ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

Digital Control Theory

Advantage of using digital control over analog control
e Flexibility of the control algorithm

e Lessexpensive

Additional requirements

e Anaog-to-digital (A/D) conversion

e Digital-to-analog (D/A) conversion

1 Discrete-Time M odel

Analog-to-digital conversion: performed by A/D converter

Sampling: the process of measuring a continuous-time variable at distinct, separated instants of time.

Quantization: the process of rounding-off each pulse amplitude to one of a finite number of levels depending on the
characteristics of the machine.

Coding: the process of converting the quantization level of each pulse into an equivaent binary number that the digital
device can accept and store. The number of binary digits carried by the machine is its word length, and this is obviously

an important characteristic related to the device' s resolution.
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Figure 1-1 Sampling, Quantization, and Coding of an Analog Signal. (@) Original Analog Signal as a Function of Time.
(b) Sampled Signal. (¢) Quantized Signal for a Hypothetical device with two bits. (d) Decimal-Coded and Binary-Coded

Representations of the Quantized Signal.
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1.1 Numerical Solution of Continuous-Time Models
There are several algorithms for obtaining difference equations from differential equations.

e Forward Euler method

At an = YO - YE-AY ]
p y(t—At) = At (1.1-1)
e Backward Euler method
d y(t) - y(t—At)
—yt)y= 2L 7 1.1-2
YO A (1.1-2)
e Bilinear, Trapezoidal, or Tustin method
d (t)+E (t — At)
a Vg _YO-yt-A) 2 z-1 o 1esAt/2 (11-3)
2 N At At z+1 T 1-sAt/2 '
Apply the forward Euler method applied to afirst-order model
% —ry, I = constant (1.1-4)
dy _ y(t+At)—y(t) (1.1-5)
dt At '
y(t + At) = y(t) + ry(t)At (1.1-6)
y(t,,) = @+rAt)y(t,) or y(k+1) = (1+rAt)y(k) (2.1-7)
where y(K) represents y(t) evaluated at t =t,, k=0, 1, 2, ....
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1.2 Free Response

Consider alinear first-order difference equation

y(k) = ay(k —1) k=1,23, ... (1.2-1)
y(1) = ay(0) (1.2-2)

y(2) = ay(1) = a*y(0) (1.2-3)

y(k) = a“y(0) k=0,1,23,... (1.2-4)

The solution behavior of the difference equation depends on the value of a, it is summarized as followings for a positive
y(0).

1. a> 1. The solution's magnitude grows with time, and the solution keeps the sign of y(0).

a = 1. The solution remains constant at y(0).

0 <a< 1. The solution decays in magnitude and keeps the sign of y(0).

a = 0. The solution jumps from y(0) to zero at k = 1 and remains there.

o~ WD

-1 < a < 0. The magnitude decays, but the solution alternates sign at each time step (an oscillation with a period of two
time units).

o

a=-1. The magnitude remains constant at y(0), but the solution alternates sign at each step.

7. a<-1. The magnitude grows, and the sign of the solution alternates at each time step.
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Y

Figure 1.2-1 Free Response of the Linear First-Order Equation for Various Values of the Coefficient a.
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1.3 Stability

If a= 1, the only point equilibrium possibleisy. = 0.

e Ifa=1, any valueof yisan equilibrium.

e For an equilibrium at y = 0, the only cases in which the solution approaches and remains at equilibrium are the cases
where-1<a<1l

¢ In other words, the model is stableif [a| < 1, unstableif [a] > 1, and neutrally stableif |a|] = 1.
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1.4 Relation to the Continuous-Time M odel

Consider the first-order unforced continuous system,

If time t, corresponds to the discrete time index k, then

The solution of discrete system,

e A comparison between the two models can be made only if a > 0, sinceIn ais undefined for a< 0.

dy _
a
sY(s)—y(0) =rY(s)

(s—1)Y(s) = y(0)
1

s—r

y(t) = y(0)e"

Y(s) =

y(0)

y(t,) = y(0)e"™

y(t,) = y(k) = a“y(0)
ertk — a.k

rt, =Ina“ =klna

e Oscillatory behavior occurs in the discrete-time model only if a< 0.

