)

where H(t) is the impulse-response of the system, and H(s) =L[H(t)]= Te‘“ H (t)dt
0

When the system of interest has the standard state-space representation
X =Ax + Bu =>sX —x(0) = AX + BU

y=Cx+Du=>Y=AX+DU (5-4)
k-1 k-2
H(s)=C(sl —A)*B+ D= CES TES T+ 4EJB (5-5)
s*+a,5 4+ +a,
where the denominator of H(s) is the characteristic polynomial
D(s) =|sl — Al =s" +a,s" "+ +a, (5-6)

and Ei, E,, ..., Ex are the coefficient matrices of the adjoint matrix for the resolvent (sI-A)™. The root of the characteristic

equation |sI-A| = 0 are called the characteristic roots or eigenvalues of the system.
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e A transfer function H(s) which is a proper rational function of s can be expanded in partial fractions

k-1
N,s" " +-+N,

H(s) = S rds Troad, = H, () + H, (8)+-+H_(5) (5-7)
R.. R.. R .
H. — 1i 2i Vil -
where (3) s +(S_Si)2 + +(S_Si)v, (5-8)
The impulse response H(t) of the system is given by the inverse Laplace transform
H(t) = H, (£) + H, (t)+-+H_(t) (5-9)
where H, (t) = (Ry + Ryt+-+R, "7 / (v, =D Ne*' (5-10)

o If the numerator of the transfer function is the same degree as the denominator, the constant term can be removed and

the remainder written as a proper rational function.

N, s + N, s*+-+N N,s* "+ +N,
()= 0sk +d slk‘1+---+d TN s +1d sk‘1+-~~+tj (5-11)
1 k 1 k
N, = N, — N,d, (5-12)

The corresponding impulse response has the form

H(t) = N,o(t) + Zk:(Rli +---+vat"“1 / (v, —Dhe* (5-13)

i=1

where &(t) is the unit impulse function.
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e |t is possible to conceive of systems having transfer functions in which the degree of the numerator is higher than the

denominator. For example, an electrical inductor has the transfer function

v(s) B )
i 2(s) = Ls (5-14)

when the voltage v(t) is regarded as the output and the current is regarded as the input. The impulse response of such

systems, in general, contains not only impulses, but various derivatives of impulses.
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5.1 Block Diagram Algebra

Hi(s) _r.
u y
Sl Hiz) = Hy(s)+ Hix)
(&)
— ] Hy(s) f—21b] Ha(s) f——p  H(s) = Hals)Hi(s)
(b)
u & ¥
Hils) His) = 7 + Hi(s)Hz(3)] ="' Hil5)
— = My{s)[] + Ha(s)H, (51}
Hils)
(c)

Figure 5.1-1 Subsystems in Combination (a) Subsystem in Parallel

(b) Subsystem in Tandem (c) Single-Loop feedback system.
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In figure 5.1-1(a),

y(s) = y1(8) + Y, (s) = H(s)u(s) + H, (s)u(s) =[H, (s) + H, (s)]u(s) (5.1-1)
In figure 5.1-1(b),
y1(s) = H,(s)u(s) (5.1-2)
and y(s) = H,(s)y,(s) (5.1-3)
Thus y(s) = H, (s)H, (s)u(s) (5.1-4)
In figure 5.1-1(c),
y(s) = Hy(s)e(s) = H, (s)[u(s) - z(s)] (5.1-5)
But 2(s) = H,(s)y(s) (5.1-6)
Thus y(s) = H,(s)[u(s) — H,(s)y(s)] (5.1-7)
or [I +H,(s)H,(s)]y(s) = H,(s)u(s) (5.1-8)
and finally y(s) =[1 +H,(s)H, ()] H,(s)u(s) (5.1-9)

Thus, the transfer function (matrix) of the system containing a feedback loop is
H(s) =[1 + H,(s)H, (8)] " H,(s) (5.1-10)

The matrix 1 +H,(s)H,(s) is called return-difference matrix. These values of s are the pole of the system.
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Figure 5.1-2 (a) A Series RC Circuit, (b) Its block diagram, (c) The Simplified Diagram

RC%+VS _v, (5.1-11)
dv 1
d_t3 = E(Vl ~V,) (5.1-12)
1
sV; —v5(0) :E(Vl —Vs) (51'13)
Vs 1 (5.1-14)
V, RCs+1
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Figure 5.1-3 (a) A Parallel RC Circuit, (b) Its block diagram, (c) The Simplified Diagram

RC%Jrvg _ Ri, (5.1-15)
o 1w _
el Chy (5.1-16)
1 V
sV, —v,(0) = E(Il —E3 (5.1-17)
a__R (5.1-18)
I, RCs+1
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Figure 5.1-4 A Series RLC Circuit

2 :
Ldl di 1. dv

-4 -
dt> dt C dt
L(s°l —si(O)—?H R(sl —i(0))+él = sV —v(0)

I S

V Ls’+Rs+1/C

(5.1-19)
(5.1-20)

(5.1-21)
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Figure 5.1-5 Armature-Controlled DC Motor with a Load and Its Block Diagram

Kirchoff’s voltage law gives

From Newton’s law applied to the inertia I,

veiR+ L K g
dt

V = I.R+L(sl, —i(0)) + K.Q

| VKO
®  Ls+R

192 _ ki —co
dt

I (sQ—w(0)) = K; 1, —cQ

0 K,

V  Lis?+(Lc+ IR)s + (Re + K, K,)

(5.1-21)
(5.1.22)

(5.1.23)

(5.1-24)
(5.1-25)

(5.1-26)
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5.2 Stability

e Stability: the ability of the system to operate under a variety of conditions without self-destructing.

e The basic stability criterion of linear time-invariant systems is directly determined by the locations of the system poles,
the roots of the characteristic equation of the system.

Ability of a system to return to equilibrium relates to the unforced system

% = Ax (5.2-1)
sX — X, = AX (5.2.2)
(sl —A)X =X, (5.2.3)
X = (sl — A)™*x, (5.2.4)
x(t) = e™x, (5.2-5)
where e*t is the state-transition matrix, given by

k (v R.t)

e™ =L1[(sI-A) 1] = Z(Z—’j‘l Jesit (5.2-6)
i=1\j=1 J:

Examples: s, =5;lim ") =ow, s =—5;lim ™) =0, s = 0; lim ™ =1
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The following properties can be directly inferred from the form of the state-transition matrix.

1. If the real parts of all the characteristic roots are strictly negative, then e tends asymptotically to zero. Hence, no
matter how large the initial state xo is, X(t) -0 as t—oo. The system is said to be asymptotically stable.

2. If any characteristic root has a strictly positive real part, the state-transition matrix will have at least one term which
will tend to infinity as t—co. In this case it is always possible to find some initial state which will cause x(t) to become
infinite. The system is said to be unstable.

3. When all the characteristic roots have nonpositive real parts, but one or more of the characteristic roots has a zero real
part., if all the characteristics roots having zero real parts are simple root, then the corresponding terms in the state-
transition matrix are of the form

Rie™ (5.2-7)
The solution is bounded but will not approach zero asymptotically. This type of system is said to be stable but not
asymptotically stable. But if the zero real part is a repeated root, then owing to the polynomial in t that multiplies ™,

there will be at least one term in e*which will tend to infinity as t— oo.
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Condition : Implication

1. Re(s;)) <0 for all i System is asymptotically stable

2. Re(s;)> 0 for some i System is unstable

3. Re(s;) =0 for some i = j, and ,
(a) s; is simple root for all such j System is stable, but not asymptotically stable
(b) s; is multiple root for some such j _. System is unstable

Table 5.2-1 Stability Conditions for Linear Systems
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e There are two methods developed by E.J. Routh and Hurwitz that do not require actual calculation of the roots to

determine stability of the system.
The characteristic polynomial of the system to be tested for stability is assumed to be of the form

D(s) =s* +a,s“ "+ -+a, ;s+a,

(5.2-8)

1 .
al=: bl=a2—-ala3 b2=a4—a|as b3=a6"'ala? """
1
a,
&, = b_ ¢, =4y — aZbZ Cy = d5 — a2b3 ............
: .
b
a3=—] dl=b2-—a3c2 ............
¢
G
O =— | coneiiiii..
4 d|
Table 5.2-2 Routh Table
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e The theorem of the Routh algorithm is that the roots of D(s) = 0 lie in the left half-plane, excluding the imaginary axis,
if and only if all the o’s are strictly positive.

e In the Hurwitz’s stability algorithm, the roots of D(s) = O lie in the left half-plane if and only if all the determinants of
Hurwitz matrices, 1 to k square matrices, are positive.

e The Hurwitz’s stability algorithm is similar to Routh’s so we can combine them and recall it as Routh-Hurwitz

stability algorithm.

[ al a3 ) T A
1 &
0 a a
H = ! } k rows
-9_ 1 a -
0 0 a, . .
0 0 1 ceed d
kéolﬁmhs . i
Table 5.2-3 Hurwitz’s Matrix
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Examples
(@) s*+2s°+3s° +4s+5=(s—0.29+1.42j)(s—0.29-1.42j)(s +1.29+0.86 j)(s +1.29-0.86j) = 0

1 3 5

o 2 4 0

1 1/2 3-(1/2)4=1  5-(1/2)0=5 0
2 2/1=2 4-(2)5=-6 0 0
3 -1/6 5+(1/6)0=5 0 0
4 -6/5 0 0 0

Since a3 and oy are negative, this system is unstable. The free response follows Ae®** cos(1.42t +¢) + Ae™** cos(0.86t + ¢,).

