ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

State-Space Control Theory

Modeling and analysis approaches of linear systems

e Transfer function or frequency-domain approach

e State-space approach

o

o)
o
o

All the differential equations are first-order equations.

The number of first-order differential equationsisequal to the order of the system.

The dynamic variables that appear in the system of first-order equations are called the state variables.

The number of state variables in the model of a physical process is unique, although the identity of these

variables may not be unique
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1 Physical Notion of System State

DC motor

Figure 1-1 DC Motor Driving Inertial Load

r=Kii (1-1)
v=K,n (1'2)
When armature inductance is small and negligible,
e-v=Ri (1-3)
When viscosity friction is small and negligible,
do
T= E (1 4)
o _ . K, )
% =Kji= 2 (e—v) (1-5)
sl K, KK, (1-6)
dt R R
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do _ KK pi K, (1-7)
dt JR JR

do
av _ 1-8
- = (1-8)
dafo]_[o 1 ol o (1-9)
dt| w 0 -KK,I(JR)|w| | K, /(JR)

JR

Figure 1-2 Block Diagram Representing DC Motor Driving Inertial Load
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For k order system, state variables. x1, xo,..., x;

Control inputs: uy, uy,..., u,.

General form of the dynamic system

x: State vector

u: input vector

dx
1
X1 = = f1(x0, X550, X, Uy Uy,
dt
dx
. 2
X = fo(og, X000, Xy Uy Uy,
dt
dx
. k
X = fi (g Xgym o0, 2, Uy, Uy,
dt
X Uy
x=| ' |land u=
Xy U,

U 1)
U 1)
............................................ (1-10)
7))
(1-11)
(1-12)
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In the state-space model of alinear process, the genera differential equations take the special form:

. d
Xy = % = a, (£)x, + -+ ay, ()x, + by (Duy +++ + by (),
X =&=a (O)x, +--+ay, (t)x, + by (uy+---+ by, (t)u
2 dt 21 1 2k k 21 1 21 ]
........................................................... (1-13)
d
Xy = ;tk =, ()%, + -+ ay ()x, + b (Ouy +--+ b, (),
State equation,
i = % _ Af)x+ B@u (1-14)
ap(t) - ay(t) by () - by(1)
A= . and B(t) = . (1-15)
au(t) - ay (0 bu(?) - by(?)
A(f): state matrix
B(f): input matrix
For linear time-invariant processes, the state equation
% = Ax+ Bu (1-16)
where 4 and B are constant matrices.
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Measured Outputs: y1, v2,..., V-

n()

v -| 2 (1-17)
V(1)
y(#): output vector or observation vector
In alinear system the output vector is also alinear combination of the state and the input, observation equation
y(t) = C()x(1) + D(t)u(t) (1-18)

C(#): output matrix

For time-invariant processes, C(¢) and D(¢) are constant matrices.
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Two types of inpult:

1. Control inputs, u, produced intentionally by the operation of the control system

2. Exogenousinputs, xo, present in the environment and not subject to control within the system

The general representation of alinear system

X = Ax+ Bu + Ex,

(1-19)

X0
Exogenous
input vector
Control State
input vector vector
B J
IR 3 LS

Output
vector

Y

Figure 1-3 Block-Diagram Representation of General Linear System
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Consider the system defined by

¥ +6j)+11y+6y = 6u (1)

Let’'s choose the state variables as
X =y @)
X, = 3
Xy = (4)

Then we obtain

X, =X, (5)
X, = X, (6)
X5 = —6x, —11x, — 6x, + 6u (7)

Or in the matrix form of state-space representation as
X, 0 1 07x] [0

0O O 1 |x,|+|0fu (8)
X,| |-6 -11 -6|x,| |6
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and
X1
y=[1 0 O] Xp (9)
X3
or
0 1 0 0
4=/0 0 1| B=|0, C=[1 0 0 (10)
-6 -11 -6 6
Block diagram, representing this system, is shown below.
NP By S
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Consider again the system

¥ +69+11y+6y =6u (12)
Taking Laplace transformation of the system with zero initial condition, we get
53y(s) + 65%y(s) + L1sy(s) + 6y(s) = 6u(s) (12)
The system transfer function then becomes
y(s) _ 6 _ 6 (13)
u(s) s*+6s2+1ls+6 (s+D(s+2)(s+3)
By expanding the transfer function into partial fractions, we obtain
y(s): 3 6 N 3 (14)
u(s) s+1 s+2 s+3
Hence,
3 6 3
y(s)_s_u”(s)_s+2”(s)+s+3”(s) (15)
Let’sdefine
x.(5) = ——u(s) OF (s +D)x,(s) = u(s) (16)
s+1
1,(5) = ——2—u(s) OF (s +2)x,(s) = —6uls) (17)
s+2
x,(s) = 3 u(s) or (s +3)x;(s) = 3u(s) (18)
s+3
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The inverse Laplace transformations of (16)-(18) give

X, =—x, +3u (29
X, =—2x, — 6u (20)
Xy =—3x5+3u (21)
Or in the matrix form of state-space representation as
X, -1 0 O |x
% [=0 -2 0 |x,|+|-6u (22)
% [0 0 -3|x,
Since from (15)-(18),
Y(s) = x,(8) + x5 (5) + x5(s) (23)
or
X1
y=[1 1 1] x, (24)
X3
Thus
-1 0 O 3
A= 0 -2 0| B=|-6|, C=[1 1 1] (25)
0O 0 -3 3
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Block diagram, representing this system, is shown below.

] X

3 ++ T
—1 |
g 1
u X
ol 1 S
7_6- 5 X
ﬂl
_24
V% x3
GO
-3 |
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2 Solution of Linear Differential Equationsin State-Space Form

Genera differential equation of an unforced system

X = Ax (2-1)
The solution isthe form of
x(t) =e”c (2-2)
where ¢ is the matrix exponential function
e’ =1+x+x—2+x—3+~--,e :1+1+1+1+--- = 27183 ¢" = I+At+A2£+A3i+--- (2-3)
2 3 2 3 2 3
At time 7, the state x(7) isgiven.
x(r)=e'c (2-4)
¢ = (") x(7) (2-5)
The general solution
x(t) =e™(e*) " x(r) = " x(1) (2-6)
General differential equation of aforced system,
X =Ax+ Bu (2-7)
The solution isthe form of
x(t) = e c(?) (2-8)
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Aec(t) +e”c(t) = Ae™c(t) + Bu(t) (2-9)
¢(t) = e " Bu(t) (2-10)

c(t) = je'“Bu(/i)d/I (2-11)

x() = eA’j.e’A)“Bu(/i)d/l = j.eA([’l)Bu(l)d/l (2-12)

The combined solution of free and forced response

x(t) = " x(7) + j.eA(”“)Bu(/i)d/i (2-13)
At time 7, the state x(7) is given.
x(7) = x(¢) + j eI Bu(A)dA (2-14)
x(t) = e x(r) + j.eA(””Bu(/i)d/l (2-15)
y=Cx (2-16)
y(f) = Ce™x(7) + j Ce™" M Bu(A)dA (2-17)
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When B and C are time-varying, the solution is generalized to

x(t) = e x(r) + j. e P B(A)u(A)dA (2-18)

(1) = C(t)e™ " x(r) + j C()e™ " M B(A)u(A)dA (2-19)

When 4 istime-varying, the solution of x = A(s)x isgeneralized to
x(t) = p(t,7)x(7) (2-20)
The matrix ¢(z, 7) that relates the state at time ¢ to the state at time zis generally known as the state-transition matrix.

The complete general solution

x(t) = (¢, 7)x() + j #(t, ) B()u(A)dA (2-21)

y(t)=C()g(t,7)x(7) +IC(t)¢(t,/I)B(/1)u(l)d/1 (2-22)
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The differential equation for the position of a mass without friction to which an externa forcefis applied is
i=flm=u

Defining the state variables by
X, =X, X, = X

result in the state-space form

Thus,

Using the series definition

e =T+ At + A%t? 12+ A% 13+

N_u_[1 0] Jo1] [14
H)=e {o J{o 0} _{o 1}

we obtain the state transition matrix

D)

2)

3
(4)

()

(6)

(7)
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Thus, the solution which follows the genera solution
x(t)=ex(7) + j e " AB (A (1)dA (8)
isgiven by

, x,(0) + 2x,(0) + j(t - Du(A)dA
|:X1(t):| _ |:1 t:||:xl(g)j| + J'|:1 t— ﬂ}|:0:|u(/1)dﬂ _ to (9)
x, (1) 0 1|x0] 30 1 |1 x2(0)+J.u(/1)d/1
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3 Solution by the Laplace Transform: The Resolvent

LLF O] = f(s) = [ f(e)e™dt (3-1)
L aplace transform can be applied also when £{¢) is avector.

AH@) | | LLAGT | fils)

LIfOl=L] : |=| = [=] ¢ [=f(s) (3-2)
L@ LI |f.()

x(t) = Ax(¢t) + Bu(t) (3-3)

sx(s) — x(0) = Ax(s) + Bu(s) (3-4)

(sl — A)x(s) = x(0) + Bu(s) (3-5)

x(s) = (sI — A) " x(0) + (sI — A) " Bu(s) (3-6)

L[e"]=——=(s-a)" (3-7)

Lle™] = (sl —4A)™ (3-8)

[ [/ t-Dg2)dz |- f(s)e(s) (3-9)

x(f) = e x(0) + j e Bu(A)dA (3-10)
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¢'": state transition matrix for atime-invariant system
#(s) = (sI - A)* (3-11)

¢ : resolvent of 4

The stepsin calculating the state-transition matrix using the resolvent:
Caculate sI-A.
Obtain the resolvent by inverting (s/-4)™.

w nNoE

Obtain the state-transition matrix by taking the inverse Laplace transform of the resolvent, element by element.