(1.4-1)

(1.4-2)
(1.4-3)

(1.4-4)

(1.4-5)

(1.4-6)

(1.4-7)

(1.4-8)
(1.4-9)
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Differential Equation Difference Equation

(time to decay
by 63%)

. Relation between
the two models

Characteristic Y=ry Y(k) = ap(k — 1)
. Solution y(t) = y(0)e" y(k) = y(0)a*
. Solution behavior No oscillation Oscillations of period
twoifa<0
. Stability
Stable if r<0 la] <1
Neutrally stable if r=0 la|=1
Unstable if r>0 la] > 1
. Time constant t=1=—1/r,r<0 k=—-1/n)a),la) <1

(a) time ¢, corresponds to time k
b) rt,=kInaifa>0.
(¢) norelation if a<0. "

Table 1.4-1 Comparison of Differential and Difference Equations
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1.5 Sampling

o |If the sampling frequency is not selected properly, the resulting sample sequence will not accurately represent the
original signal.
e Sampling can be represented by the opening and closing of a switch.

y(1 )( y*ie) yal?)
ed QUANLIZATION prm——e Coding  |fem————gpm
T

Sampling
(a)

Cyte) )( y*(e)
T

(b)

Figure 1.5-1 Block Diagram Representations of Anaog-to-Digital Conversion. (a) Full Representation Showing the
Sampling, Quanlization, and Coding Processes. (b) The Sampler Representation. This symbol is normally used instead of
that shown in (a).
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Figure 1.5-2 Sampling Process. (a) The Original Signal. (b) Illustration of the Sampling Duration A. (¢) Impulse
Representation of the Sampled Signal.

Y (0= YOS+ Y)S(E-T) + YZNS(E-2T) = 3 YTt -iT) (1.5-1)
Y KT) =3y (TISKT ~iT); yi =3 y,6,05 v () = >y ()atk -1) (15-2)
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1.5.1 Aliasing

e Uniform sampling cannot distinguish between two sinusoidal signals when their circular frequencies have a sum or
difference equal to 2rn/T, where nis any positive integer, if the sampling rate is not high enough.

e Theonly effective frequency range for uniform samplingis0< o < /T.

e Thefrequency =/T (radians per unit time) is called the Nyquist frequency.

e Thisphenomenon iscalled aliasing.
1.5.2 The Sampling Theorem

Sampling Theorem
e A continuous-time signal y(t) can be reconstructed from its uniformly sampled values y(kT) if the sampling period T
satisfies
T<ZL (1.5.2-1)

where w, is the highest frequency contained in the signal.
e Mogt physical signals have no finite upper frequency w,. Their spectra |[Y(w)| approach zero only as @ —o0. In such

cases, my is estimated by finding the frequency range containing most of the signal’s energy.
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1.6 TheZ Transform

y (©) = Y(0)5() + y(T)S(t —T) + y(2T)S(t - 2T) +--- (1.6-1)
Y ()= y(0) + y(T)e™ + y(2T)e™™ +--- (1.6-2)
Define anew variable z as follows:
z=g" (1.6-3)
1 1
Y(2) = y(0)+ YU)E+ Y(ZT)?+~-- (1.6-4)
e Thetransformed variable Y(2) isthe z transform of the function y*(t).
e l/zisadelay operator represents atime delay T. 1/Z represents adelay 2T, and so forth.
Example To find the z transform of the sequencey ={1, a, &, &, ...},
PSSO S P i
Y(z)_1+z+22+23+ ;a z (1.6-5)
Y@=t = (1.6-6)
—az Z—a
Since a+ab+ab? +--=—>—; b<1.
1-b
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»@) 2 ®
>0 Y(s)= L yOe " dt Y(z)= .,Z YkT)z™*
=0 :
1 L z
s z—1
¢ l zT
52 -1
£ 1 2z + 1)T?
2 s? Az —-1)3
e—ul 1 k4
s+a z—e™*T
te™® 1 zTe"‘T
(s+a)? (z—e™*T)?
Rl w zsinwT
s* 4+ w? 22 —2zcos wT+ 1
] s z(z — cos wT)
2+ w? z2—2zcos T+ 1
e~ sin wt @ ze™ T sin 0T
(s + a)* + w? 22 —2ze7°T cos T + e~ 247
e~ cos wt s+a z2—2e *Tcos T

(+a?+w?