(b) s*+2s° +s+2=(s+2)(s+ j)(s—j)=0

1 1

o 2 2

1 1/2 1-(1/2)2=0,e O
2 2le 2-(2/e)0=2 0
3 el2 0 0

Since there is no negative a but a3 is zero, this system is stable but not asymptotically stable. It has a pair of imaginary

roots. The free response follows Ae™ + A, cos(t +¢,) .
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(C) s*-3s+2=(s+2)(s—-1(s-1) =0

1
o 0,6
1 1/e -3-(1/¢)2
2 -e/(3+(1/€)2) 2-(a)0=2
3 -(3+(1/e)2)/2 0

Since a; is zero and o is negative, this system is unstable. The free response follows Ae™ + Ae' + Ate'.

(d) s°+2s* +24s® +48s* — 255 —50 = (s + 2)(s +1)(s—1)(s +5j)(s=5j) =0

1
o 2
1 1/2 24-(1/2)48=0, ¢
2 2le 48
3 e/48 50¢/48
4 1304/(50¢) -50
5 -¢ /48 0

0

24
48

-25+(1/2)50=0

-50
0
0
0

-25
-50

0
0
0
0
0

Since o IS negative, this system is unstable. It has a positive real part and a pair of imaginary roots. The free response

follows Ae™ + Ae™ + Age' + A, cos(5t + ¢,) .
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5.3 Graphical Methods

5.3.1 Root-Locus Method

K G(s) K

G(s)

Iy

I S vy

(@ (b)
Figure 5.3.1-1 Single-Loop Feedback System

e The return-difference function of the diagram,
T(s) =1+ KG(s), T(s) =1+ KG(s)H(s)
e Open-loop transfer function of the figure,
T,(s) = KG(s), T,(s) = KG(s)H(s)

e Closed-loop transfer function,

T ()= KG(s) T(s) = KG(s)
¢ 1+ KG(s) " ° 1+ KG(s)H (s)

(5.3.1-1)

(5.3.1-2)

(5.3.1-3)
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e The root-locus method, developed by Evans in 1948 is simply a plot of the locations in the complex plane of the roots
of T(s) = 0, as the loop gain is varied.

e The open-loop transfer function is assumed to be a rational function of s,

[MT"a(s-z,)
T,(s) =KC——-2 (5.3.1-4)
I1 pi=1(5_ pi)
where C is a real constant, z; (i =1, ..., n,) are the open-loop zeros and p; (i = 1, ..., ny) are open-loop poles.
e The return-difference, which is the characteristic equation,
T(s) =1+ KCM =[1"ia(s— p;) + KCTT™ia(s - z) (5.3.1-5)
I1 pi:l(s_ pi)

e |[tis seen that as K— 0, the closed-loop poles tend to the open-loop poles p.
e On the other hand, as the gain K tends to infinity, the closed-loop poles tend to the open-loop zeros.

e |If G(s) is a proper rational function, there are fewer open-loop zeros than open-loop poles. Since the number of closed-

loop poles does not change as K is varied, so the excess numbers of the open-loop poles over zeros roots go to infinity.

1+ Ksiezo ande=np-n, (5.3.1-6)
s°+K=0 (5.3.1-7)
Z(s®)=eZ(s) = £(-K) =-n180°% n =+1,43, - (5.3.1-8)
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4w

Sv

N
AL
7
Qv

Figure 5.3.1-2 Asymptotes of Root Loci for Several Values of Excess Poles
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e The points at which the loci leave the real axis are known as breakaway points. The breakaway points are those at

which P(s) has a multiple root. Thus if s = a is a breakaway point, derivative of P(s) is zero.

P(s) = (s—a)?*P,(s) (5.3.1-9)
dz(s) = P'(s) = 2(s — )P(s) + (s — )2 P(s) (5.3.1-10)
e [fs =aisany other point on the root locus,
P(s) = (s—a)P,(s) (5.3.1-11)
P’(s) = P,(s) + (s—a)P/(s) (5.3.1-12)
e The return difference at breakaway points,
14k 2_ok=-8 (5.3.1-13)
B A
P=B+KA=0 (5.3.1-14)
P =B+ KA = O;K = 2. (5.3.1-15)
P= B—%A:O (5.3.1-16)
BA' -B'A=0 (5.3.1-17)
K' = - B'A;ZBA' _0 (5.3.1-18)
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Standard Form: 1+ KP(s)=0; K>0
P(s)=N(s)/D(s); N(s)=s" +b,,s"" +---+bs+by;P(s)=s"+a,,s" " +---+as+a,;m<n
Terminology: The zeros of P(s) are the roots of N(s) =0.  The poles of P(s) are the roots of D(s) = 0.
Angle Criterion: ZP(s)=n180° n=+1,£3,---
Magnitude Criterion: K =1/|P(s)|
Plotting Guides:
Guide 1: The root-locus plot is symmetric about the real axis.
Guide 2: The number of loci equals the number of poles of P(s).
Guide 3: The loci start at the poles of P(s) with K = 0, and terminate with K = oo either at the zeros of P(s) or at infinity.
Guide 4: The root locus can exist on the real axis only to the left of an odd number of real poles and/or zeros.

Guide 5: The locations of breakaway and break-in points are found by determining where the parameter K attains a local

maximum or minimum on the real axis.

Table 5.3.1-1 Plotting Guides for the Primary Root Locus
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Guide 6: The loci that do not terminate at a zero approach infinity along asymptotes. The angles that the asymptotes make

) ) n180°
with the real axis are found from 6 = > p yn=11+3,---

Ts, -8,
Z-P

Guide 8: The points at which the loci cross the imaginary axis and the associated values of K can be found with the

Guide 7: The asymptotes intersect the real axis at the common point o =

Routh-Hurwitz criterion or by substituting s = iw into the equation. The frequency w is the crossover frequency.
Guide 9: Angles of departure and angles of arrival are determined by choosing an arbitrary point infinitely close to the

pole or zero in question and applying the angle criterion.
Guide 10: For the polynomial equation, s" +a, ,s" " +---+a,S+a, =0, the sumof the roots r, + 1, +---+r, =—a,, .

Guide 11: Once the root locus is drawn, it is scaled with the magnitude criterion.

Table 5.3.1-2 Plotting Guides for the Primary Root Locus (cont’)
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e Characteristic equation of the second order system,

As’+Bs+C =0; s°+2lw,s+w’ =0 (5.3.1-19)

2
S:_Bi\/ﬁ:_@nii%ﬁ (5.3.1-20)

e The free response,

Ae " cos((@,\[1- )t + ¢ (5.3.1-21)

sE-fw, tiwgVl-§

Xe———————w,Vi-¢

Wy

p—— | /7 et

Figure 5.3.1-3 Location of the Upper Complex Root in Terms of the Parameters ¢,z,0,,o,
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Wea

W

Wapq

W2

{a) (c)

| 17,

$2

X 51X

™ vy
no

1 /1y —toen

) (d)

Figure 5.3.1-4 Graphical Representation of the Parameters ¢, r,@,,o, in the Complex Plane
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¢

G(s) = ———m——
(s + 1Xs + 2y

R(s) X

H(s) = 1

Cs)

s(s+1)(s+2)

.P=0,-1,-2

Z=¢
.e=3

Zs=-n180/3 = -n 60 = +60°, +180°

.6 =[(0-1-2)-(0)/3 = -1

T K
©os(s+1)(s+2)+K
P=s+3s"+2s+K
P'=3s*+65+2=0
s=-1+1/+/3 > -1+1/+/3
K =0.385

. P(jo)=—jo’ —30° + 20+ K =0

—j0® +20j =0 > 0 =+2
-30°+K=0>K=6
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R(s)

K +2) _
G(s)_s2+2s+3' Hs) =
Kis+2) C(i
s24+2s5+3
jw |

Yy

1.P=—1£+/2]
2.2=-2
3.e=1
/s =-n180/1 = -n 180 = £180°

4.6=[(-2)-(-2)]/1=0
K(s+2)

5. T, = —
s+ (2+ K)s+(3+2K)
P=s’+(2+K)s+(3+2K)
P'=2s+2+K=0
S:—(2+K)i\/(2+K)2—4(3+2K)
2

(2+K)?-4(B3+2K) =0 > K =2+2J3 > 2+23
s =—(2++/3)

6. P(jo) =—0° +(2+K)aj+(3+2K) =0
2+K)wo=0—>w=0
— " +(3+2K) =0 — K =-3/2 —no crossover point

— real number
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Opon-issp Pole- W Opon-iosp Pele-
Glaiial zero Locations and G(s) s} zero Locations and
Root Loci Root Loci
jw Jw
K K
S o g2 o
Jw ) jwj
‘ fwy
K ” - K -
s+p -p s 5%+ w,? By
‘ —Juy
Jwl Jw )
J( - Jws
K(S + Z) O 3, - K 1 T
s+p -z -p o || (s+0)?+w? - G
T - —jwn
(z>p)
Jw g 1 Jwi
Kis +2) [
== ———t - ot
s+p -p -2 o il (s+plis+p) -P, I =P, 2
{ (' ‘!LL,,,JL B’
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5.3.2 Nyquist Diagram

The earliest graphical method investigating the stability of linear systems was developed by H. Nyquist in 1932 and is

based on the polar plot of the loop transmission transfer function.