For ageneral kth-order system the matrix s/-4 has the following appearance

§=dy T4 o Tdy
o — A= Ay STAyp v Ty (3-12)
Tl Tz ST Ak
(5] — Ayt = 24(I=4) (3-13)
| sl — A |
|sl - AEs" +as™" ++a, (3-14)

e |sI-A |: characteristic polynomial of the matrix 4.
e Theroots of characteristic polynomial are called the characteristic roots or the eigenvalues, or the poles of the system

and determine the essential features of the unforced dynamic behavior of the system.
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adj(sI — A) = E;s* ™ + E,s" >+ + E, (3-15)
(sT— d)* = Skﬁils: lsl,fl'; -ékak (3-16)
|sI—A|I = (sl - A)(Es""+E,;s**+---+E,) (3-17)
s‘T+ays* I+ +al=s"E +s"E,— AE)) +---+s(E, — AE, ,) — AE, (3-18)
E,=I
Er-AE;=a;l
Es-AE>=a,l
(3-19)
E-AE ;=a; 1
-AE=al
The subsequent coefficients
E,=AE;+a;l
Es=AE;+a,l
(3-20)
E=AE, +a;. 1
Ei;=AE;+a,J=0 (3-21)
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The dynamic of adc motor driving an inertial load is represented by

a[e] [o 1 0 0
o)l [o] Lt @
di|o| |0 —KK,I(JR) |@| |K,I(JR)

x = Ax+ Bu (2

(1) isequivalent with

The matrices of the state-space characterization are

0 1 0
=l Zuto=ls) <
when
KK, _K
a=—g M p=m )

Thustheresolvent is

~ L s -1 1 [s+a 1] [Us Ulss+a))
#s) = (sl =) _{0 s+a} _s(s+a){ 0 s}_{O 1/(s+a)} ©)
Finally, taking the inverse Laplace transforms of each termin (5) we obtain
e/*’=¢(r)=[l (1‘62)/“} (6)
0 e
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4 Input-Output Relations: Transfer Functions

x(t) = Ax(t) + Bu(t) (4-1)
Initial state is not considered in transfer function determination.

x(s) = (s1 = 4) ™ Bu(s) (4-2)

y(t) = Cx(t) + Du(z) (4-3)

v(s) = Cx(s) + Du(s) (4-4)
Transfer-function matrix

H(s)=C(sI—A)™'B+D (4-5)

The corresponding impul se-response matrix

H(t) = Ce™ B+ Do(t) (4-6)

In case that there is no direct connection from the input to the output, D = 0, the degree of the numerator in H(s) is aways
lower than the degree of the denominator.

ClEs**+E,;s*?+---+E]B

H(s)=C(s[—A)"B= ST A

k-1 k-2
_CBs" +CE,Bs "+-+CE,B (4-7)

k k-1
" +a st T+ ay
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5 Transformation of State Variables

A linear transformation between 2 formulations of state variables

z=Tx (5-1)
z: state vector in the new formulation
x: state vector in the original formulation.

When the transformation matrix 7' isanonsingular k£ by £ matrix.

x=T7"z (5-2)

% = Ax + Bu (5-3)

y=Cx+ Du (5-4)
T72=AT 'z + Bu (5-5)

2=TAT 'z + TBu (5-6)
y=CT'z+ Du (5-7)

= Az+ Bu (5-8)

y= Cz+ Du (5'9)

A=TAT", B=TB,C=CT",D=D (5-10)

e All formulations of the same system always have the same characteristic polynomial.
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Consider again the system defined by
VY +6y+11y+6y =6u

At least the following two pairs are choices to represent this system.

0 1 0 0
4={0 0 1| B=/0, C,= 0 0]
-6 —11 -6 6

and
-1 0 O 3
4,=|0 -2 0| B,=|-6|, C,=[1 1 1]
0 0 -3 3

The transformation matrix below is used to transform the system from (3) into (2),

1 1 1
T=|-1 -2 -3
1 4 9
1 1 17-1 0 03 2505 [0 1 O
TAT =|-1 -2 -3| 0 -2 0[-3 -4 -1|={0 0 1 |=4

1 4 9|0 0 -3|1 15 05 -6 -11 -6

D

(2)

3

(4)

()

24
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1 1 137 [o
TB,=|-1 -2 -3|-6|=|0|=8, (6)
1 4 93] |6
3 25 05
7= 1 1-3 -4 -1|=[L 0 0]=C, (7)
1 15 05
D, =[0]=D, (8)

e To determine transformation matrix, 7, when 4 and 4 are given. Solve x* unknown in 7'in

A=TAT", B=TB,C=CT",D=D (5-11)
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6 State-Space Representation of Transfer Functions: Canonical Forms
6.1 First Companion Form

¢ Inthefirst companion form, the coefficients of the denominator of the transfer function appear in one of the row of the

A matrix.
Transfer function of a single-input, single-output system of the form
H(s)= ig; T alsk}+---+ a, (6.1-1)
(s" +as" ™+ a)y(s) = uls) (6.1-2)
Dy +a D" 'y+-+ay=u (6.1-3)
where D'y: d'y/dt.
D'y =—a, D"y~ —a,y +u (6.1-4)
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(b)

a,s

@ H(s)=——
s*+ +

, (b) H(s)=
+a,

Figure 6.1-1 State-Space Realization of Transfer Functionsin First Companion Form

bys* +bs" ™+ + b,

st +a1sk’1+---+ak

27
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The corresponding state equations

X, =X,

X, =X,
...... (6.1-5)

X1 = X

X, ==X, — A1 X, — - — A X, +U
The output equation

y=X (6.1-6)

[0 1 0 0 | (0]

0 1 -0 0
A=| : 5 . i |,B=|i|,Cc=[1 0 -~ 0 0], D=[0] (6.1-7)

0 0 0 e 1 0

=& — G — G o T4 1]

e Theform of matrix 4 is said to be in companion form.

e Thedifferent numbering of the state variables will make different form of matrices 4, B, and C. All of them are valid
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Generd transfer function

_(s) bosk +blsk_1 +--4 b,

H(s) u(s)  s*+astHe+a, (6.1-8)
y(s) _ y(s) z(s) _ boik +b1i’:1+---+bk (6.1-9)
u(s)  2(s) u(s) S tast+a,
20) bys“ +bs* 4+ b, (6.1-10)
=(s)
:,8 TSy alsk}+ ta, (6.1-11)
Y(s) = (bys* +bs" ™+ -+ b,)z(s) (6.1-12)
y=bD'z+bD" z+--+ bz (6.1-13)
X =z
X, =X,
X, = X,
...... (6.1-14)
X=X,
X, ==X, — @y g Xy = — ayX, +U
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y = (b, —abo)x; + (by_y — a,4bo)x, + -+ (by — a;by) X, + bou (6.1-15)
0 1 0 - 0] 0]
0 0 1 -0 0
A=\ : : : Y.t |, B=|i|,C=[b —ab, b—a,_b, ... bj—ab)], D=[h] (6.1-16)
0 0 o - 1 0
=% % TG o T4 1]

For single-input, multiple-output system

ya(s) _ bmsk + bllskfl +et by

u(s) s“+ast Tt et
.............................. (6.1-17)
v, (s) bo,sk + bl,sk"l 4.+ b,
u(s) s*+as T+ +a,
[0 1 0 e 0] (0]
0 0 1 0 0 by —aby by —a by o by —aby Doy
A=| 0t n | ||, o=| MW BT Gbe e @ | ooy (e (6118
0 0 0 1 0 '
a —a _4 e —g 1 by —a,by bk—l,l —a by o by —aby, by,
|~ k-1 k-2 1] L+
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4]

bm

by

bll

: [
b1, ?

Figure 6.1-2 State-Space Realization of Single-Input, Multiple-Output System

31 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY

CONTROL THEORY

When state variables are numbered from left to right instead of right to left.

4 T4 “a T
1 0 0 0
A=\ : : : : |, B=|:|,C=[b-ab, by—ab, ... b_,—a, b, b —ab,], D=[b,] (6.1-19)
0 0 0 0
| 0 0 1 0 |
- ¥
Figure 6.1-3 Numbering State Variables from Left to Right
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u

g

a,

a;

X2

@i

o

X,

Po

ay

S

Figure 6.1-4 Alternative First Companion Form of State-Space Realization

Xy =X, + piu

Xy :x3+p2u

(6.1-20)
Xy =X, + Py
Xp = =@ X, = =4 X, + piu
y=2x,+ pyit (6.1-21)
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Dy = x, + pju+ p,Du

D%y = X3+ pou+ p,Du+ pODzu

.................................. (6.1-22)
D"ty = X, +pu+p, Du+--+ ple’Zu + pODk’lu
D'y =—ax, —ayx,_,——a,x, + p,u+p,_Du+--+ p D" u+ p,D'u
D'y +a D" 'y+-+a,_Dy+ay=(p, +ap, ,++a, ,p +a.p,u
+(py++a, ,p,+a, p,)Du
+e+ (py+apy) D (6.1-23)
+ (po)Dk”
y(s)  bys* +bs T+ b,
H(s) = u(s) T +as" ™+ +a, (6.1-24)
D'y +aD*'y+---+a, ,Dy+a,y=b,D'u+bD" u+---+bu (6.1-25)
Po = bo
Pt apo=0b
........................ (6.1-26)
Piat ot a, ,p+a,po=b_4
Pe T @D+ api+apo=>b
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1 0 0 0| po b,
a 1 0O - O||p b,
a, a 1 - Of|p,|=|b, (6.1-27)
: : S I :
(% Qg Gy 1] [be]
[0 1 0 0 | p, |
0 0 1 - 0 D
A=| : . i |, B=| i |,C=L 0 -~ 0 0], D=[p,] (6.1-28)
0 0 0 1 Dia
| =4 g — Qe o T4 L Pr |
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Pr-11

Pom

Pim

Um

a, a: -y aj

Figure 6.1-5 State-Space Realization of Multiple-1nput, Single-Output System
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6.2 Second Companion Form

¢ Inthefirst companion form, the coefficients of the denominator of the transfer function appear in one of the column of
the A matrix.