22 —2z¢7°T cos @T + e~ 24T

Table 1.6-1 Laplace and Z Transforms for Sampled Functions
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yk)for k=0 Y(2)= j‘; yhy*

1 1 1
. Lz
2 a S
_ z—a
k ‘ z
3 @17
s z(z + 1)
_ az
5.k z—ay
) azsin @
ST z2 — 2az cos @ + a?
: 2z —a cos @
7. a* cos wk i )

z2 —2az cos w + a>

Table 1.6-2 Z Transform Pairs
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Property () or y(k) 2Ol or Zyk))
1. Linearity/ ay(t) + li.‘tx(t): aY(z) + bX (z) l
2. Right-shifting yt—mT) < Z27mY(2)
He=m) L
3. Left-shifting (@) y(t+ T). - 2Y(2) — £3(0)
: yk+1) TR C
®ye+21) 2¥() — 225(0) - (1)
yk+2) : v g2 Y(z) —22y0) = zp(t)
© Yt +mT) PYD—F WiT
. . N RO
e +m) VY-S e
s, ] o .
4. Differentiation ty(t) -—Tzdi[Y(z)] o
' 2 .
. J L
ky(k) —ZE[Y(Z)]
5. Convolution 3 xGT)HKT—iT) X@Y()
. i=0 "
1 4
6.8 i i z
- vummthon !Z:o YiT) = I‘Y(z) )
7. Multiplication (@ e y) Y(ze*T)
by an exponential () d*y(k) Y(g)
8. Initial value y0)= lim Y(z)
theorem 1=
9. Final ’ -
tFm Avalue o li_l}: (z . 1') Y2
ifgi:—g Y(2) is analytic for Jz| >1 -

Table 1.6-3 Properties of the Z Transform
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Figure 1.6-1 Three Basic Elements of Block Diagrams (a) Multiplier (b) Comparator (c) Delay Unit

(
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; K . a L Yz=bU +aY
{a} ~ (b) Y(z-a)=hU
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+ 3
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(e . . )

Figure 1.6-2 Representation of a First-Order System (@) Block Diagram in the Time Domain (b) Signal Flow Graph (c)
Block Diagram in Terms of Z-Transform (d) Reduced Block Diagram Showing the System Transfer Function
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1.7 Sampled-Data Systems

e If adigita deviceis used to measure or control the mechanical element, the resulting system is a discrete-continuous

hybrid, sampled-data, system.
1.7.1 Zero-Order Hold Circuit

Digital-to-analog converter performs two functions:

e Generation of the output pulses from the digital representation produced by the machine

e Conversion of the pulsesto analog form

A zero-order hold circuit converts an impul se sequence into a continuous signal by holding the value of the impulse until

the next pulse, duration T, the sampling period.
G(s) = é(l— e™) (1.7.1-1)

Y(s)=G(s)U () (1.7.1-2)

e Each impulse at the input to the zero-order hold is converted into a rectangular pulse of width T and a height u(kT)
equal to the sample value at that time.

o |f these pulses are applied to an element whose time constants are large compared to T, the pulses can be considered to

be impulses with a strength Tu(KT).
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e Theterm zero order refers to the zero-order polynomial used to extrapolate between the sampling times.

e A first-order hold uses afirst-order polynomial (a straight line with nonzero slope) for extrapolation.