1+KG(s)=0 or G(s)z—% or KG(s)=-1 (5.3.1-1)

e |f s locates in the right half of the s plane, the system is unstable. For every s in the right half-plane, there is a point z =
G(s) or KG(S) in the z plane.

o If the region of the z plane that is the map of the right half of the s plane under the function G(s) covers the point —-1/K
(or KG(s) covers the point —1), the system is unstable; if the map of G(s) does not cover the point —1/K (or KG(s) does
not cover the point —1), the system is stable.

e The quantitative distance between the point —1/K and the map of the right half-plane on real axis is the gain margin of

the system.
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4 z = G(s) plane 4 z = G(s) plane
Map of Map of
right half of righ‘z half of

s plane s plane

(a) (b)

Figure 5.3.2-1 Graph in z Plane of the Right Half-Plane in s Plane
(a) Stable (b) Unstable System
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j 4

JQ

s plane

z = G(s) plane

-0 —
S

(a)

(b)

Figure 5.3.2-2 Method to Map Right Half of s Plane into z Plane
(@) Semicircle Approximation of All Right Half-Plane (b) Map of Semicircle

B,[
o AK 0%
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Point

K

G(s)H(s) =

Tys+ IXTs + D)

0,40]

jo

Intersection point

Cliw}H (jw)
z
K
K _ K[A-TT,0") - (T, + T,)aj]
(1_T1T20)2) +(T,+T,)a) (1_T1T2‘02)2 +((T, +T2)a))2
KLTT
(0,_ 1 2) > = 1
T, +T, 1T,
-0-0j stable
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Point

K

Gs)y=—mMmmM
s(Ts + D(Ts + 1)

GH Plane Im 4 GH Plaone

S i
0,40] — ->00,—00)]
S
jo K ~ K[-(T,+T,))o’ — (0 -TT,0%) ]
~M+T,)0" +(0-TTLe")j  (T,+T)e’)’ +(0-TT,0°)
Intersection point KL gy s oot max k=it T2
Tl +T2 T1T2 T1T2
@ —> 0 -0+0j
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K(Tos + 1)

COH® = Grs+ 1)

Im A GH Plane Iml} GH Plane Imk GH Plane
u—O—A_ w=0~|w=—wm
w=0+ |w=® Re w=0+|w=0w® Re
Ty <T, Ty=T, T4>T,
(Stable) Gljw)H(jw) locus (Unstable)
passes through the
=1+ ,0 paint
Point S z
) K
0 0,40] —5 > 0,—0
S
A i KL+ T,ef] _ K[(o” +TT,0") - 0’(T, - T,) j]
— @ -T0] o' + (T,0°)°
@ —> o0 —-0-0j when T, <T, stable

-0 when T, =T, unstable

—-0+0j when T, >T, unstable
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G(s)H(s) = m+n

Imd GH Pione

Re
w= -0
Point S Z
@) 0,40] ——=->—00,0j
S
— 2 1
A o KT
To '+ (o) +o
@ —> 0

-0+0j unstable
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5.3.3 Bode Plots

e Bode Plot of G(s) is the pair of plots of the magnitude and phase of G(j @) with the frequency o serving as a parameter.
G(jo)=[G(jw)e!* (5.3.3-1)
where | G(jw) | and 6s(w) are known as the magnitude and phase functions of G(s).

e Bode plot of the close-loop transfer function shows the frequency response at the steady state in form of magnitude
and phase difference of the output compared to the input.

U (s) 2(0 _ Y(S)=%=H1(S)+H2(s)+m+ AZS+B2
T Sto S+
—| G(5) |—
. B . , By, . LA
u(t) = sin( wt) y(t) = 0+ Acos(at) + —sin( wt) = | A* + ()7 sin( et + tan (?))
t—o ) a)

y(t) =| G | sin( @t + £(G))

t—>w

Figure 5.3.3-1 Frequency Response

e Bode plot of the open-loop transfer function provides information of system stability, gain margin, and phase margin.
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e |Instead of plotting | G(jw) | it is customary to plot
D(w) = 20l0g,, |G(jo) | (5.3.3-2)
e Regardless of the units of G(s), the units of D(w) are invariably decibels (dB). The plot of D(w) versus @ is known as

the Bode amplitude plot and the plot of d:(w) versus @ is known as the Bode phase plot.

e

e Consider a system having a loop transfer function

G(s) =G, (5.3.3-3)

[HSJ...(“SJ

P, P,
G(jo) =Gy~ 4 (5.3.3-4)
[1+M)J---(1+JQJ
P, P
| a+bj |=va® +b? (5.3.3-5)
Z(a-+bj) = tanl(g) (5.3.3-6)
AB

0g(“5") = log( A) + log( B) ~ og(C) (5.3.3-7)
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(“[wj 1{@”
Z Z,
|G(j(()) |=| GO | 2 1/2 2 1/2
Py P«
D(w) =20log |G, |+10Iog{1+( J+ +1OIog[1+ J
10Iog[l+(§j ]---10Iog[l+(p—] ] (5.3.3-9)

0, (w) = 6, + tan ‘{QJ +--- tan ‘1[2] —tan ‘{ﬁj —.--—tan ‘l[ﬁj (5.3.3-10)
Z Z Py P«

2
e When v >, lOIog(l+[%) ] — 20 Iogfgj, the slope on log scale = 20 db, intersection point o=z

(5.3.3-8)

e When o — o, tanl(gj—woo
z

o IfGo>0then & =0, but if Gy <0 then & = 180°.
e At each zero or pole the log-magnitude plot increases or decreases its magnitude with the asymptotic-slope of
20log(w)/decade with the real magnitude of 10log(2) = 3.010 dB at that pint.
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e The phase plot increases or decreases with the asymptotic-line of 90° with the real phase of 45° at that point.

N
(¥ B

Gain, dB
=

o a

[

£

Phase, deg
&

0.5z;

Zi

2z; 3z; 5z;

Frequency

1025

0.2p, 0.5p; p; 2p; 5p;  10p;

| I [ L

m -5
=]
£ -10
by
S 15
=11
M)
=
5 ~45
2
=
[+ 8

- 90

L

Figure 5.3.3-1 Bode Plots for a Zero and for a Pole (a) G(s) :1+Zi (b) G(s) = %

i 1_}.7
Pi
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12

Gain |G(jw)|, dB
[= ]

| l
1 2 5 10 20

Frequency, rad/s

3w

)
>

2
2 ] | | |
A 9 1 2 5 10

—90L-

S
@+s)a+ g)

S
2

Figure 5.3.3-2 Bode Plots for G(s) =

S S
@+-)+ E)(1+ 2—0)
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e Zero or pole at the origin increases or decreases the log-magnitude with a constant slope of 20 dB/decade decade with

the real magnitude of -oo or oo at the origin, where as the phase plot increases or decreases with a constant phase of 90°.

00
-90°

90°

OO

1 rad/sec 1 rad/sec

(a) (b)
Figure 5.3.3-3 Bode Plots for (a) G(s) =s (b) G(s) =%
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For second order system,

1
G = 2 Gla + Gla) (5:3.3-11)

. 1
G (jo)=— (5.3.3-12)

=
23 23
Gi(s)| —10Iog!(1—w—g +(2§wj } (5.3.3-13)
@, @,

/G, (s) = —tan‘1% (5.3.3-14)

23 2

2 2 2 4
e When o —, _10I09H1_w_2] +(2§a)] }—> —10|og(9j , the slope on log scale = -40 db, intersection point = o,
z

2lw] w,

e When w >, —tan™ 5
1- (0! w,)

— —180°

o, =\1-2% o, (5.3.3-15)
e There is no resonance peak for ¢ >1/+/2.

D,(w,) = -20log[4c*(1-¢?)] dB (5.3.3-16)
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20

/\/';=0A1
10 /
L =02
] N
3 L -{=03
.2. N —{=05
g \\ ¢ =0.7
Sy
L) H¢=1.0
-10 Asymptotes
] \
0 1
\\‘ S
. 90 =01 \
< N
£ =02 ~
§ =03 S
e r=05—" |
=0. L1
L1
=07 //
=10
— (\ll - V-3 ~N <t -] e O
° ° ° Noncnali;:ed frequency, w/wqy
. 1
Figure 5.3.3-4 Bode Plot for G,(s) = -
1+ 24 (s/ )+ (s! wy)
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S
10643 7'5(3 ' 1j

S(S+2)(SZ+S+2) B S[S+1J[(Sj2+s+l:|
2 J2) 2

Figure 5.3.3-5 Bode Plot for G(s) =
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5.4 Steady-State Response

e A system designed to follow a reference input rather than merely to return to equilibrium is generally known as a

tracking system.