For a single-input, single-output system,

= 20 e ehs ot (62-1)
u(s) s +as T +-+a,

(s" +as" ™+ a ) y(s) = (bys* +bs T+ + b )u(s) (6.2-2)
S T0(s) = bu(s)] + 5 [ayy(s) — be()] + -+ + [, ¥(s) — bu(s)] = O (6.2-3)
$(5) = bya(s) + S [ba(s) ~ ay ()] + -+~ [byu(s) ~ 4, (9] (6.2-4)

i £

1 Sk—l
%,(5) = 2[bu(s) — ay(s)] + — .y (6.2-5)

S S
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bl . bo

Xy

a [ PO ag-3 a

l L1

Figure 6.2-1 State-Space Realization of Single-Input, Single-Output System

X, =x, —a,(x, + bou) + bu

X, = x5 —a,(x; + byu) + byu

........................ (6.2-6)
Xpq =X, —a, (%, +bgu)+ b, qu
X, =—a, (x, +byu) + b,u
y = x, +byu (6.2-7)
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-a;, 1 0 [ b, —a,b, |
-a, 01 b, —a,b,
A=|-a, 0 0O ,B=|b,—apb,|, C=[100...0], D=[h,] (6.2-8)
| —a, 00 _bk —akbo_
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6.3 Jordan Form: Partial Fraction Expansion

e Thiscanonical form follows directly from the partial fraction expansion of the transfer functions.

When the poles of the transfer function are all different. The partial fraction expansion of the transfer function

H(s)=—=b0+si1S1+Si—2S2+---+Si"Sk (6.3-1)
=D +1x, +1,X, + -+ 1X, (6.3-2)
R (6.3-3)
5=,
X, —8X, =U (6-3'4)
X, =8,X, +u (6.3-5)
X, =8 +u
X, = S,X, + U
............ (6.3-6)
X, =8,X, +u
s; O 0 1
e I P o (PCTY PPR N J 1 (6.3-7)
00 5] |
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Figure 6.3-1 Complex Jordan Form of Transfer Function with Distinct Roots
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When the poles are complex conjugates, s, =-o+ jo and s,=-o- jw, With corresponding residues » =1+ jy and

ry=A—jy.
H :yl,z(s): A+ jy + A=Jy _ 45 + (Ao —wy)] (6.3-8)
2 us) s+o—jo s+o+jo s +205+0°+ '

u
= s°+ 205 + 0"+ 0° (6:3-9)

us
= s?+205 + 0’ + 0’ (6.3-10)
X =X, (6.3-11)

2
X, —> 85X, = e zasui e —(0? + 0°)x,— 20x, +u (6.3-12)
V1o = 2(A0 — wy)x, + 2x, (6.3-13)
St LB
X, —(c°+0°) -20 X, 1
s = [20Aca) 27 ’__‘1} (6.3-15)
[ X2
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2A

2(A0 — wy)

N

Yi2

Figure 6.3-2 Companion-Form Realization of Pair of Complex Conjugate Terms as a Real Second-Order Subsystem
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When the system has repeated roots, the partial fraction expansion of the transfer function H(s) will be of the form

H(s)=by+H,(s)+-+H_(s) (6.3-16)
7. 7. v .
H- — 1L 2i Vil 3-
J(s) s—si+(s— ,-)2+ +(s—s,.)”" (6.3-17)
Vi = WXy Xyt H X (6.3-18)
X, = — (6.3-19)
5=,
_ u _ Ny 2
O FoS Lt (6.3-20)
xni xﬂ—ll (63'21)
s =8,
SX,; = 8,X,; +X, (6.3-22)
Xy =8,X,; +u
Xy =Xy +8,Xy
............... (6.3-23)
xvz - x(vi—l)i + Szxv,i
44 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY

CONTROL THEORY

%)

o

o

%)

[

, C = lrli r, (6.3-24)

T rv,-iJ

S

3

rv,d'

S;

Figure 6.3-3 Jordan-Block Realization of Part of Transfer Function Having Repeated Pole
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The state vector of the overall system consists of the concatenation of the state vectors of each of the Jordan blocks.

x=" (6.3-25)
x";
(4, 0 O 0 | B, |
0 4, O 0 B,
A= Q 9 Ay Q B =185, c=le ¢, ¢ ¢ (6.3-26)
0 0 0 A | | B |
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7 Stability

Consider a system whose equilibrium state exists at the origin x = 0. The Euclidean length of the vector from the origin,

often called the norm, is written as

X1
X
"x” = (x’x)l/2 = [xl Xo X, .2 = (X12 + x22 +-e+ xn2)1/2 (7_1)
xn
F
Stable = S(R)
]
Asymptotic
stability
\ [
q z;
\ é " x(0)
Unstable

Figure 7-1 Stability Regionsin State Space
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¢ Within the n-dimension state space, S(R) is a spherical region of radius R. Then the region S(R) is said to be stable if
for any S(¢) atransient starting in S(&) does not leave S(R).

o If thereexistsa ¢ >0, and x(0) isin the sphere S(0), and the transient solution approaches the equilibrium state x =0 as
time approaches infinity, then the system solution is asymptotically stable.

e If ocan be arbitrarily large then the solution x = 0 is asymptotically stable in the large, often called global stability.
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7.1 The Direct Method of Liapunov

e Thedirect method of Liapunov is based on the concept of energy and the relation of stored energy and system stability.
Theideaisthat for a stable system the stored energy will decay with time.

e The energy of a system is a positive quantity and if the time-derivative of the energy is negative we may denote the
system as asymptotically stable.

A system is asymptotically stable in some region of the state space if, the Liapunov function V'

V(x) > 0for x # x,, (7.1-1)
dVldt = v(x) <0forx#x,, (7.1-2)
V(x) =0forx =x,, (7.1-3)
V(x) —oo for |x||-—>o0. (7.1-4)

x.. the equilibrium state.
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Consider the system defined by

iRl @
Clearly, the only equilibrium stateisthe origin, x = 0.
Let’ s choose the following scalar function as a possible Liapunov function:
V(x)=2x2 +x2 (2)
which is positive definite function. Then
V(x) = dx,x, + 2x,%, = 2x,x, — 2x5 (3)
V(x) isindefinite. Thisimplies that this particular function ¥(x) is not a Liapunov function, and therefore stability cannot
be determined by its use.
If we choose the following scalar function as a possible Liapunov function,
V(x)=x?+x5 4
which is positive definite function. Then
V(x) = 2x,%, + 2x,%, = —2x2 (5)
which is negative semidefinite. If 7(x) isto vanish identically for >+, then x, must be zero for al ¢>¢. This requires
that x, =0 for ¢+>¢. Since

X, =—X; — X, (6)
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x1 must also be equal to zero for ¢ >+,. Thismeansthat ¥ (x) vanishesidentically only at the origin. Hence, the equilibrium
state at the origin is asymptotically stablein the large.
If we choose the following scalar function as a possible Liapunov function instead,

V(x) =%[(xl+x2)2 +2x7 +x22] (7)

which is positive definite function. Then
V(x)= (3, +x,)%, + 2x,%; + (X, +2x,)%, +x,%, = —(xl2 + xg) (8)

which is negative definite. Since V(x) — « as ||x|| — o, the equilibrium state at the origin is asymptotically stable in the

large.
%= Ax (7.1-5)
V(x)=x"Px (7.1-6)
V(x) = x'Px + x'Px (7.1-7)
V = x'PAx + (A4x)'Px = x'(PA + A'P)x (7.1-8)

For an asymptotically stable system, ¥(x) is positive, 7 (x) is negative.
V=-x'Ox (7.12-9)
—Q=PA+ AP (7.1-10)
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For asymptotic stability of alinear system it is sufficient that O be positive definite.

A necessary condition for a positive definite O

qll qlz qln

o], cel 192 el 02
9 4 : : .

49 9 G

Therate of decay of the Liapunov function, 7, theratioof -V /v .
_x'Ox

x'Px

n

= x'Px

x'Px

The quotient ——, called the Rayleigh quotient, satisfies the relation 4, >
XX

characteristicrootssuchthat 2 >4, >4,---> 2

max — min *

>0

x'Px

’
XX

(7.1-11)

(7.1-12)

(7.1-13)

> ., where Anx and A, are the

(7.1-14)
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The general solution of P for alinear second-order system

O isassigned to be identity matrix 7, which is positive definite matrix.

PA+ AP=-1
{pn p12i| |:a11 a12:| +|:a11 a21:| {pn p12i| _ [_1 0 :|
Pro Pxn||Gn Adxp ap dy || P Pxo 0 -1
{Pnan + Py Puldp T p12a22:| n {anpn ta,p, anppt a21p22:| _ {_ 1 0 }
P1olyy + Pply Prolyy + Prly, P tApPyp  ApPp + APy 0 -1
|:p11a11 t Py T APyt AnpPrn Pl t Py + a3 Pt anpPy } _ [_ 1 0 }
D1l + Pl + A1pP1y T ApPry  Prolip + Poplyy T Q1P + APy 0 -1
|: 2a,,pyy +2a5py, APy + (A +az) pry + azﬂ’zz} _ {_ 1 0 }
APy + (Ayy +ay) iy + APy 2a,,py, + 205 Py 0 -
2a,, 2a, 0 | pu -1
or ap (ay+ap) ay | pp|=|0
0 2a,, 2a, || Py -1
SO p= -1 (det 4+ a212 + azzz) —(apa, +aya,)
2traced)(det A)| —(apay, +ayay) (det A+ay’ +ay,’)
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where traceA isthe sum of the diagonal terms of 4, aq1+a,,, and det4 is the determinnat of 4, a11ax0-aipa1. The system is
asymptotically stable if and only if the matrix P is positive definite. Therefore the principal minors of P must be positive,

_detA4+ Ay +ay
2(traceA)(det 4)

Pu =

and det P = (ay +a5)’° +2(a12 —ay)° >0
2(traceA)”(det A)

Conditions that make the system be stable are
det 4 =aya,, —a,a, >0
and traceA=a, +a,, <0

If we determine the stability of the system by Routh-Hurwitz algorithm, we will find that the conditions that make the
system be stable are exactly the same.
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Consider again the system defined by

A @
Clearly, the only equilibrium stateisthe origin, x = 0.
Let’ s assume atentative Liapunov function:
V(x) = x'Px 2
which P is determined from
PA+A'P=-I ©)
e e e @
By expanding this matrix equation, we obtain the following equations.
-2p, =-1 (5
Pu—DPi— Pz =0 (6)
~PptPu—Pa=0 (7)
2py, = 2py, =-1 (8
Solving for P, we get
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{ 2% plz} _ [3/ 2 1/ 2} )
Pa Pz 12 1
To test the positive definiteness of P, we check the determinants of the successive principal minors:

3 |3/2 1/ 2|

270 2 1|7 (10)

Clearly, P is positive definite. Hence the equilibrium state at the origin is asymptotically stable in the large, and a
Liapunov function is

V(x)=x'Px= %(3x12 +2x,x, + 2x22) (12)

V(x)=—(x] +x3) (12)
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8 Controllability and Observability

Figure 8-1 Fourth-Order System
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Consider the differential equations of afourth-order system.