»
u ()

Uls) %/U'(s) 1 p 21 st ar ’ 1 = ¢
o ]

1-¢T - T ‘, ¥ 57 61
T i Y(s})
Hoid
(a) B
yle)
A
— L2 31 ar 5L,_
| N
T 6T 7T

{c)

Figure 1.7.1-1 Zero-Order Hold (a) Block Diagram Representation of the Hold with a Sampler (b) Sampled Input
Sequence (¢) Resulting Analog Output from the Hold for the Input Sequence Shown in (b)
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1.7.2 Pulse Transfer Functions of Analog Elements

Component Time Domain s-domain : s-domain
Representation Representation Representation
r(t) )( r*(e) R(s) X R*{s) R(z)
1. Sampler P e ————
. T T
rit) )( r(8) = rglt) Ris) )r Ryls) = R*(s) Riz) Ry(s}
2. A/D Converter T > A - —_— ]
Pd(ﬂ = r(t}
() ete) Ris) ¥ _nelcts) Ris) Cla)
3. D/A Converter ~—3 Hold [—3= —-—)-1_—:__--» —_— 1
T T
Zero-order
hold
4, :Digit,'al Sensor  r{t) [ gengor i(g)Xca(t) R(s) Cls) Yc*(s) R(3) Cis)
Analog tnput, 3w ; - ——3] Gls) —_— — G(3)
Digital Output} . — T _ T *

5. Digital Computer
Algorithm (Program)

r{t) e(t) Rls) L Cls) R(3) Cls)
el Algorithm j———m — G5} f— — G5} —
Calculation Calculation
Input Result

(If the algorithm is linear
and time — invariant.)

Figure 1.7.2-1 Representations of Common Digital Elements.
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Figure 1.7.2-2 Transfer Functions of Cascaded Elements (a) Analog Elements Not Separated by a Sampler (b) Analog

Elements Separated by a Sampler
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s domain

(s
U 2 Gyl

T

Y(s) _1—e® g -Ts
T = G(s)= . Gy(s)=(1—e"")G,()

where

69

G,(s)= 5

z domain

Uls) Y(2)
> Glz)

YD _Ge=2=

1
U(z) z G2(2)

Table 1.7.2-1 Transfer Function and the Zero-Order Hold

If the hold element is cascaded with an analog el ement with no sampler in between,

G(s) = G,(5)G,(9) (1.7.2-1)

where G,(s) =1-e ™ and G,(s) istheremainder of G(s).
G(s) =G,(s) —e °G,(9) (1.7.2-2)
G(2) = G,(2) - 27G,(2) = (1- 2 V)G, (2) = %162(2) (1.7.2-3)
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1.8 Stability Tests

e Thetransformation that maps the inside of the unit circle in the z plane onto the entire left half of the s plane,

s+1
Z=

= (1.8-1)

e Substitute z from (1.8-1) into the characteristic equation in terms of z. This gives a polynomial in s to which the Routh-
Hurwitz criterion can be applied.

Characteristic Equation . Stability Requirements

1. F(z=byz+bo=0 4 by>1bot (LD
; by>0 ‘ _ -

2. F(z)=b,z* + bz + by =0 . by4+b,+by>0 (21)

SRR T by >1by) (23

3. F(z)=b323+b222+blz+bo=0 b3+b2+b1+b0>0 (3’1)

b3>0 ba—b2+b1_bo>0 (3'2)

by>byl (33

|b3 — b3| > 1bob, — by b3l (34

Table 1.8-1 Jury's Stability Results for First-, Second-, and Third-Order Systems
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1.9 Transient Perfor mance Specifications

z=¢€" (1.9-1)
Consider astable root pairss=-a + ib.
z=e"e" = (cosbT +isinbT) (1.9-2)
For afixed damping ratio £'= cosp,
s=-a+ib=—lw, +im,1-¢? (1.9-3)
7= et emn/? (19_4)
z=¢€" =re’,r>0 (1.9-5)
when r =" (Inr=—~¢w,T),and =, T1-¢7.
Inr ¢ (1.9-6)
0 1-¢?
Inr
= 1.9-7
> NO® +In’r ( )
o, :—In—rziveﬂlnzr (1.9-8)
T T
ot T (1.9-9)
o, Inr
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Liv:as of
constant {
{e) @

Figure 1.9-1 Equivaent Root Paths in s Plane and z Plane (a) Roots with the Same Oscillation Frequency b, (b) Roots

with the Same Time Constant 7 = 1/a, (c) Roots with the Same Damping Ratio ¢, (d) Roots with the Same Natural
Frequency w,