Plant

¥ e u ‘ Y
K G
Control (s)

Figure 5.4-1 Error Driven Feedback Control System

e=Yy—Yy (5.4-1)

1 _e(s)

- - (5.4-2)
1+KG(s) v, (9)

He ()

__KG(s) _ y(s) _
He®=17 KG(S) Y, (5) (5.4-3)

Definition: A system is of type m if it can track a polynomial input of degree m with finite but nonzero steady state error.
From final-value theorem

Steady State Error = |jme(t) = limse(s) (5.4-4)

t—>o s—0
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e(

When the input y,(t) is the polynomial function,

C
y,(t)=pm(t):c1+7t+...

Y (s) = pm(s)=%+

)

1
1+ KG(s)

2

c, C

SZ

Y, (8)

m m-1
=Cls +C,s" +-4C,_ .,

se(s) L

m+1

S

Cs"+C,s" ++C,

C
+ m+1 tm

m!

—+--~+Sijll and C,,#0

T 14 KG(s)

The limit as s — 0 of se(s) is finite only if G(s) has pole of the proper order at s = 0.

G(s

se(s) =

sPD’(s)

m

S

) = N(s)
~ sPD/(s)

m m-1
Cs"+C,s" +-+4C,

sPD’(s) + KN(s)

ifp>m, lime® =|

t—>w

ifp=m, lime() = limse(s) = is finite but nonzero

t—oo

ifp<m, lime® = limse(s) = is infinite

t—>w

imse(s)= 0
s—0

s—0

s—0

S

m

(5.4-5)

(5.4-6)

(5.4-7)

(5.4-8)

(5.4-9)

(5.4-10)

(5.4-11)
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e The system type is equal to the order of the pole of G(s) ats = 0.

e Since a pole at the origin represents a perfect integrator, the system type is often defined as the number of cascaded
integrators in the system.
e The steady-state error that results when the polynomial input is the same degree as the system type is determined to be
C,D(0)

_—, p = =
. . D(0) + KN (O
lime( = limse(s) = { °2* {5 (5.4-12)
—>00 S—> —r= = p =m 2 O
KN (0)
Compensator Plant
u y
Dis) Control GG) -

Figure 5.4-2 Error Driven Feedback Control System with Compensator

The most common type of compensator used to improve the tracking performance is the Pl (proportional + integral)

compensator.

Ki + K;s
S

D(s) :%+ K, = (5.4-13)
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Let’s consider the system shown in figure below

By final-value theorem

For step input, R(s) =%,

R(s)

e, = !iino SE(s) =1lim s

+ ’ K
A { G+ C(s)

2
(s+4)

E(s)  s*+6s+8
R(s) s°+6s+8+2K

2
e, = lim sE(s) = lim s—— 0518 __p(g)
-0 520 8°+65+8+2K

s?+65+8 1 8

>0 52 +65+8+2Ks 842K

1)

(2)

3)
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5.5 Dynamic Response

The dynamic characteristics of the system are typically defined in terms of the response to a unit-step input.

1.0

0.90

0.5

Maximum Desired Steady-state
overshoot steady-state error
value \‘ |
l \\_//\\/J— _____
Band for
Peak time £, settling
/ time
-
t-Delay time 14
10 - 90%
/V rise time
Vi

pe———————Settling time ¢, ———————H( Time _

Figure 5.5-1 Characteristics of Dynamic Response
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-+ . /c~
1. Characteristic roots; s = €z 2; Aok

xs,, 32

2. Stability: Stable if m, ¢, and k have the same sign.

3. Damping ratio or damping factor: { =
2. /mk

+

k
. Undamped natural frequency: w, = \/:
m

(9]

. Damped natural frequency: w, = w,./1 — {2
6. Time constant: ¢ = 2m/c = 1/{w, if{<1.

= =1/ . if { > 1 (s, = dominant root)

Step Rﬁponse Characteristics
7. Maximum percent overshoot; 100 ~*%+1-¢

7
8. Peak time: | = ————
w102
1+0.7
9. Delay time: 1, ~ + C’ 0<{<l

n

2n—¢ V1=

tan ¢ =

Wy 1 - CZ C

11. 2% settling time: ;, = 41 for { <0.7.

10. 100% rise time: ¢,},gs, = (third quadrant)

Table 5.5-1 Useful Formulas for Second-order Model: mx+cx+kx= f
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e Response time is defined as the centroid  of the impulse response of the system.

. joth(t)dt

oo (5.5-1)
H(s) = Te‘“h(t)dt (5.5-2)
H(© = [h(tt (5.5-3)

H'(s) = dH (s)/ds = —T teh(t)dt (5.5-4)
~-H'(0)= Tth(t)dt (5.5-5)

fo -% (5.5-6)

71 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY MECHATRONICS

e Response time of first-order system

H(s)=~ fr"ow (5.5-7)
2 _ a)O -
N =~ o) (5.5-8)
f- HO_1 (5.5-9)
HO) o,

The step response corresponding to this transfer function is

Y =% 1 1 1 (5.5-10)
Stw, S S S+,
y(t) = L‘l[ “o } =1-e (5.5-11)
S(S+ @)
The step response reaches 1-e* of its final value at tog3 given by
Woloes =1 (5.5-12)

For a first-order system, the centroidal response time and the 63 percent response time are exactly equal.
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e Response time of second-order system

2

)
H(s) = ° 5.5-13
©) s? + 2lwys + @, ( )
wy (25 + SC,)
H'(s) = ——> ° 5.5-14
®) (s* +2Lws + @y ) ( )
Fo RO _2¢ (5.5-15)
HO) o,
: 4.~
3
g Lo.63
s T
E ' i
g,
z ; ! Es L J
0 0.5 1.0 1.5 2.0
Damping factor, {
2
Figure 5.5-2 Response Time of Second-Order System H(s) = — Do -
S° +24wyS + w,
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2.0 :
(=0

!
1.8 // L0.1 |
,
L6 0.2

/

| . /
1.4 - " / \

/

J

06 0.4 P \\
1.2 |
().7 V-—'
Step 1.0 { A —
response 0.8 P—
N\ T A\

i AT
iy ZERS \ \

wy !
Normalized time

@y

Figure 5.5-3 Step Response of Second-Order SystemH (s) =

2+ 20w,s + W,
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¢ Rise time of systems in tandem, suppose a system H(s) comprises two subsystems Hj(s) and Hx(s) in tandem.

H(s) = H,(s)H,(s) (5.5-16)

H'(s) = H,(s)H,(s) + H,(s)H,(s) (5.5-17)

H'(s) _ Hi(5)H,(s) + Hi(s)H2(5) _ Hi(s) . H;(s) (5.5-18)
H(s) H.(s)H,(s) H.(s) H,(s)

t=1f +f, (5.5-19)

o Rise time of feedback system, suppose H(s) is the transfer function of a closed-loop control system.
KG(s)

H(s) = 11 KG(s) (5.5-20)
HI(s) = [1+ KG(s)]KG'(s) - KZG(S) KG'(s) _  KG'(s) 2 (5.5-21)
[1+ KG(s)] [1+KG(s)]
H'(s) _ KG'(s) 1+KG(s) _ 1 G'(s) (5.5-22)
H(s) [1+KG(s)]? KG(s) 1+KG(s) G(s) '
R (5.5-23)
1+ KG(0)

75 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY MECHATRONICS

5.6 Robustness and Stability

e In reality, no mathematical model can predict the behavior of a physical process exactly. Some uncertainty of the
physical process always exists.

e (ain margin is the amount that the loop gain can be changed, at the frequency at which the phase shift is 180°, without
reducing the return difference to zero.

e Phase margin is the amount of phase lag that can be added to the open-loop transfer function, at the frequency at which

its magnitude is unity, without making the return difference zero.

0 \ X
™ Gain margin
a F i 20log ¥y
Gain o ’
margin £ —20 i E
Y 3 L e | \
10 o s

]

|

|

. |

Phase
mafmﬂé —w L 1 lllIlL llll\ L 1 L1l
0.01 }041 1.0 100
| Frequency, Hz
90| I |
0k I E
a0 E
4 | Phase !
- 180F margin ¢ N
- E o 3
) E 7 E
I _2-m: i L Hnu\l"v_—Aa

(a) ®)

Figure 5.6-1 Gain and Phase Margins Defined (a) Nyquist Diagram (b) Bode Plots
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6 Control Laws

e The algorithm that is physically designed to act on the actuating (error) signal to produce the control signal is the
control law or control action.

e The control objectives might be stated as follows:

Minimize the steady-state error.

Minimize the response time.

w p o=

Achieve other transient specifications, such as minimizing the maximum overshoot.
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6.1 Two-Position Control

e With the on-off controller, the controller output is either on or off. The controller output is determined by the

magnitude of the error signal.

P an — £

Neutral zone _

Figure 6.1-1 Transfer Characteristics of the On-Off Controller

e The actuating error is e = r — ¢, where r is set point, c is controlled variable, and f is control signal.

e The controlled variable cycles with an amplitude that depends on the width of the neutral zone. This zone is provided
to prevent frequent on-off switching, or chattering, which can shorten the life of the device.

e The cycling frequency also depends on the time constant of the controlled process and the magnitude of the control
signal.

e Application examples: heater, air conditioner
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e Bang-bang controller is distinguished from on-off control by the fact that the direction or sign of the control signal

can have two values.