X, =2x, +3x, +2x; +x, +u
X, =—=2x,—3x,—2u

. (8-1)
Xy =—2x,—2x, —4x,+ 2u
X, =-2x, —2x, —2x,—5x, —u
y=17x +6x,+4x, +2x, (8-2)
2 3 2 1 1
-2 -3 0 O -2
A= , B= ,C=[7 6 4 2] (8-3)
-2 -2 -4 0 2
-2 -2 -2 -5 -1
s +12s° +475+6  3s°+2Ls+36  2s°+14s5+24 s+ Ts+12
—25% —18s5 — 4 4 Ts? -1 —4s-1 —-2s-1
(s] — A)* = 1 s2 8—-40 +2s +8s-16 3 j 6 s —18 (8-4)
A(s)| —2s°-125-10 —25"-125-10 s +6s°+7s+2 —-25—2
—25°—6s—4 —2s°-6s—4  -2s*—-65s-4 s°+55°+8s+4
A(s) =|sI — A s* + 215 + 35s° + 50s + 24 (8-5)
3 2
H(s) = C(sI — A)*B = s°+9s° + 265 + 24 o (s+)(s+)Y(s+4) 1 (8-6)

s*+215° + 3652+ 505+ 24 (s+D(s+2)(s+)(s+4) s+1
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From the transformation of the state variables,

x=1x (8-7)
4 3 21 1 -1.0 O
3321 -1 2 -1 0
T = and 7' = (8-8)
2 221 0 -1 2 -1
1111 0O 0 -1 2
-1 0 0 O 1
_ -2 0 0| - o —
A=TAT™ = , B=TB=| |, C=CTr*=[11 0 0 (8-9)
0 -3 0 1
0O 0 0 -4 0
The corresponding equations
X, =X, +u
X, = —2X%, (8-10)
Xy = —3%, +u
X, = —4%,
y=X+X, (8-11)

Only thefirst subsystem x, contributesto the transfer function H(s) = 1/(s+1).
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Figure 8-2 System Equivalent of Figure 8-1

T PR LSy

affected by the input;
unaffected by the input;
affected by the input;
unaffected by the input;

visible in the output
visible in the output
invisible in the output

invisible in the output
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e Transfer function of the system is determined only by the controllable and observable subsystem.

¢ |If thetransfer function of a single-input, single-output system is of lower degree than the dimension of the state-space,
then the system must contain an uncontrollable subsystem, or an unobservable subsystem, or possibly both.

e |f asystem contains an uncontrollable subsystem it is said to be uncontrollable.

e |If asystem contains and unobservable subsystem it is said to be unobservable.

o |f at least one of the uncontrollable or unobservable subsystems is unstable, the resulting behavior will be disastrous.

Uncontrollable Causes

1. redundant state variables

2. physically uncontrollable system
3. too much symmetry
Unobservable Cause

1. when state variable is not measured directly and is not fed back to state variables that are measured.
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8.1 Definitions and Algebraic Conditionsfor Controllability and Observability

Definition of Controllability: A system is said to be controllable if and only if itsis possible, by means of the input, to
transfer the system from any initial state x(¢) = x, to any other state x; = x(7) in afinitetime 7-¢ > 0.

Definition of Observability: An unforced system is said to be observable if and only if it is possible to determine any
arbitrary initial state x(¢) = x, by using only afinite record, y(z) for : <z <1, of the output.

Controllability Theorem: A system is controllableif and only if the matrix
P(T 1) = [§(T, 2)B(A)B'(A)¢ (T, A)dA (8.1-1)

is nonsingular for some T > ¢, where ¢(7,t) is the state-transition matrix of the system. Matrix P(7, ¢) is called
controllability grammian.

Observability Theorem: A system isobservable if and only if the matrix
M(T,t) = [@'(4,)C'(A)C(A)D(4, 1)dA (8.1-2)

is nonsingular for some T' > ¢, where ¢(7,r) is the state-transition matrix of the system. Matrix M(T, ¢) is called

observability grammian.
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Algebraic Controllability Theorem: The time-invariant system x = Ax + Bu is controllable if and only if the rank »(Q) of
the controllability test matrix

0=|B 4B - 47B| (8.1-3)
isequal to k, the order of the system.
Algebraic Observability Theorem: The unforced time-invariant system x = 4xand y = Cx isobservableif and only if the
rank r(N) of the observability test matrix
N=lcr ac o (a)C] (8.1-4)
is equal to k, the order of the system.

e Theagebraic controllability and observability tests are only valid for time-invariant systems.
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Rank of the matrix

1 -1 1 -1
-2 4 -10 28
2 -6 18 -H4
-1 3 -9 27

D)

is determined by finding for the maximum non zero determinant matrix which is obtained from crossing row or column of
the original matrix.
Since
1 -1 1 -1
-2 4 -10 28
2 -6 18 -
-1 3 -9 27

-0 2

rank of this matrix isless than 4.

And since all 16 determinants of the matrices which are obtained from crossing 1 row and 1 column of the original matrix

d;y dp Qg
Ay Ay (=0 (3)
a3 dzp  dg

rank of this matrix islessthan 3.

But since at |east
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1 —
|_ ) 4]‘ #0 4)
rank of this matrix isequal to 2.
Causes of linearly dependency of this matrix:
1. The 4" row is obtained from summation of the 1¥ and 2™ rows.
2. The 3 row is obtained from multiplication the 4" row with 2.
Consider controllability of the system in (a)-(c).
¢, | [L 1]x| [1
@ o Ao @
Determine matrix Q
11
0=[5 AB]{O 0} )
Since Q issingular and itsrank is 1, this system is uncontrollable.
X (1 1)x 0
4 2L

Determine matrix Q

65

Manukid Parnichkun




ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

0=[B AB]:E _11} (4)

Since Q isnonsingular and itsrank is 2, this system is controllable.

y(s) s +2.5
(© u(s) - (s +2.5)(s —-1) ©)

Clearly, cancellation of the factor (s + 2.5) occurs in the numerator and denominator of this transfer function. Thus, one
degree of freedom islost. Because of this cancellation, this system is either uncontrollable or unobservable.

The same conclusion can be obtained by writing this system in the form of state-space,

2l sl (2 war-bs o] ©

0-b asl-] 1 ™

Determine matrix Q

1 -15
Since Q isnot singular and itsrank is 2, this system is controllable.

N =[c A'C']:ﬁS 2ﬂ

(8)

Since N issingular and itsrank is 1, this system is unobservable.
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Consider the system
X, 0 1 o0 x,]| [0
Xx,|={0 0 1]|x,|[+|0O (1)
X, |-6 -11 -6]x,] |1
xl_
v=[4 5 1x, (2)
X3
Determine matrix Q
0 0 1
o=p 4B 4’B]-=j0 1 -6 (3)
1 -6 25

Since the rank of the matrix Q is 3, this system is controllable

Determine matrix N

4 -6 6
N = [Cr AIC! (A/)ZCI]: 5 _ 7 5 (4)
1 -1 -1

Since |NV| = 0, the rank of the matrix N islessthan 3, this system is unobservable
In fact, in this system cancellation occurs in the transfer function of the system. The transfer function between x(s) and

u(s)is
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x(s) _ 1 (5)
u(s) (+D(s+2)(s+3)
and the transfer function between y(s) and x(s) is
%: (s+D(s+4) (6)
Therefore, the transfer function between the output y(s) and the input u(s) is
yis)  (s+D(s+4) @)

u(s) (s+D(s+2)(s+3)
Clearly, the (s+1) cancels each other. This means that there are nonzero initial states x(0), which cannot be determined

from the measurement of y(z).
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8.2 Disturbances and Tracking Systems. Exogenous Variables

%= Ax+ Bu+ Fx, (8.2-1)
x, . disturbance vector
x, . reference state vector
x, =A4,x, (8.2-2)
X, =A.x, (8.2-3)
e=x—x, (8.2-4)
é=x—-x =Ale+x,)+Fx, + Bu—Ax, = Ae+(A— A )x, + Fx, + Bu= Ae+ Ex, + Bu (8.2-5)
E=[4-4, | F] (8.2-6)
X,
Xo=| (8.2-7)
Xy
X, . EXOgenous input vector
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Ad
J\ Disturbances c,
/ Xq
Disturbance
model
F
System
error
_u__’ B j’ C‘\ >_y_;
e
A
\ x’ C
I/ Reference 1
A-A,

Reference model

Figure 8.2-1 State-Space Representation of System with Disturbances and Reference Input.
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Metastate vector,
e
X=|__ (8.2-8)
Xo
M etastate equation,
X = AX + Bu (8.2-9)
A | E B 4 | O
A=_ _ _|,B=|__|,and 4,=|__ _ (8.2-10)
0 | 4, 0 0 | 4,

When only the error can be measured, the observation equation

y = Ce =Cx (8.2-11)
Cc=[c | 0 O (8.2-12)
When it is possible to measure the error, the reference state, and the disturbance state, the observation equation
y =C,e +C.x, +C,x, (8.2-13)
c=[c, | ¢ c,] (8.2-14)

e The subsystems for the disturbance x, and the reference x, are clearly not controllable.
e With Cc, and C, present, the system is likely to be observable. But even if only C, is present, the system may be

observable because there is a path from x, to the output through the subsystem that generates the error.
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9 Shaping the Dynamic Response

¢ |n pole-placement method, it is possible to place the closed-loop poles anywhere in the complex s plane.
o All the state variables must be accessible for measurement or estimated from measured output.

u=-Gx (9-1)
G: gain matrix in alinear feedback law

u=-G3 (9-2)
x : state vector of the observer, estimation of the state vector

9.1 Design of Regulatorsfor Single-Input, Single-Output Systems

G=g'=[g g - &l (9.1-1)
X =Ax+ Bu (9.1-2)

by

b2
B=b=|. (9.1-3)

bk

With the control law u = -Gx =-g'x,

x=(4-bg")x (9.1-4)
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e Our objectiveisto find the matrix G =g’ which places the closed-loop dynamics matrix at the locations desired.
A, = A-bg’ (9.1-5)
e Thereare k gains and & poles for a kth order system, so there are precisely as many gains as needed to specify each of
the closed-loop poles.

sl —A|=|sI-A+bg|=s"+as""++a, (9.1-6)

In the first companion form and left to right numbering of state variables,

-4 —dy o T4, T4
1 o -- 0 0
A=| 0 i - 0 0 (9.1-7)
0 0 1 0 |
[1] _gl 8> &3 gk—
0 O 0O O 0
bg'=|0[g, g g5 - g]=[0 0 0 - 0 (9.1-8)
10] |0 0 O 0 |
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- G—=8g —a,—=& - &G 178 4 _gk_ - &1 _&2 _&k—l
1 0 0 0 1 0 0
A =A-bg' = 0 1 0 0 =/ 0 1 0
0 0 1 O | | O 0 1

CONTROL THEORY

(9.1-9)

(9.1-10)

(9.1-11)

Figure 9.1-1 State Variable Feedback for a System in First Companion Form
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e Transformation of state vector from original form, x, to the first companion form, x,

¥=Tx (9.1-12)
¥=Ax+bu (9.1-13)
A=TAT " andb =Tbh (9.1-14)
g-a-a=i-a (9.1-15)
u=-gx=-gT'x=-gx (9.1-16)
g =gT™ (9.1-17)
g=Tg=T'(a-a) (9.1-18)

e Thedesired transformation matrix 7 isthe product of two matrices ¥ and U:
T=vU (9.1-19)
e Thefirst matrix transforms the original system into an intermediate system in the second companion form.

e The second transformation transforms the intermediate system into the first companion form.