25 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

e
b
e

—lv% \
N ~ N
AN Y

Figure 1.9-2 Free Response as a Function of Root Location in the z Plane
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2 Digital Control

: _ Computer Interface
r_____-_——| I, Control
C d I I . | elements Output
LML + Control _ and
— A/D algorithm —rt.' D/A| Hold _1—.. plant

| I
: A/D |e—4—{ Sensors
I

Figure 2-1 Structure of Computer Control System
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2.1 Digital Control of a Motor

Ris) + - ‘ 1-¢T8 o Ky Ols)
_>( ccm_)f - Lo L

i"iﬁ)——m(z} ol Gis | S8

(b)

Figure 2.1-1 Digital Control of a DC Motor
(a) Sampled Data Diagram in the s Domain (b) Diagram in the z Domain

G(2) = %162(2) - % (2.1-1)
K. K

G,(9 = (2.1-2)

s*(Is+c¢) - s*(s+b)

where K=K_/1,b=c/I.
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K1 1(1 1
G.9= E[? B(sﬁﬂ (21-3)
K zT 1/ z z
GZ(Z):E[(Z—l)2 _B(z—l_z—aﬂ (2.1-4)
where a=¢e™ and T isthe sampling period.

G(Z)Zﬁz(bT—lJra)ZJrl—a—bTa (2.1-5)

b (z-D(z-a)

3 bz+Db, )

G(2) = K—(z—l)(z—a) (2.1-6)
T(2) = ©(2 _ G.(9G(2 _ KG, (2)(b,z+b,) (2.1-7)

R 1+G,(29G(2) (z-1)(z-a)+KG,(2)(bz+b,)
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2.2 Position and Velocity Algorithm

The position versions of proportional -plus-sum and proportional-plus-difference algorithms of the digital control law,

f (k) = K,e(k) + K,Tzk:e(i) (2.2-1)
f (k) = er(k)+%[e(k)—e(k—l)] (2.2-2)
where f(k) and e(k) are the control and error signals and T is the sampling period.
V4
F(2) :(Kp + K,T;J E(2) (2.2-3)
F(2) = [K + &(1— z‘l)j E(2) (2.2-4)
T
The incremental or velocity versions of the algorithms determine the change in the control signal f(k) - f(k-1).
f(k) = f (k-1 +K,[e(k) - e(k - D] + K, Te(k) (2.2-5)
f(k)=f(k-2)+K,[e(k)-e(k-1)]+ %[e(k) —2e(k-1) +e(k-2)] (2.2-6)
Fg = Kot KiDz=Ky ) (2.2-7)
z-1
F(2) = (K, T+Kp)Z" = (K, T+2Kp)z+ K, E(2) (2.2-89)

Tz(z-1)
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Advantages of theincrement version over position version
e Maintaining of system last position in the event of failure or shutdown of the control computer
e No saturation at start-up if the controller is not matched to the current position
e Wall suit with incremental output devices, such as stepper motors
Problems of the conventional digital controller
e Consider the integral term of velocity version, K, Te(k). If T and e(k) are small, the finite word length of the machine
can result in a zero change in the integral output. Nonzero error causes no change in the control signal results in a
steady-state offset error, which never occurs with | action in analog systems.
e Solutions
o Improve the resolution by increasing the word length of the computer.
o Beforetheintegral is computed, any ineffective portion of (k) is removed and saved to be added to the next
error sample.

0 Apply the trapezoidal rule. The I-action term of position version becomes

fL(K) = 2[el) + ol ~]K, T (2.2-9)

K
=
e The output from D action in analog controllersis constant if the error signal increases at a constant rate. However, D

action in digital controllers can produce a fluctuating output for such an error signal. The effect results from the round-

off required by the finite word length of the machine. This behavior isreferred to as derivative-mode kick.
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e Solutions
o Improve the resolution by increasing the word length of the computer.
o0 Improve the approximation by using values of the sampled error signal at more instants. For example, in the
velocity algorithm, the D-action term is replaced by the one obtained from a four-point central-difference

technique. Let m be the mean of the previous four error samples.