{a) ' ()
Figure 6.1-2 Transfer Characteristics of the Bang-Bang Controller
(a) Ideal Bang-Bang Control (b) Bang-Bang Control With a Dead Zone

e Application examples: pneumatic system, toy motors
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6.2 Proportional Control

e Proportional control is the algorithm in which the change in the control signal is proportional to the error.

F(s) = K, E(s) (6.2-1)

where F(s) is the deviation in the control signal and K, is the proportional gain.

Ry

M

e R '
AWy |'> L
Ty(s) @
MWV
Qr(‘) + — Q .
K 1 {s) _
> i A {>——'v’§m ,‘>

Multiplier

(&)

Figure 6.2-1 Simplified Form of Speed Control System Using Proportional Control
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Proportional Control of a First-Order System
Q(s) K

= (6.2-2)
Q. (s) Is+c+K
O (6.2-3)
T,(s) Is+c+K '
e From Routh-Hurwitz stability criteria, the system is stable when 1/(c+K) is positive.
I
o c+K
1 I/(c+K) 0
e Steady-state output responding to unit-step command
K 1
oE)=——— .= 2-
®) Is+c+K s (6.2-4)
. K 1 K
= — = 1 6-2-5
s Islmsls+c+Ks CiK ( )
e Steady-state error responding to unit-step disturbance
-1 1
Qs)=———= 2-
) Is+c+K's (6.2-6)
o = lims = (6.2-7)

ss0 Is+c+K's c+K
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e Time constant

(6.2-8)

e For afirst-order system whose inputs are step functions,

1. The output never reaches its desired value even in the absence of a disturbance if damping is present (¢ # 0), although
it can be made arbitrarily close by choosing the gain K large enough. This is offset error.

2. The output approaches its final value without oscillation. The time to reach this value is inversely proportional to K.

3. The output error due to the disturbance at steady state is inversely proportional to the gain K. This error is present even

in the absence of damping.
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@ s o e=11y=0
4‘ |

. - |Otfset error] = ¢/(c + K}
Kiice+K}—— —— . '

P ¢

{a} - .
e=om

e £

—
e

|Disturbance error| = 1/{c + K)

—1/lc +m&
; |

L e = ;
A B o 5 c 4
|Total error| = K +c—+—i

= e+ K| = — i

) .
IR

i

i |

(o
Figure 6.2-2 Comparison of Two Sources of Error in a First-Order System
(a) System Response to a Unit Step Reference Input, with No Disturbance
(b) System Response to a Unit Step Disturbance with Zero Reference Input
(c) Total Response to Both the Unit Step of Reference Input and the Disturbance
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Feedforward Compensation

2,(s)

ct+ K

£2s) ‘ ‘

Is+c

“{a}

2(s)

Is+ec

TS

Figure 6.2-3 Input Compensation to augment Proportional Control. (a) This arrangement eliminates error with a step

input. (b) Feedforward compensation eliminates the errors due to both step and ramp inputs.
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e To make a zero steady-state offset error
1. By giving a command input that is (c+K)/K times higher than the desired speed, input compensation.
2. By feedforward compensation, the primary transfer function is

Q) K; +K
Q,(s) Is+c+K

(6.2-9)

e For a unit-step input, oss = (Kr + K) / (¢ + K), if K = ¢, then oss= 1, and the offset error is zero.

¢ Note that the feedforward compensation does not affect the disturbance response.
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Proportional Control of a Second-Order System

Td (S)

- s}

9, (s) - + 1
i+( ) K sils + ¢}

Figure 6.2-4 Simplified Form of Position Control System Using Proportional Control

o) ___K (6.2-10)
O,(s) Is*+cs+K

o) -1 (6.2-11)
T,(s) Is+cs+K

e From Routh-Hurwitz stability criteria, the system is stable when I/c and c¢/K are positive.

I K

o c 0

1 I/c K 0
2 cK 0 0
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e Steady-state output responding to unit-step command

0. zgzl (6.2-12)
e Steady-state error responding to unit-step disturbance
0, - ‘?1 (6.2-13)
I52+cs+K:0—>32+|Es+|5:52+2§a)ns+a)§:0 (6.2-14)
e Natural frequency
o, = % (6.2-15)
e Damping ratio
= 2JC|? (6.2-16)
e Time constant
r= 2?' (6.2-17)

87 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY

MECHATRONICS

Let’s consider a general second-order system represented by its transfer function
1

G, =——— 1
Pls?+cs +k (1)
The closed loop transfer functions
O(s) K
= 2
O, (s) Is?+cs +(k +K) (2)
O(s) —1
= 3
T,(s) Is?+cs +(k +K) ®)
From Routh-Hurwitz stability criteria, the system stable is stable when I/c and c/(k+K) are positive.
I k+K
o c 0
1 I/c ktK 0
2 c/(k+K) 0 0
Steady-state output responding to unit-step command
K
= 4
0, =~ (4)
Steady-state error responding to unit-step disturbance
1
= — 5
0, =~ (5)
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¢ (k+K)

Is>+cs+(k+K)=0—>s’+-s+ =s’+2(w,s+w’ =0 (6)

Damping ratio

C

= 8
> 24! (k +K) )

Time constant
r=2 )
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6.3 Integral Control

¢ Integral control improves the offset error that occurs with proportional control.

F(9)="LEE) (6.3-1)

f(t) =K, je(t)dt (6.3-2)

where F(s) is the deviation in the control signal and K, is the integral gain.

T4is)

‘ . C
L IL
. L)
2, ts) p +£‘ T aw R
+?_ s Is+¢ l e; o——— AN Il> o ¢,

e, = £,(0) - % Jo e;dt

Figure 6.3-1 Simplified Form of Velocity Control System Using Integral Control
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Integral Control of a First-Order System

Q(s) _

K

Q. (s) Is?+cs+K

Q(s)

—-S

T,(s) Is®+cs+K

e From Routh-Hurwitz stability criteria, the system is stable when I/c and ¢/K are positive.

| K
o C 0
1 I/c K 0

2 cK 0 0

e Steady-state output responding to unit-step command

e Steady-state error responding to unit-step disturbance

(6.3-3)

(6.3-4)

(6.3-5)

(6.3-6)
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Isz+cs+K:O—>52+%s+$=32+2§a)ns+a)§:0 (6.3-7)
e Damping ratio
C
= 6.3-8
N (6.3-8)
e Time constant
) (6.3-9)
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Integral Control of a Second-Order System

Td(s)

8,(s) + é’ 1 B(s)
_1?_,.‘ sils + ¢) T

Figure 6.3-2 Simplified Form of Position Control System Using Integral Control

“w

0 8 (6.3-11)
0.(s) Is°+cs”+K
os) ___ -s (6.3-12)

T,(s) I1s°+cs®+K

e With the Routh criterion, we immediately see that the system is not stable because of the missing s term.
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Let’s consider a general second-order system represented by its transfer function

G -1 (1)

Is 2 +cs +k

The closed loop transfer functions

= )

O (s) Is®+cs®+ks +K

A(s) -5
3
T,(s) Is®+cs?+ks +K 3)

From Routh-Hurwitz stability criteria, the system stable is stable when I/c, ¢?/(kc-Kl), and (kc-KI)/(cK) are positive.

I k
o C K
1 I/c k-Kl/c 0

2 c2/(ke-Kl) K 0
3 (ke-KD/(cK) 0 0
Steady-state output responding to unit-step command
0, =1 (4)
Steady-state error responding to unit-step disturbance
6, =0 (5)
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6.4 Proportional-Plus-Integral Control

e Proportional-plus-integral control is used to improve both steady-state and transient response of the system.

F(s) = KPE(S)+%E(S) (6.4-1)

Tyis) S ' —"W\f—-ﬂ—

82, (s) ol X +._I_(.l + 1 Sis) &; Om W\, ll> o e,
,.+__ /- _. 2 _ _ . I+
. N . R
. . . C ’ - ’. : : eo=__éei—,;;(_‘--rgeidt+eo(m

Figure 6.4-1 Simplified Form of Velocity Control System Using Pl Control

P1 Control of a First-Order System

Q(s) _ K,s+K, (6 4_2)
Q. (s) 1" +(c+K,)s+K, '
Qs) _ —S (6.4-3)

T,(5)  Is?+(c+K,)s+K,
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e From Routh-Hurwitz stability criteria, the system is stable when 1/(c+Kp) and (c+K,)/K, are positive.