F=Ux (9.1-20)
X=Ax+bu (9.1-21)
A4 =UAU and b =Ub (9.1-22)
e Uistheinverse of controllability test matrix Q.
U=0"=[p 4b - 4] (9.1-23)
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F=VF (9.1-24)

A =VAV*and b =Vb (9.1-25)
o V'isthetranspose of the upper |eft-hand k-by-k submatrix of the triangular Toeplitz matrix .

-1

1 a - a,

powio|] T e (9.1-26)
00 . 1

g=(U)(a-a) (9.1-27)

V=wtadU=0" (9.1-28)

yvu=wrot=0w)* (9.1-29)

g =[Om)1(a-a) (9.1-30)
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A dc motor driving an inertial load constitutes a ssimple instrument servo for keeping the load at a fixed position. The
state-space equations for the motor-driven inertia

0=0w (9.1-31)
& =—aw+ fu (9.1-32
@ : angular position
® : angular velocity
u : the applied voltage,
KK, Ky )
R and B = R (9.2-33)
If the desired position 6, is constant.
9}”
xr = |: O:| (9.1'34)
X =Ax = [O O}cr (9.1-35)
00
emx—x {H‘ﬂ (9.1-36)
[
é=Ae+Bu+[A-Arlx, (9.1-37)
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o el ] o1
M {8 —ZﬁH;}“ (9.1-39)

Tachometer Potentiometer

\: g: ‘ -
1 Velocity gain’
_wb
—e < ) ‘
A Position gain~ ~— 8»’

Figure 9.1-2 Implementation of an Instrument Servo
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The characteristic polynomial of the system

si-d= =i +as (9.1-40)
0 s+«
The desired characteristic polynomial of the system
|sl —A4|=s*+as+a, (9.1-41)
a= ﬂ (9.1-42)
G| @ (9.1-43)
L 42 |
~ [0 B 1 «a ]
0=1b Ab]—{ﬂ s andW_[0 J (9.1-44)
_19 Bl comy ]
ow _[ﬁ 0}—(QW) (9.1-45)
n-1 _ O l/ﬂ _
o=l ) (9.1-46)
g:[ 0 1/ﬁ}{&1;a}{ A&Z/ﬂ } (9.1-47)
/p O a, (a,—a)l p
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For a control law of the form

u=-ge—g,n (9.1-48)

e=w (9.1-49)

o =-g,fe—(a+fg,)w (91—50)

4 = { 0 ! } (9.1-51)
-gf —(a+g,p)

|sl —A|=s"+(a+g,B)s+g.pf (9.1-52)

a=a+g,fanda, = gp (9.1-53)

g =a,/pandg, =(a-a)lf (91'54)
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An inverted pendulum can be stabilized by a closed-loop feedback system. A possible control system implementation is

shown in figure below for a pendulum constrained to rotate about a shaft at its bottom point.

Velocity pick-off

—>w

/f

92
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The dynamic equations governing the inverted pendulum in which the point of attachment does not translate is given by
KK K,

[Jm+mlz]d)=mglsin6’—%a)+%uzmgl@—%wjt— Q)
0=w )
& =Q%0 —aw+ fu 3
where
o= _% and 5 - f_R (4)
with the inertial J being the total reflected inertia:
J=J, +ml® (5)
and m isthe pendulum bob mass, / is the distance of the bob from the pivot.
The natural frequency Q is given by
QoM ____ ¢ (6)

g +ml? 1+J, Iml
Since the linearization is valid only when the pendulum is nearly vertical, we shall assume that the control objective is

to maintain = 0. Thus we have asimple regulator problem.
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The matrices4 and B are

The open-loop characteristic polynomial is

Thus
a, =a and a, =-Q°
The open-loop system is unstable.
The controllability test matrix and the /" matrix are

ofp Loy
B —aop 01

And

/
(w1 :[ 0 15 }

18 0

Thus the gain matrix required for pole placement is

_{ 0 1/[1{ &1—(1}_ (a,+Q%) 1 p
% s 0 |a+9| 7| G-)p

(7)

(8)

9)

(10)

(11)

(12)
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A= {QZ ? gf -( j gzﬂ)} 43

sl —A4|=s*+(a+g,B)s+gf-Q° (14)
a,=a+g,fanda, = g f-Q° (15)

g = (G,+0%) pand g, = (4, - a)l B (16)

84 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

9.2 Multiple-Input System

¢ |n a controllable system with multiple inputs, there will be more gains available than are needed to place all of the
closed-1oop poles.
e |tispossibleto specify all the closed-loop poles and still be able to satisfy other requirements.
e Design approaches of multiple-input system
0 Setting some of the gainsto zero.
0 Selecting a particular structure for the gain matrix to make each control variable depend on a different group
of state variables which are physically more closely related to that control variable than to the other control
variables
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Consider the system defined by

010 10
A=[0 0 1|, B=|0 1 (1)
12 3 00
If we want to find a state-feedback gain matrix such that the closed-loop system has eigenvalues at -1, -2, and -3,
s -1 0
|sI-AE|0 s —1|=s°-3*-25-1=s°+a,s° +a,s+a, (2
-1 -2 s-
Or
a, -3
a=|a, |=|-2 (3)
ay -1
Currently the system has eigenvalues at 3.63, -0.31+£0.42i and unstable.
Consider the effect from the first input u4,
1 [0 1 0f1] [0 1 o]0 1 of1
O,=[b, A4b, A4?b]=|0 |0 0 1|0l |0 O 1/0 0 10O (4)
0 |1 2 3|0l |1 2 3|1 2 3|0
86
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1 00
0,=|001 )
01 3
Since Q, is not singular matrix, we can find state-feedback gains from the input u;.
1 -3 -2
w=0 1 -3 (6)
0 0 1
1 0 0fft -3 -2] [1 -3 -2
ow=|0 0 1|0 1 -3|=|0 0 (7)
013J0 0 1] |0 1
S [r 23 100
lem)*] =0 0 1/ =|2 01 8)
010 [310
Characteristic equation of the closed-loop system is obtained from
|sI—A |F(s+D)(s+2)(s+3) =52+ 65> +1ls+ 6 =5 +a,5> +a,s +d, (9
Or
a 6
a=|a,|=|11 (20)
ds 6
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Thus,
g | a—a 1 0 0| 6+3 9
g =g |=lom)*]|a,-a,|=|2 0 1]|11+2|=|25 (11)
2 G,—a,| |3 1 0| 6+41| |40

Since by only the input u«;, the compensated system meets the requirement already, the gains of the state feedback from
the other input u, are zeros.
Thus,

G:[g 25 40} (12)

Alternative solution

Consider the effect from the second input u»,
0
Q,=[b, A4b, Azbz] =1
0

(13)

L O o
N O B
(BN
(BN
O O
N O
w kL o
L O o
N O B
w ko
o L O

o
-
o

(14)

=
o
N

0, =

o
N
\I

Since Q, is not singular matrix, we can find state-feedback gains from the input u,.
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1 -3 -2]
w=l0 1 -3 (15)
0 0 1|
01 0]t -3 -2] [0 1 -3
owW=|10 2|0 1 -3=[1 -3 0 (16)
027/0 0 1] |0 2 1
[ 043 1 129 043 014 -0.29
lom)*] =| 014 0 043/ = 1 0 o0 (17)
-029 0 0.14 1.29 043 0.14
Characteristic equation of the closed-loop system is obtained from
|sI—A = (s+D)(s+2)(s+3) =5 +65° +1ls+ 6 =5+ a,5° +a,5 + dy (18)
Or
al 6
a=|a,|=11 (29
a,| |6
Thus,
g, la,—a | [043 014 -0.29] 6+3
2 =g =l ||a-a,|=| 1 0 0 |11+2|= (20)
g5 a,—a,| [129 043 014 | 6+1
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Since by only the input u,, the compensated system meets the requirement already, the gains of the state feedback from
the other input u; are zeros.
Thus,

371 9 1814

G:[O 0 O } (21)

Alternative solution

If the requirement that «; depends on x; and x, whereas u, depends on x3 only, thus

G = [gn g, O :| (22)
0 0 g
Since

01010 01 |8 178 0

A, =A4-BG=|0 0 1|-|0 1[&1 812 }= 0 0 1-gu (23)
0 0 gux

1 2 3 00 1 2 3
S+gn g12—1 0 24
|sI-4. | O N g2 — =Sa+(gu—3)sz+(2gzs—3g11—2)S+2g23g11—g12g13—2gu+g12+g23—1 ( )

-1 -2 s—3

Characteristic equation of the closed-loop system is obtained from

|sI—A, | (s+D(s+2)(s+3) =5+ 65> +1ls +6 =5 +a,5° +a,s + 5 (25)
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Or
g,-3=6, g,=9 (26)
2g,,—3g,,—2=2g,-309)-2=11 g,=20 (27)
283811 — 812823 — 2811 + &1 + €25 —1=2(20)(9) - 20g,, —2(9) + g,, + 20-1=6; g,, =18.68 (28)
Thus,