_ e(k)+e(k—1)+j(k—2)+e(k—3) (22-10)

m

For é(k) = e(k) - m, the new D-actionterm is

Ko 8K &k-1) &k-2) &k-3] K, N adb v b .
fD(k)_4T[15+ AT }_GT[e(k)+3e(k 1) - 3e(k — 2) — e(k — 3)] (2.2-11)

o Another form of derivative kick occurs when the command input is a step function. The D action is the most
sensitive to resulting rapid change in the error samples. This effect can be eliminated by reformulating the
control algorithm asfollows. To do this, | action must be included. The velocity algorithm for PID control.

f (k)= f(k-1)+k,[e(k)—e(k -]+ K, Te(k) +%[e(k) —2e(k-1) +e(k-2)] (2.2-12)
The error ise(k) = r(k) - c(k), wherer and c are the set point and output.

f(k) = f(k=1) + K [c(k—1) — (k)] + K, T[r — c(K)] +%[—c(k) +2c(k - 1) — c(k - 2)] (2.2-13)
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2.3 Pulse Transfer Functionsfor Digital Control Laws

The PID agorithm in time domain,

f(t) = Ke(t) + K, [edt+ K, % (2.3-1)
0
df de d%e

E = Kpa"r K|e+ KD dt_2 (23'2)
f (k)= f(k-1)+k,[e(k)—e(k -]+ K, Te(k) +%[e(k) —2e(k-1)+e(k-2)] (2.3-3)
F(2 _azZ +az+a (2.3-4)

E(2) 2(z-1) '

where a, =K +K T+a,, a, =—(K,+2a;),and a, =K, /T.
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Controller Design M ethods

Method 1: The controller design is done in the s domain, and the gain values K,, K, Kp, are computed using the
continuous-time methods. The resulting analog control law G.(s) must then be converted to discrete-time form with one of
the approximation techniques.

Method 2: The performance specifications are given in terms of the desired continuous-time response and/or desired root
locations in the s plane. From these the corresponding root locations in the z plane are found, and a discrete control |aw
G¢(2) isdesigned.

Method 3: The performance specifications are given in terms of the desired discrete-time response and/or desired root
locations in the z plane. The rest of the procedure follows Method 2.
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2.4 Direct Design of Digital Control Algorithms

Cis)

Ris} +,~ Els) [ Digital | M!s) 11-c" | Gpls) »
controller T s
- s Hold Plant

~ Aa)

Riz) + —~Elz) Miz) )

Cls)
| Dz} >

Glz)

Controller

{b)

Figure 2.4-1 Digital Controller Configurations in the s Domain and the zDomain

C(2) _ G(2D()

&= 22 " Tr690@ (2.4-1)
___ T ]
PO st (24-2)
T = C(z) _ b, +bz" +b,z7 +-- (2.4-3)
R(2 a,+az'+a,z’+- '
a,c(k) = —a,c(k—1) —a,c(k—2)—---+byr(k) + br(k-1) +b,r(k —2) +--- (2.4-4)
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2.5 Frequency Response M ethods

If asinusoid of circular frequency o and amplitude A is sampled with a sampling period T, the resulting sequenceis

u(k) = AsinkaT

(2.5-1)

If this sequence is applied as an input to a stable system whose transfer function is T(z), the steady-state output is

y(k) = Bsin(kaT + ¢)

M:%:hw“)

¢ — ZT (ein)
Franklin and Powell have proposed the transformation

2z-1 2¢e"-1 2 sT
wW=— =—— =—tanh—
Tz+1 Te'+1 T 2

When s=iw, then z= exp(ioT).

.2 ol .
wW=i—tan—=iv
T 2

Given the open-loop transfer function G(2)H(2), substitute

Z_1+WT/2
1-wT/2

The open-loop transfer function is now G(w)H(w), and the Bode design procedure is the same as before.

(2.5-2)
(2.5-3)

(2.5-4)

(2.5-5)

(2.5-6)

(2.5-7)
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