I Ki
o c+K, O
1 1/(c+Kp) Ki 0

2 (C+Ko)/K, 0 0

Steady-state output responding to unit-step command

KI
=—'=1 6.4-4
%=t (6.4-4)
e Steady-state error responding to unit-step disturbance
o, =0 (6.4-5)
Is? +(c+K,)s+K, =05’ +ws+$ =s"+2lws+w’ =0 (6.4-6)
e Damping ratio
c+K,
= 6.4-7
¢=3 K. (6.4-7)
e Time constant
21
= 6.4-8
: c+K ( )
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Pl Control of a Second-Order System

_ Td(S,

O,(s) _

K + A 1 B(s}
+\ KP * s sths +¢) l

Figure 6.4-2 Simplified Form of Position Control System Using PI Control

O(s) _ K,s+K, (64-9)
©,(s) Is°+cs’ +K s+K,

o) = (6.4-10)
T,(s) Is®+cs” + K s+K,

e From Routh-Hurwitz stability criteria, the system stable is stable when I/c, c?/(Kyc-Kjl), and (Kyc-KI1)/(cK) are positive.

| Ko

o c Ki
1 \c Ko-Killc 0
2 cA/(Koe-Kil) K| 0
3 (Koc-Kil)/(cKy) 0 0
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e Steady-state output responding to unit-step command

(6.4-11)

e Steady-state error responding to unit-step disturbance
(6.4-12)
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Let’s consider a general second-order system represented by its transfer function
1

e @
The closed loop transfer functions
O(s) . 2Kps+ K, 2)
O,(s) Is"+cs"+(k+K))s+K,
o(s) _ — —S (3)
Ty(s) Is"+cs™+(k+K))s+K,
From Routh-Hurwitz, the system stable is stable when I/c, c?/(kc+Kyc-Kjl), and (kc+Kyc-Kil)/(cK)) are positive.
| k+K,
o c Ki
1 I/c k+Kp-Kil/c 0
2 c?/(kec+Kpc-Kil) K| 0
3 (ke+Kpe-Kil)/(cK;) 0 0
Steady-state output responding to unit-step command
0, =1 (4)
Steady-state error responding to unit-step disturbance
0, =0 (5)
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6.5 Derivative Control

R
R - .
VWA W
R C
c I\ ¢;°w—"l I\ oe,
€ Qe IL e L} V (4
|11 V —Q €y
¢ = -RCG €0 = -RCEL. R C¥e
[ - 1 ?;"
(a) ®)

Figure 6.5-1 PD Control

e Derivative control is used to damp out oscillations.
F(s) = K,SE(S)
d
f(t) = K, —e(t
(t) = Kp dte()

where Kp is the derivative gain.
e Since it depends on only the error rate, derivative control should never be used alone.
e PD and PID control algorithms

F(s) = (K, + KpS)E(s)

F(s) = (K, +%+ K;9)E(S)

(6.5-1)

(6.5-2)

(6.5-3)

(6.5-4)
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Let’s consider a first-order system represented by its transfer function
1

G, = 1
Pls +c (1)
The closed loop transfer functions
Q(s) _ Kps + Kp (2)
Q,(s) (I+Kp)s+(c+K))
Q(s) _ -1 (3)
Ty(s) (I+Kp)s+(c+K))
From Routh-Hurwitz stability criteria, the system is stable when (1+Kp)/(Ky+c) is positive.
1+Kp
o c+Kp
1 (I+Kp)/(c+K,) 0
Steady-state output responding to unit-step command
KD
= 4
%= i @
Steady-state error responding to unit-step disturbance
1
W = — ci Kp (5)
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Time constant

(6)
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PD Control of a Second-Order System

0,(s)

T4is)

1

s}

sils +¢)

R, —VW\—
€; RI [ e
—J
C
de; de
e = —Kple;+ Tp —| —aTp —2
L
Kp= R Rl

Figure 6.5-2 Simplified Form of Position Control System Using PD Control

o) _

K, +Kps

o) _

®,(s) Is*+(c+Ky)s+K,

-1

(6.5-5)

T,(5) IS +(c+Kp)s+K,

(6.5-6)
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e From Routh-Hurwitz stability criteria, the system is stable when 1/(c+Kp) and (c+Kp)/K, are positive.

| K,
o c+Kp O
1 (c+Kp) K, O

2 (c+Ko)/K, 0 0

e Steady-state output responding to unit-step command

O.,=—-"=1 6.5-7
s (6.5-7)
e Steady-state error responding to unit-step disturbance
1
O, =—— 6.5-8
= (6.5-8)

K
Is? + (c+ Kp)s+ K, :O—>52+(C+I—KD)S+I—":32+2§a)ns+a)§ =0 (6.5-9)

e Damping ratio

= 6.5-10
SN (6.5-10)
e Time constant
21
= . _11
‘ c+ Ky (6:5-11)
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Let’s consider a general second-order system represented by its transfer function
1

G, =—7—— 1
Pls?+cs +k (1)
The closed loop transfer functions
o(s) Kps+K, (2)
O,(s) I +(c+Kp)s+(k+K,)
O(s) _ -1 3)
T,(s) 1" +(c+Ky)s+(k+K))

From Routh-Hurwitz stability criteria, the system is stable when 1/(c+Kp) and (c+Kp)/(k+K,) are positive.

| k+K,
o c+Kp O
1 l(c+Ko)  k+K, 0

2 (c+Kp)l(k+K)0 0

Steady-state output responding to unit-step command

0, =—2" (4)
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Steady-state error responding to unit-step disturbance

Time constant

Damping ratio

()

(6)

(7)
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6.6 PID Control

Let’s consider a first-order system represented by its transfer function
1

G = Is +c¢ (1)
The closed loop transfer functions
Qs) _ Kps? + K s+K, @)
Q,(5) (1+Kp)s®+(c+K,)s+K,
'Ig':((z)) - (I +KD)52+(§+ K,)s+K, ®)
From Routh-Hurwitz stability criteria, the system is stable when (1+Kp)/(c+K;) and (c+K,)/(K,) are positive.
I+Kp K|
o c+K, O
1 (I+Kp)/(c+Kp) K| 0
2 (c+tKp)/(K)) O 0
Steady-state output responding to unit-step command
w, =1 (4)
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Steady-state error responding to unit-step disturbance

o, =0 (5)
Time constant
. 2(1 +Kp) (6)
c+ Kp
Damping ratio
c+K
=P 7
4 2\(1 + Kp)K, (7)
R C
—AM—
~ ™S
€ —NW O €,
] AL l/
11)
Gy
Td“) H de; d [
€ =~ (eri*’Kta‘eidt"‘KD %)—chlget‘
6,.(8’ + - K . - e(s} ) R2 ‘RC+R2C1
1 + 1 = Kp = B———7—
\ —— Kp+;“-‘+KD= > ko - F R+ R P RyC
K; = R—‘:—C— KD = ﬁRCl

Figure 6.6-1 Simplified Form of Position Control System Using PID Control
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a(s) Kps® + K s+K, (6.6-1)
®,(s) Is°+(c+Kp)s® +K,s+K, '

os) _ = (6.6-2)
T,(5) IS +(c+Kp)s? +K,s+K, '

e From Routh-Hurwitz stability criteria, the system stable is stable when 1/(c+Kp), (c+Kp)%(Ky(c+Kp)-Kil), and

(Kp(c+Kp)-Kil)/((c+Kp)K;) are positive.

| K,
a c+Kp Ki
1 I/(c+Kp) Kp-Kil/(c+Kp) O
2 (c+Kp)?/(Kp(c+Kp)-Kil) Ki 0
3 (Kp(c+Kp)-Ki)/((c+Kp)K;) 0 0
e Steady-state output responding to unit-step command
6, =1 (6.6-3)
e Steady-state error responding to unit-step disturbance
6, =0 (6.6-4)
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Let’s consider a general second-order system represented by its transfer function

G -1 (1)

PIs? +cs +k
The closed loop transfer functions

o(s) Kps? + K, s+K,
®,(s) Is°+(c+Kp)s®+(k+K )s+K,

(2)

O(s) -
T,(5) 188+ (c+Kp)s?+(k+K,)s+K,

3)

From Routh-Hurwitz stability criteria, the system stable is stable when 1/(c+Kp), (c+Kp)?/((k+Kp)(c+Kp)-Kil), and
((k+Kp)(c+Kp)-Kil)/((c+Kp)K;) are positive.

| k+K,
o c+Kp Ki
1 I/(c+Kp) k+Ky-Kil/(c+Kp) 0
2 (c+Kp) ((k+Kp)(c+Kp)-Kil) K, 0
3 ((k+Kp)(c+Kp)-KiD)/((c+Kp)K;) 0 0
Steady-state output responding to unit-step command
0, =1 4)
Steady-state error responding to unit-step disturbance 0, =0 (5)
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7 Control System Design

Control Design Requirements
1. Equilibrium specifications
(a) Stability
(b) Steady-state error
2. Transient specifications
(a) Speed of response
(b) Form of response (degree of damping)
3. Sensitivity specifications
(a) Sensitivity to parameter variations
(b) Sensitivity to model inaccuracies
(c) Noise rejection (bandwidth, etc.)
4. Nonlinear effects
(a) Stability
(b) Final control element capabilities
In addition to these performance stipulations, the usual engineering considerations of initial cost, weight,

maintainability, and so forth must be taken into account.
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Accurate plant model
e The range of adjustment of controller gains can usually be made small.

e This technique reduces the cost of the controller.

Non-accurate plant model
e A standard controller with several control modes and wide ranges of gains is used.

e This approach should be considered when the cost of developing an accurate plant model might exceed the cost of
controller tuning in the field.

The Ziegler-Nichols Rules

e Ziegler and Nichols developed their rules to determine control gains for unknown plant model from experiments and
by analyzing various industrial processes.

e The rules usually had a step response that was oscillatory but with enough damping so that the second overshoot was

less than 25% of the first (peak) overshoot. This is the quarter-decay criterion.
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e The first method, the process reaction method relies on the fact that many processes have an open-loop step response,
process signature, characterized by two parameters, R and L.

e R is the slope of a line tangent to the steepest part of the response curve.

e L isthe time at which this line interests the time axis.

e First- and second-order linear systems do not yield positive values for L, and so the method cannot be applied to such

systems. However, third-order and higher linear systems with sufficient damping do yield such a response.