G [9 1868 O } (29)

O 0 20
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9.3 Disturbances and Tracking Systems. Exogenous Variables

e=x-x, (9.3-1)
i =Ax (9.3-2)
i, = Ax, (9.3-3)
é=Ae+(A—A,)x, + Fx, + Bu= Ae+ Bu + Ex, (9.3-9)
A linear control law,
u=-Ge—Gyx, =-Ge—G,x, —G,x, (9.3-5)

lx., (Disturbances)

G4

Feedforward

G,

Process

— G X=Ax+ Bu

v

Figure 9.3-1 Schematic of Feedback System for Process with Reference State and Disturbance Input.
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e The design is based on the assumption that the exogenous input vector x, as well as the system error e are accessible
for measurement during the operation of the control system.
The closed-loop dynamics
é= Ae+ Ex,— B(Ge+ Gyx,) (9.3-6)
e The most desirable is to choose the gains G and G, to keep the system error zero, which is not possible in the system
that has number of control inputs less than number of state variables.
e More reasonable performance objectives, having number of control inputs not less than measured output, are the
followings:
(@) The closed-loop system should be asymptotically stable.
(b) The measured output is zero at the steady state.
The steady-state condition is characterized by a constant error state vector,

¢ = Ae+ Ex,— B(Ge+ Gyx,) =0 (9.3-7)
(4 - BG)e = (BG, — E)x, (9.3-8)
e=(4A-BG) ™ (BG, - E)x, (9.3-9)

e When the number of control inputs equals to number of state variables and (4-BG)™'B is a sguare matrix and

invertible, e can be controlled to zero at steady state.
0= (4-BG) ' (BG, - E)x, (9.3-10)
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A—BG)E =(4- BG)BG
0

G, =[(4-BG)*B](4- BG)'E

(9.3-11)
(9.3-12)

e When the number of control inputs equals to number of measured outputs and C(4-BG)™'B is a square matrix and

invertible, y can be controlled to zero at steady state.
y=Ce=C(A-BG) ™ (BG,—E)x,=0
C(A-BG)'BG,=C(A-BG)'E
G, =[C(4-BG) B C(4-BG)E
G, =B"E
when B* =[C(4-BG)™*B]'C(4-BG)™.

Example: Consider a state-space a system represented by
X, Ay Ay || X2 b, fa
Y= [cl Cz{xﬂ
X2

Assume that the desired (reference) stateis

(9.3-13)
(9.3-14)
(9.3-15)
(9.3-16)

(9.3-17)

(9.3-18)

(9.3-19)
(9.3-20)
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4 =0

When the characteristic equation of s* +a,s +a, =0 isdesired, by pole placement method,

(9.3-21)

G = [ 2, gz] _ R R P e o a222b2 =Dy, = ayanb,  Aybidy — 4y, — 105D, — apb,a, + a§2b1 +bd, + aya,h (93-22)
Ay 12 - 912b23 "21[912 - a12b23
G, =[C(4—-BG)'B]*C(4-BG)'E = B’E (9.3-23)
a1
A =(4-BG)™? :|:a11_b1gl ip _blg2:| (9.3-24)
ay —b,g, ay—b,g,
1 _ 1 |: Ay — bzgz - (alz - blgz):| (9 3_25)
‘ (ay, —bgy)ay, —b,g,) — (@, —bg,)(ay, —b,gy) | — (ax —b,81) ay—bg;
C(A- BG)_lB _ (c,(ay, —b,g,) — c,(ay — b,g,))b, — (c,(ay, —bg,) — c,(ay —bigy))b, (93-26)
(ay, —bg)ay, —b,g,) — (a, —bg,)ay, —b,g)
C(A-BG)'B = (19 — r5)by — (1, — Cya1)by =p (9.3-27)
(ay, —bg)ay, —b,g,) — (a, —bg,)(ay —b,g)
Bt — E 1 [Cl 211: Ay —b,g, —(ay, _blgz)} (93_28)
p (ay—bg)(ay, —b,g,)—(ay, —big,)(ay, —b,g) —(ay —b,g;) a, —bg
1
B* = (Cxtry — Coty )b — (Cottny — Cot)D [cl(a22 —b,g,) —cy(ay —b,g1)  cy(ay —bgy) —clay, - blgz)] (93-29)
102 — Cdy )by 1012 — C2011)0;

G = B'F = (cr(ay —b,g,) —cy(ay —byg1)) f1 + (cp(ay —bigy) —ci(ar, —b1g,)) f 5 (9 3_30)

.= = .

(C1a45 —Coa5 )b, —(c1ay, — cya5,)b,
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9.4 Wher e Should the Closed-L oop Poles Be Placed?

g=[OW)1"(a-a) (9.4-1)

e Thelarger the gain, the larger the control input.

e The actuator which supplies the control # cannot be arbitrarily large without incurring penalties of cost and weight.

e Limiting the control may be to avoid the potential damaging effects of stresses on the process that large inputs might
cause.

e |f the control signal is larger than possible or permissible for reasons of safety, the actuator will saturate at a lower
input level.

e Thelessthe poles are moved, the smaller the gain matrix.

e Theless controllable the system, the larger the gains that are needed to effect a change in the system poles.

e Efficient use of the control signal would require that all the closed-loop poles be about the same distance from the
origin.

The choice of closed-loop poles:

e Select abandwidth high enough to achieve the desired speed of response.

o Keep the bandwidth low enough to avoid exciting unmodeled high-frequency effects and undesired response to noise.

e Placethe poles at approximately uniform distances from the origin for efficient use of the control effort.
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Figure 9.4-1 Butterworth Pole Configuration
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e The Butterworth polynomials B, (z),z = s/ w, Of thefirst few are

B(z)=z+1 (9.4-2)
B,(z)=z2+~2z+1 (9.4-3)
By(z)=z°+2z2+2z+1 (9.4-4)
B,(z)=z*+2.613z° + (2+~/2)z2 + 26132z +1 (9.4-5)

e Asthe number of poles becomes high, one pair of poles comes precariously close to the imaginary axis. It might be

desirable to move these poles farther into the left half-plane.
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10 Linear Observer

¢ Inorder to place the poles at arbitrary locations, it is necessary to have all the state variables available for feedback.

o |f the system is observable, it is possible to estimate the state variables that are not directly accessible to measurement
using the measurement data.

e State-variable estimates may be even preferable to direct measurements, because the errors introduced by the
instruments may be larger than the errors in estimating these variables.

e A dynamic system whose state variables are the estimates of the state variablesis called an observer.

e [or any observable linear system, an observer can be designed having the property that the estimation error can be
made to go to zero as fast as one may desire. The design technique is equivalent to pole placement in feedback system

design.

99 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

10.1 Structure and Properties of Observers

A dynamic system in state-space representation

%= Ax+ Bu (10.1-1)
e A control law u = -Gx can be used only x is acccssible for measurement.
¢ Instead of being able to measure the state x, only the output is measurable.

y =Cx+ Du (10.1-2)

An estimation of x(7), x(¢), follows adynamic of the observer.

X=A%+Bu+Ky (10.1-3)

e=x-% (10.1-4)

é=%—%=Ax+Bu—A(x—e)— Bu—K(Cx+ Du) = Ae + (4— KC — A)x + (B - KD - B)u (10.1-5)
A=A-KC (10.1-6)

B=B-KD (10.1-7)

x=(A-—KC)%+(B—KD)u+Ky = A%+ Bu + K(y — C% — Du) (10.1-8)

e The difference between the actual measurement y and the estimated measurement is often called the residual.
r=y—-Cx—Du=C(x-x)=_Ce (10.1-9)

e Inmost of the systems, the measured output depends only on state variables not input, thus, y = Cx.
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State estimate.

Cx

~
I

Figure 10.1-1 Block Diagram of Linear Observer

e= ;Ie
e(s) = (sI — A)e(0)

e(0) = x(0) - x(0)

(10.1-10)
(10.1-11)
(10.1-12)
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e Inorder for the error to approach zero asymptotically it is necessary that 4 be a stability matrix.
e Determination of the feedback matrix K is a pole-placement similar to response shaping of a system with full-state
variable feedback.
e Theeigenvaluesof 4=4-KC can be placed at arbitrary location if the observability test matrix is of rank k.
N=lc' ac - ()] (10.1-12)
e |f thereisonly a single output, then the observer gain matrix K becomes a column vector and is uniquely determined
by the desired eigenvalues of 4.
e The presence of more than one output provides more flexibility: it is possible to place al the eigenvalues and do other

things. Or, aternatively, some of the observer gains can be set to zero to simplify the resulting observer structure.

X=(A-KC)x+(B—KD)u+Ky = A%+ (B—KD)u +Ky (10.1-13)
(s — A)F(s) = (B — KD)u(s) + Ky(s) + 2(0) (10.1-14)
3(s) = (sI — A) B - KD)u(s) + (sI — A)Ky(s) + (s — 4)*%(0) (10.1-15)

where 4= 4-KC.
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10.2 Pole-Placement for Single-Output Systems

y=01x1+czx2+--~+ckxk=[c1 c, ¢ =Cx=cx

A=A-kc'
k=[(NW)T(a~a)
N=lct ac - ()]
a, a,

a, a,

a= ,a=

a ay
a,,a,,-a, the coefficients of the desired characteristic equation:

‘sl—A‘ =s"+as "t +ast P+ +a, =0

(10.2-1)

(10.2-2)
(10.2-3)
(10.2-4)

(10.2-5)

(10.2-6)

(10.2-7)
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a,,a,,,a,: the coefficients of the original characteristic equation:

|SI—A| =s"+as" t+a,s P+ +a, =0 (10.2-8)
1 a - a,

=) T (10.2:9)
00 - 1

Example: Consider a dc motor driving an inertia load.

X=A%+Bu+K(y-Cx) (10.2-10)
= H (10.2-11)
(4]

. {0 ! } B m (10.2-12)

0 -« )
y=e=[1 o]Lj = Cx (10.2-13)
oo e[ o2 o] @021
e=d+k/(e—2) (10.2-15)
& =—a@+ Pu+k,(e—8é) (10.2-16)
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, |10 na |1
(NW)_[a J’“NW)] { .

The open-loop characteristic polynomial,

The desired observer characteristic polynomial,

N=][C A'C']{

|: :|
_k_
2

k=[(NW)1(a~a)

"o 5]

D(s)=s?+a,s+a,

A a,
a,

10
01

|

0

|

(10.2-17)

(10.2-18)

(10.2-19)

(10.2-20)

(10.2-21)

(10.2-22)

(10.2-23)

(10.2-24)

(10.2-25)
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‘e k| |10 a, - a _ a, - «a (10.2-26)

k, -a 1| a, a,—a(a,—a)

In the straight forward consideration,

21=A-1<c{° 1}{"1}[1 o]:[‘kl 1} (10.2-27)

0 —a| |k, -k, -a
(T3 stk 17 1 s+a 1 (10.2-28)

* Tk, osta|  (rk)sta) ik, | —k, stk '

s?+(k +a)s +ak, +k, =s* +a;s+a, (10.2-29)

The relations between the estimation of state variables and the observation y and control input ,

3(s) = (sT — A)XB)uls) + (sT — A) Ky(s) (10.1-30)
(SI - 2)713 = ﬁ[ﬂ(sﬁ_; k ):| (102'31)
(S] — 21)—1[{ = SZ N &13‘ 4 a |:(S " ak)];l " k2j| = S2 + &1S + & [k1;+saz:| (102'32)
f1(s) = (s) = )+ s+ d)els) (10.2-33)
s“+as+a,
%.(s) = d(s) = B(s+ku(s) + k,se(s) (10.2-34)

2 ~ ~
s°+a;s+a,
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e The control u that isused in the observer, aswell as the input to the plant, is computed using the estimated state.
u=-Gx=-g,e—g,0 (10.2-35)
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10.3 Distur bances and Tracking Systems: Exogenous Variables

With the disturbance, x,, and the reference input, x,, e = x-x,,

é= Ae+ Bu+ Ex, (10.3-1)
X,
Xo=|__ (10.3-2)
Xy
Xo = AyX, (10.3-3)
% = AX + Bu (10.3-4)
A | E B
A=| _ |B= _,x={1 (10.3-5)
0 | 4 0 %o
The control law,
u=-Ge—Gyx, (10.3-6)
G, =6, G, (10.3-7)
y=Ce+ Dx, =CX (10.3-8)
Cc=[c D] (10.3-9)
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X = A% +Bu +K (y-CX) (10.3-10)
e A | ETe B K, 6
= R [u]+ _ y—[C | D] _ (10.3-11)
A 0 | 4 |%]| | O K, 3,
(10.3-12)

= Ae+ Bu+Ex,+K,(y— Ce— Dx,)

Q>

Xy = AgXy + Ko (y — Cé — D3y) (10.3-13)

=] [

Ky . » 4
-*

Figure 10.3-1 Block Diagram of Observer Including Estimation of Exogenous V ector
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The closed-loop matrix for the metasystem,

A {A_Kec E-K.D } (10.3-14)

A=A-KC=
~K,C Ay—K,D

e The closed-loop poles of the observer can be placed at arbitrary locations if the metasystem is observable, or N of the

metasystem is invertible.

N=[c' AC .. (A)*C| (10.3-15)
If the observer for the system error has already been designed, it might be desirable to amend the existing observer.
e=e+Vx, (10.3-16)
e . the observer for the process with xo =0
¢ =Ae+Bu+K(y—Ce) (10.3-17)

K : the gain matrix for the observer in the absence of x,
e=2+V3,
= A+ Bu+K(y—Ce)+V (4,3, + K,(y — C( +VZ,) — D%,))
= A¢ + Bu+ (K + VK, )(y — C2) + (VA, — VK (CV + D)%, (10.3-18)
e=A(e +VZi,)+Bu+Exy + K, (y—Ce —(CV + D)Z,)

=Ade+Bu+K,(y—Ce)+(AV +E—-K,(CV + D))x, (10.3-19)
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K+VKy,=K, (10.3-20)

VA, —VK,(CV + D)= AV + E—K_(CV + D) (10.3-21)
VA, —(A-KC)V = E—-KD (10.3-22)

V =[A4, - (4— KC)|(E - KD) (10.3-23)

Xy = Aoy + Ko (y — C(€ +VZy) — DX,)
= (dy = Ko(CV + D))z, + Koy — C&) = Aok, + Ko(y — C) (10.3-24)
e The input to the estimate of the exogenous vector is the residual of the observer for the process without exogenous
Inputs.
r=y-Ce (10.3-25)
e |t is thus possible to design that observer first, and then to use its residua to drive the estimator of the exogenous
inputs.
e |nsummary, the design of an observer of the system with exogeneous input:
Step 1. Design an observer (i.e., find the gain matrix ) for the process without exogenous inputs.
Step 2. Using the gain X found in step 1, find the matrix V.

Step 3. Find K, so that dynamics matrix of the estimator of the exogenous vector has the desired pole locations.
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Ay = Ao - Ko (CV + D) =

Ko

(Disturbance- l“
free
residual)

)

C &

Figure 10.3-2 Alternate form of observer in which estimate of exogenous input is obtained using *“disturbance-free”

residual.
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In the motor-driven inverted pendulum problem, if there is a constant disturbance, wind for instance, presented in addition

to the control input, «, the complete dynamic model is
0=
=00 -aw+ Pu+d

d=0
Thus,
0 1 O 0
A=|Q*> —ag 1llandB=|p
0 0 O 0
or

o

If the observation vector depends only on the angular position 6, thus,

0
y= 0 0]
d

Thus,
Cc=f oland D=0

D
(2)
3)

(4)

()

(6)

(7)
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The observability test matrix for the metasystem is

10 Q°
N=[c' AC A*C]=|0 1 -« (8)
00 1
The open-loop characteristic equation is
s -1 0
IsI-A|=-Q% s+a -1=s(s*>+as-Q%) 9
0 0 s
Thus,
a=a,a,=-Q* and a,=0 (20)
and hence
1 a -Q°F
=10 1 « (1)
00 1
Thus,
1 0
[(N\W) ™' =|-a 1 (12)
0 0
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When the desired characteristic equation of the observer is s° +a,s® +a,s +a, = 0, the gain matrix is

A~ A

1 0 0| a-«c a, —a k,
K=l-a 1 0[a,+Q%|=|a,+Q°-a(a,—a)|=|k,
0o 01| a a, k,

The observer dynamics are given by X = AX+Bu +K (y—CX),
0= +k(yv—0)
&>=0%—ad+ pu+d+k,(y-0)
d =ky(y—6)
and has the block-diagram representation shown bel ow.

k3

(13)

(14)
(15)

(16)
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For the alternate method of design, the disturbance-free observer follows & = 4z + Bu + K (y — C?).

Characteristic equation of the disturbance-free observer,

Al s -1 I P
|sz A|—_QZ I e Q*=0 (17)
N=[c’ A’C']=[1 0} and W{l a} (18)
01 01
Thus,
1 0
ey LG (19)
-a 1
When the desired characteristic equation of the disturbance-free observer is s*+a;s +a, = 0, the gain matrix is
= apl@-a | |1 O a-a | a,—a _ k,
K—[(NW) ]|:&2—a2j|_|:—05 1:||:&2+sz|_|:&2+Qz_a(&l_a)j|_|:zz:| (20)
The closed-loop matrix of the disturbance-free observer is
- -~ o 17 [k k1
A=A-KC= -1 2L o]= L 21
Lzz —a} Lj[ ] [Qz—kz —a} ()
The correction matrix, V = —(4 - KC)'E =-A"'E
~a_ g, mema_ 1| —a —1.
At =(4-KC)*t = i {_Qz oF _kj (22)
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V:—(A—EC)lEzi[ . }}H:i[}l (23)
a,|Q%—k, k |1| a,|k
The disturbance estimator follows %, = (4, — K,(CV + D))z, + Ko(y — C&) = A%, + Ko(y — CE) .
cr+D=[ O]FI“E }:i (24)
kla,| a,
d =k, 13,)d +k, (v~ 0) (25)
The disturbance-estimation gain &, can determined from the remaining of the desired characteristic equation.
‘sl—zo‘zs+kd/&2=s+&d (26)
k, = a2ad (27)
The equation for the disturbance-free observer is
0 =@+ (y-0) (28)
& =0Q% —ai+ Pu +k,(v —0) (29)
when e=¢ +Vx,,
~ ~ 1 A~
0=0+—d (30)
as
A ~ 1;1 7
o=0+1d (31)
a,
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A block diagram showing the implementation is given below.

-4

. 2

The overall dynamic of the observer follows (s*+a,s +a,)(s +a,) = 0.
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10.4 Reduced-Order Observers

y=Cx (10.4-1)

When C isanonsingular matrix,
x=x=C"y (10.4-2)
e In many applications, it is possible to group the state variables into two sets: those that can be measured directly and

those that depend indirectly on the former.

x=|__ (10.4-3)
X2

X, = Apx, + A,x, + Bu (10.4-4)
Xy = Apx, + Aypx, + Bou (10.4-5)

X
y=Cx=[C, | 0] __ (10.4-6)

X2
X, = AR, + AR, + Bu+ K, (y—C,%)) (10.4-7)
X, = Ay R, + ApR, + Byu+ K,(y — C,%,) (10.4-8)
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x=%=Cy (10.4-9)

X, = Ay Clty + A,,%, + Byu (10.4-10)

e The dynamic behavior of the reduced-order observer is governed by the eigenvalues of A,, which is a submatrix of the
open-loop dynamics matrix 4, a matrix over which the designer has no control.

e |f the eigenvalues of A4, are suitable, then the observer could be designed. But there is no assurance that the
eigenvalues of 4, are suitable.