Open-loop process -
response

Tims
Figure 7-1 Process Signature for a Unit-Step Input. The parameters R and L are determined for use with the process-
reaction method of Ziegler and Nichols.
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1 K
Controller transfer function G(s) = K,(l + =+ T,,.v) =K,+ —s—'+ Kps

T,s
Control Mode Process Reaction Method Ultimate Cycle Method
P control K,=1/RL K,=05K,,
PI control K,=09/RL K,=045K,,
o T,=33L - T;=083 P,
PID control. K,=12/RL K,=06K,,
" T,=2L _ T,=05P,
T, =0.5L | T,=0.125 P,

Table 7-1 The Ziegler-Nichols Rules

e The ultimate-cycle method uses experiments with the controller in place. All control modes except proportional are
turned off, and the process is started with the proportional gain K, set at a low value. The gain is slowly increased until

the process begins to exhibit sustained oscillations.
e Sustained oscillation occurs when a pair of roots is purely imaginary and the rest of the roots have negative real parts.
e Denote the period of this oscillation by P, (P, = 2n/®,) and the corresponding ultimate gain by Kp,.

Final tuning of the gains in the field is usually necessary.
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8 Lead and Lag Compensation

8.1 Lead and Lag Compensator Circuits

o= 0

Figure 8.1-1 Passive-Lead Compensator

For lead compensator,

E,(5)=I(9)R, =— &g,

(8.1-1)
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E,(s) _ R, +RR,Cs _1l+aTs_°" g1

= (8.1-2)
E,(s) R +R,+RR.Cs al+Ts 1
=
where
_RitR ast1and T- R ¢ (8.1-3)
R, R +R,
Bode plots of the lead compensator,
ey
S+
air _1 1/(aT) (8.1-4)
S+— a i+:|_
T 1T
op-——————— W ———e——e— e ——————_—
l%' db 5 Pt ———— I
| : |
-20loga 0 1 o 1
w= -5 w= g
(@) (&)

Figure 8.1-2 Bode Plots for the Lead Compensator
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O <

Figure 8.1-3 Passive-Lag Compensator

For lag compensator,

where

eo=10(Rr &)= 5 re 2
sC

1 sC
+R, +—
R+Re+ ¢

E,(s)  1+R,Cs  1+aTs :as+ﬁ

E,(S) 1+(R,+R,)Cs 1+Ts or L
=

A= ,a<land T=C(R +R,)
R +R,

(8.1-5)

(8.1-6)

(8.1-7)

117

Manukid Parnichkun




ASIAN INSTITUTE OF TECHNOLOGY MECHATRONICS

Bode plots of the lag compensator,

L (mn™
S+
a_ar _\1M@T) (8.1-8)

E
l—E-f| db

-20loga

{a) (b)

Figure 8.1-4 Bode Plots for the Lag Compensator

e When used in series with a proportional gain Ky, the lead compensator increases the gain margin. This allows the gain
Ky/a to be made larger than is possible without the compensator. The result is a decrease in the closed-loop bandwidth
and an increase in the speed of response.

e The lag compensator is used when the speed of response and damping of the closed-loop system are satisfactory, but
the steady-state error is too large. The lag compensator allows the gain to be increased without substantially changing

the resonance frequency o, and the resonance peak m, of the closed-loop system.
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Lead Compensator
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Lag Compensator
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8.2 Root Locus Design of Compensators

Im
) v
& KP‘ l
|
LY I - + ~r I
> » > —0—e ) ——
- 4 Re S -8 Re
T aT |
- |
1/7,
{a) ()
¢ sz Im
| 4
I
|
— o " -
o | - -1 -1 Re
l aT T
|

{c)

Figure 8.2-1 Effects of Series Lead and Lag Compensators (a) Uncompensated System’s Root Locus (b) Root Locus with
Lead Compensation (c) Root Locus with Lag Compensation
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8.2.1 Lead Compensators

e With lead compensator, the pole and zero reshape the root locus so that a smaller dominant time constant can be
obtained.

e Choosing the proportional gain high enough is required to place the roots close to asymptotes.

e Designing a lead compensator with the root locus is done as follows.

1. From the time domain specifications (time constant, damping ratio, etc.), the required locations of the dominant
closed-loop poles are determined.

2. From the root locus plot of the uncompensated system, determine whether or not the desired closed-loop poles can be
obtained by adjusting the open-loop gain. If not, determine the net angle associated with the desired closed-loop pole
by drawing vectors to this pole from the open-loop poles and zeros. The difference between this angle and
-180 ° is the angle deficiency.

3. Locate the pole and zero of the compensator so that they will contribute the angle required to eliminate the deficiency.

4. Compute the required value of the open-loop gain from the root locus plot.

5. Check the design to see if the specifications are met. If not, adjust the locations of the compensator’s pole and zero.
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Consider a system represented by

Block diagram and root locus of the controlled system are shown below.

G(s)=

Ris) + ~ X .
—’( >_" | sts+ 1)

K=1

» iC(s)V

N

{b)

1

s(s +1)

Re

(c)

1)
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Gain K = 1 gives damping ratio = 0.5 and closed-loop poles at s = —15 +i 15\/5 thus, time constant t is 2 s. If transient

specifications require ¢ = 0.5 with the time constant of t = 1. The closed-loop poles, thus, should be at s = -1 +i+/3. Lead

compensator is used. Phase diagram is considered as shown in diagram (c).

Characteristic equation of the compensated system is determined from return difference

(s +i)

Ta 1 _
T+K 1 s(s+1)_O @)
(s +=)
T
1
(s +E) 11 -
Ty s(s+1) K
(s +-)
T
By applying phase equation
s +20) = Ls + 1) = As) = (s +1) = —180° 4)
Ta T
L5 +) — (s +1) = (—180 + 120 + 90)° = 30° 5)
Ta T

There are more unknown parameters than equations. If a is selected at 10, T =0.027 is solved.
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Root locus of the compensated system then becomes

The required gain, K, is 38.9.
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8.2.2 Lag Compensators

e Suppose that the desired damping ratio £; and desired time constant t; are obtainable with a proportional gain of K,
but the resulting steady-state error af/(ap + Kp1) for a step input is too large. We need to increase the gain while
preserving the desired damping ratio and time constant.

e With the lag compensator, the compensated system, roots with a damping ratio &;, correspond to a high value of the
proportional gain, Kps.

e Thus, Ky2> Ky, and the steady-state error will be reduced.

The effect of the lag compensator on the time constant can be seen as follows. The open-loop transfer function is

aKp(s +1j
G(S)H(s) = at

(8.2.2-1)
(s+a)(s+ ,B)(s + 'I%j

If the value of T is chosen large enough, the pole at s = -1/T is approximately canceled by the zero at s = -1/aT, and the

open-loop transfer function is given approximately by

aK )
G(s)H(s) =m (8.2.2-2)

The compensation leaves the time constant relatively unchanged. Since a < 1, K, can be selected as the larger value. The

ratio of K to Ky is approximately given by the parameter a.
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e Design of a lag compensator with the root locus as follows:

1. From the root locus of the uncompensated system, the gain Kp; is found that will place the roots at the locations
required to give the desired relative stability and transient response.

2. Let Ky, denote the value of the gain required to achieve the desired steady-state performance. The parameter a is the
ratio of these two gain values a = Kp1/Kp, < 1.

3. The value of T is then chosen large so that the compensator’s pole and zero are close to the imaginary axis. This
placement should be made so that the compensated locus is relatively unchanged in the vicinity of the desired closed-
loop poles. This will be true if the angle contribution of the lag compensator is close to zero.

4. Locate the desired closed-loop poles on the compensated locus and set the open-loop gain so that the dominant roots
are at this location (neglecting the existence of the compensator’s pole and zero).

5. Check the design to see if the specifications are met. If not, adjust the locations of the compensator's pole and zero.
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Consider again the system represented by

G(s)= (1)

Assume the transient response at K = 1, t =2 s and £ = 0.5 and closed-loop poles at s = —%ii 15\/5 IS acceptable. But

steady-state error from command and/or disturbance is too high. (Steady-state error from unit-step command is 0 but

steady-state error from unit-step disturbance is —Il—= -1.) If only about % of the current steady-state error is required,

thus the gain, K, should be about 10, likewise a should be about %.

WhenT—>oo,s=O,—1§ii1§\/§,andK:10 (2)

But this is impractical. There are more unknown parameters than equation, thus, a parameter must be selected. If poles at
—0.01 and zero at 0.1 at K =0 is selected.
T =100, s =-0.111,-0.449+i0.778 ,and K = 9 (3)
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Root locus of the compensated system then become
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8.3 Bode Design of Compensators

8.3.1 Lead Compensators

e For any particular value of the parameter a, the lead compensator can provide a maximum phase lead ¢n. This value,
and the frequency on at which it occurs, can be found as a function of a and T from the Bode plot.

e The frequency mnis the geometric mean of the two corner frequencies of the compensator. Thus,

o = % (8.3.1-1)
By evaluating the phase angle of the compensator at this frequency,
sin g, = Z_J (8.3.1-2)
or
_L+singy, (8.3.1-3)
1-sing,

e System design in the frequency domain is usually done with phase and gain margin requirements.
e The purpose of the lead compensator is to use the maximum phase lead of the compensator to increase the phase of the

open-loop system near the gain crossover frequency while not changing the gain curve near that frequency.
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e |Lead compensator design method:

1. Set the gain K, of the uncompensated system to meet the steady-state error requirement.

2. Determine the phase and gain margins of the uncompensated system from the Bode plot, and estimate the amount of
phase lead ¢ required to achieve the margin specifications. The extra phase lead required can be used to estimate the
value for ¢n to be provided by the compensator. Thus, a can be found from (8.3.1-3).

3. Choose T so that oy from (8.3.1-1) is located at the gain crossover frequency of the compensated system. One way of

doing this is to find the frequency at which the gain of the uncompensated system equals —20log+/a. Choose this

frequency to be the new gain crossover frequency. This frequency corresponds to the frequency onat which ¢, occurs.
4. Construct the Bode plot of the compensated system to see if the specifications have been met. If not, the choice for ¢n
needs to be evaluated and the process repeated. It is possible that a solution does not exist.
e The usual range forais 1 <a<20.

e Additional phase lead can sometimes be obtained by cascading more than one lead compensator.
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Consider again the system represented by

1
G(S):s(s +1) (1)

When K =10 is selected, steady-state error meets the requirement but the transient performance is unsatisfactory. Assume

gain margin of at least 6 db and a phase margin of at least 40° are required. Lead compensator will be designed.

20 - -70°
0 \ 90°
!\\ -Compensated
1 gain
| \\
|
AW } )
§ \\ I \\
3 i Uncompensated N
N =N
* -60 ~ -140°
| Uncompensatezx |
phase N T
\ | NG  Compensated
\\phase
o \
PM =17 - S
-180°
-100
04 06 08 1 2 4 6 8 10 20 40 60

w

From the Bode plot of the open-loop uncompensated system, the phase margin is 17° and the gain margin is infinite. The

phase margin needs more ¢, = 40-17 = 23°. Thus
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_1+4, 1+sin23°

a= = _ =2.283
1-¢, 1-sin23°

The new frequency where the phase margin happens is at the current magnitude of
~20logva =-3.585 db

-3.585 db is at frequency, o = 4 rad/s. Thus, T is determined from
1

1
T = = =0.1655
w,Na  42.283
The compensator transfer function then should be

L

Gy TaT _1 aTs+1_ 1 037785 +1

‘ .1 @ Ts+1 2283 0.1655s +1
-

The open-loop transfer function of the compensated system is

G (s)G(s)H(s) K (0.3778s +1)

¢ T 22835 (s +1)(0.1655s +1)

()

(3)

(4)

()

(6)

The original gain K = 10 no longer gives the required steady-state error because the compensator introduce the attenuation

factor 1/2.283. The new gain must be K = 10(2.283) = 22.83 to achieve the required steady-state error. From the Bode plot

the phase margin is 37° and the gain margin is still infinite. The trial and error can repeat in order to meet the requirement.

dm should take into account this factor and can firstly be designed to 28°.
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8.3.2 Lag Compensators

e Lag compensation uses the high-frequency attenuation of the network to keep the phase curve unchanged near the gain
crossover frequency while this frequency is lowered.

e Lag compensator design procedure:

1. Set the open-loop gain K, of the uncompensated system to meet the steady-state error requirements.

2. Construct the Bode plots for the uncompensated system, and determine the frequency at which the phase curve has the
desired phase margin. Determine the number of decibels required at this frequency to lower the gain curve to 0 db. Let
this amount be m' > 0 db and this frequency be ®'y. Then a is found from

a=10""% (8.3.2-1)

3. The first two steps alter the phase curve. However, this curve will not be changed appreciably near o'y if T is chosen so
that o'y >> 1/aT. A good choice is to place the frequency 1/aT one decade below ®'q. Any larger separation might
result in a system with a slow response.

4. Construct the Bode plots of the compensated system to see if all the specifications are met. If not, choose another value
for T and repeat the process.

e A common range for ais 0.05 <a< 1.

e The designer might add 5° to 10° to the specified phase margin before starting the design process.
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Consider again the system represented by

G(s)= (1)

When K = 1, the roots are s =-0.5+i0.866. Assume this transient response is acceptable, but steady-state error
requirement meets only when K = 10 which will alter the required transient response. Lag compensator is designed to

improve the system to have the required steady-state error with gain margin of at least 6 db and a phase margin of at least
40°,

To achieve the required steady-state error K = 10 is required. Bode plot for the uncompensated open-loop system is
shown.
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20

\ -70°
“
0 \\ \\ -90°
\ Uncompensated
\ ~ \gain
- NI\
E N Uncompensated ~N
] N \, phase .
-50 Compensated -140
gain
\ ‘
N
PM = 42°
Compensated
phase
-180°
-100 L -190°
04 06 08 1 2 4 6 8 10 20 40 60

w

The required phase margin after taking into account some factor is 40+5 = 45° This phase margin occurs at frequency o =
1 rad/s. The gain at this frequency is 18 db, thus m’' =18 and

a=10""% =10719/% = 0.126 (2)

T is selected to place w = 1/(aT) one decade below » = 1. Thus 1/(aT) = 0.1 and T = 79.4. The lag compensator results

G (S)ZGSJFﬁ:aTs +1_ 10s +1 3)
‘ s T+l 7945 +1
-
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The open-loop transfer function of the compensated system is

B K (10s +1)
GG IIHE) = T e as +1)

(4)

With K =10 the Bode plot is in the figure. The phase margin is 42° and the gain margin is infinite.

Summary
¢ Increasing phase curve will improve transient response.

¢ Increasing magnitude curve will improve steady-state response.
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8.4 Lag-Lead Compensation

e The lead and lag compensators are complementary to each other in that one improves the transient performance while

the other improves steady-state performance.

R,
o MY o
1L R, g
31 C1 82
C, ;:
O O

Figure 8.4-1 Passive Lag-Lead Compensator
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For lead-lead compensator,

1 E,(S) 1
E,(s)=1(s)| R, + = L R, +— 8.4-1
2( ) ( )[ 2 SCZ] i ( 2 SCZJ ( )
sC,
+R, +
Rl + i SCZ
sC,
E,(s)  1+(RC,+R,C,)s+RCR,C,s’ _1+aT;s1+bT,s (8.4-2)
E,(s) 1+(RC,+RC,+R,C,)s+RCR,C,s° 1+T;s 1+T,s '
where
al,=RC,, a>1 (8.4-3)
bT, =R,C, (8.4-4)
T,+T,=RC, +RC, +R,C, (8.4-5)
1
b== 8.4-6
5 (8.4-6)
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The Bode plots for this compensator for T, >bT, >aT, >T,
VT, 1/bT, 1aT, wy, /T,
0 T T T
Ry
: |
e L
£, -20 db/decade 20 db/decade
(a)
¢n| __________
Ey /T, 1T, /r\
L-—‘ o° 1 1 I 1 I
§§S
(b}

Figure 8.4-2 Bode Plots for the Lag-Lead Compensator

e The compensator affects the gain and phase in only the intermediate frequency range from o = 1/T,to 1/ T,.

e The maximum phase shift ¢n occurs at omi = 1/(T,+/a).
e The attenuation at this frequency is equal in magnitude but opposite in sign to that of the lead compensator alone.
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Let the compensator transfer function be written as
G, (8) =G4 (5)G,(s) (8.4-7)

where G, (s) represents the lead compensation and G, (s) the lag compensation.

1+aT;s
= 8.4-8
G = 1t (8.4-8)
1+T,s/a
= 4-
C.O="1 s (8.4-9)

The uncompensated open-loop transfer function is G(s)H(s), so that of the compensated system is G¢(s)G(S)H(s).

e The root locus approach to designing the lag-lead compensator is a combination of the approaches used for the lead
and lag compensators.

1. Determine the desired locations of the dominant closed-loop poles from the transient performance specifications, and
calculate the phase angle deficiency ¢. This deficiency must be supplied by G;(s).

2. Use the steady-state error specifications to determine the required open-loop gain for G¢(s)G(s)H(s).

3. Let sy be the desired location of the dominant closed-loop poles. Assume the lag coefficient T, is large enough to

achieve pole zero cancellation when s is near sg; that is,

G, (s,) =1 (8.4-10)
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With (8.4-10) satisfied, T1 and a can be found from the magnitude criterion for the locus and the phase lead

requirement from step 1; that is,
G, (54)|G(s4)H (s4) =1 (8.4-11)
£G,(s,)=¢ (8.4-12)
4. With the parameters a and T; now selected, choose T, so that condition (8.4-10) is satisfied. As before, check the
design to see if the specifications are satisfied and the circuit elements are realizable.
e Designing a lag-lead compensator with the Bode plot follows the procedures for the lead and lag compensators
discussed previously.
e Presumably the lag-lead is to be designed because of a deficiency in both the transient and steady-state performance of
the uncompensated system.
e A designer who thinks that the transient response constitutes the most serious deficiency can choose to apply the
procedures for the lead compensator first. When this part of the design is completed, the lag compensation can be
designed.

e The opposite procedure could be used if the steady-state performance were worse than the transient.
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