A suitably general structure for the estimation of x,, isgiven by

X,=Ly+z (10.4-11)
t=Fz+Gy+ Hu (10.4-12)
X, — X, e
e=x—Xx= =|__ (10.4-13)
X, =X, P
e,=x-x=0 (10.4-14)

by =X, =Xy = AyX, + ApyX, + Byt — Ly — 2
= Ay x, + Ayyx, + Bou — L[C,(Ayx, + Apx, + Bu)|— Fz — Gy — Hu (10.4-15)

z=x,-Ly=x,-e,-Ly=x,—e,— LCyx, (10.4-16)
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é, = Fe,+ (Ay — LC, Ay — GCy + FLC,)x, + (A,, — LCy A, — F)x, + (B, — LC,B, — H)u (10.4-17)
F=A4,—-LCA, (10.4-18)

H=B,-LCB, (10.4-19)

GC, = Ay — LC, 4, + FLC, (10.4-20)

¢, = Fe, (10.4-21)

e,(s) = (s — F)e,(0) (10.4-22)

e Selecting the gain matrix L of the reduced order observer to place the eigenvalues of F is the same type of problem as
selecting the gain matrix X to place the eigenvalues of A.
e Inorder to place the poles of F, it is necessary that the corresponding controllability test matrix isinvertible.
N, =[4LC) AL,4LC) o (4) P aLc] (10.4-23)
G = (4, — LC4,)C + FL (10.4-24)
t=Fz+Gy+Hu=F(%,— Ly) +[(A4y — LC,4,))C;* + FLly + Hu = FX, + (4, — LC,A,)C;"y + Hu = Fx, + gy + Hu (10.4-25)

g =(4, - LCA,)C* (10.4-26)
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2 ;CFI ol >
H=B,-LC, B,
G N f=A22‘LC|A12 ;
G=(A2-LC,A,))C]' + FL
SLIEN 'H ‘J z £

Figure 10.4-1 Reduced-Order Observer for Observation y = C1x; with C; Nonsingular
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Example: Metastate form of a system is represented by

Xy app dp € || X% b,
Xo |=lay ay e, || X, |+ b, u

X, 0 0 Ofx,| |0
A. Full-order observer, assuming only x; is measured.
y=x,0r C=[1L 0 0
B. Full-order observer, assuming both x; and x, are measured.

1 00
y,=x,and y,=x, or C=

010

C. Reduced- (second-) order observer, assuming only x; is measured.

D. Reduced- (first-) order observer, assuming both x; and x, are measured.

(10.4-27)

(10.4-28)

(10.4-29)
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Case A Full-order observer with one measured variable

5.51 = ayX; +a,X, te X, +hu+k(y-x) (10.4-30)
;Cz = Ay, +apX, +e,X, +bu+ky(y— X)) (10.4-31)
X, =ky(y—%,) (10.4-32)
The gain matrix
ky
K=k, (10.4-33)
ks
The open-loop characteristic polynomial
Sy T4, T4
sl — A =|—ay s—a, —e,|=s[s*—(ay +az)s+auay —a,pa,] (10.4-34)
0 0 s
ay =—(ay +az), a, = ayay —aypay, AN a; =0 (10.4-35)
1 —(ay+ay) anaz—a,ay
wW=0 1 —(a,; +ay) (10.4-36)
0 0 1

124 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

The observability test matrix

1 ay a121+a12a21
N=[C' A'C (A')ZC’]z 0 a, aja,+a,ay (10.4-37)

0 e aye +ape

1 —a, 0
NW =|0 a, 0 (10.4-38)
0 e —aye +ape,
a, + (ay + ay) 1 0 0 a, + (ayy + ay)
K =[(Nnw) Ay = ylyy + iyl | = | play, Ua, —ellay,(~ape +a,e,)] || @, — ayay, + a0, (104'39)
a, 0 0 U(-aye + aye,) a,
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Case B Full-order observer with two measured variables

;Cl = anfcl + a12£2 + el)’ed +byu+kyy (v, — )21) +hy, (v, — )Acz) (104-40)
5.52 = Ay Xy + Ay, + X, + byt + ky (v — X)) + ki (v, — X,) (10.4-41)
x;\d =y (v = X)) + kg (v, = X,) (10.4-42)
The observer gain matrix
ki ok
K=k, ky (10.4—43)
ky ks

e There are six gains to be selected: twice as many as are needed to place al the closed-loop poles. There are many

solutions.
e If y; isused to estimate x; and y» is used to estimate x,. For estimating x,;, we might consider using the sum of y, - x,
and y, - x,, which would happen when k3, = k3, = £s.
k, 0O
K=|0 &k, (10.4-44)
k3 k3

e Determination of the three gains k1, k», and ks needed to place the eigenvalues of 4= 4 - KC is straightforward problem

in algebra.
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Case C Reduced-order observer with one measurement

| a, e

x=| " [,4A=| — - -
X ay | ay e

X ay

X, 0] 0 0

)Aclchlyzy

X,=Ly+z

X, =ly+z

X, =Ly+z,

z=Fx,+gy+ Hu

Zy = fuXo + foX, + &y + hu

Zy = faXo + fuXy + 820+ hyu

a e /
F =4, -LC/4, :{ (2)2 02}—[11:|[a12 el]:|:
2

g = (4y —LCi 4y, )Cl_l = |:a 21} - [ll }[an] = [

0

b,
H=B,-1CB; =| * |-

l
/

2

[

a, —hLay,

—lyay,

,C=[ ] 0 0]

e, —le,;

—lye,

J-Li]

|

ay _llall:| _ {871
—lay, &g

b,-Lb
b=,
_lzbl

:|:fll le
f21 f22

|

|

(10.4-45)

(10.4-46)
(10.4-47)
(10.4-48)
(10.4-49)
(10.4-50)
(10.4-51)
(10.4-52)

(10.4-53)

(10.4-54)

(10.4-55)
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The characteristic equation for F

|51_F| 252_(f11+f22)5+f11f22_f12f21 252"'&15"'&2 =0
a, =-a,, +La, +1,e,

ay =—aypel, +ape,l,

a
_ 2
l, =

—Aye t+a,e,

1. a,e,
L=—|a+a,—*+—

ay —axye tape,

(10.4-56)
(10.4-57)
(10.4-58)

(10.4-59)

(10.4-60)
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Case D Reduced-order observer with two measur ements

X a, a, | e b,
O S P L B P ’C:[l 0 | 0} (10.4-61)
- A _ 011] 0
X, 0 0] O 0
5=Cly=y (10.4-62)
X = (10.4-63)
X, =, (10.4-64)
X, =Ly+z (10.4-65)
X, =Ly, +lL,y,+z (10.4-66)
=F%,+gy+Hu (10.4-67)
Z= R, + gV + 8., +hu (10.4-68)
F = A, —LCyAy, =[0]- [, 12{2} = le, —le, (10.4-69)

g = (4 _LC1A11)C17l = [0 0]_ [Il lz{an alz} = [_ Lay —lay, —hLay, _Zzazz] (10-4'70)

an dp

H=B,-LCB, =[0]-], lz{ﬂ =—1,b, —1,b, (10.4-71)

2
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The characteristic equation for F
|sI —F|=s+lLe+le,=s+a,=0 (10.4-72)

130 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

11 Compensator Design by the Separation Principle

11.1 Compensator s Designed Using Full-Order Observers

The standard dynamic process

X = Ax+Bu (11.1-1)
Observation
y=Cx (11.1-2)
A full-state feedback control law
u=—-Gx (11.1-3)
An observer
X=AS+Bu+K(y-Cx) (11.1-4)
The control law in the separation principle
u=-Gx (11.1-5)
The combined plant dynamics
X = Ax— BGx (11.1-6)
The combined observer
X = AR — BGX + K(Cx — C%) (11.1-7)
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The observer error

A

e=x—Xx
X =Ax—-BG(x—e) =(A—BG)x+ BGe = A x+ BGe

é=(4-KC)e = Ae

(11.1-8)
(11.1-9)
(11.1-10)

"Comipénsator

|

| .

|

l;; X £ G:‘f'

|" s (s)ali::crvcr g;;:lrol ‘ I I

|~ Ao | | A

g a -

| ol e _
L L o
e

Figure 11.1 Control System Using Observer in Compensator
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Ac

Figure 11.1-2 Block-Diagram Representation of State and Error in System with Compensator Designed by Separation

Principle

MR MR —

The combined plant characteristic equation
sl-4 -BG

51— 4,| = 0 S1_2|=|s1_Ac sI-4=0 (11.1-12)

(sI — A)e(s) = e, (11.1-13)

e(s) = (s — ) e, (11.1-14)

(sI — 4,)x(s) = BGe(s) + x, (11.1-15)

x(s)=(s] — A.)BGe(s)+ (sI — A.) *x, = (s] — A.) *BG(sI — A) e, + (s — 4.) " x, (11.1-16)
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_adj(sI — A.)BG adj (s — A)

(s — 4)*BG(sT — A) ™ = IsI—A ||sI- 4] (11.1-17)
X=AX-BG+K(Cx—C%) = (4-BG-KC)3+ Ky (11.1-18)
x(s) = (s — A+ BG + KC) " Ky(s) (11.1-19)

u(s) = —Gx(s) = —G(sI — A+ BG + KC) " Ky(s) (11.1-20)

The transfer function D(s) of the compensator

u(s) = ~D(s)¥(s) (11.1-21)
D(s) = G(sI — A+ BG+ KC) ™K = G(s] - 4,)*'K (11.1-22)
A =A-BG-KC=A-BG=A4 -KC (11.1-23)

The steps of the compensator design using observers:

Step 1. Design the control law under the assumption that all state variables in the process can be measured.

Step 2. Design an observer to estimate the state of the process for which the control law of step 1 was designed.

Step 3. Combine the full-state control law design of step 1 with the observer design of step 2 to obtain the compensator

design.
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Compensator designed using full-order observer is sampled in the motor-driven inverted pendulum problem here.
Step 1. Full-state feedback design
The other design of the control system with constant disturbance is shown here. The dynamics, including the

e Ze bk <1>

u=-Gx—Gyx, (2

disturbance are given by

The control law for this processis

The gain matrix G was obtained before and it is used here. For the desired free-disturbance characteristic of s*+as +a,,

!

_ o |@+0h)Ip
G_g_[(a_l—a)/ﬂ} ©

In addition, we need the disturbance gain go which is computed by
go=B"E (4)

where E isthe matrix that multiplies the disturbance, in this case

EH (5)

1
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and since
B* =(CA'B)™CA? (6)

where

AC=A—BG=[O _1a}—{;}[(az+92)/ﬁ (az—a)/ﬂ]{_(i 1} (7)

Q° a, -—a,
The observation matrix C is needed for the computation of B”. For this example, we assume that our sole measurement is

of the pendulum angular position 0, that is

y=Cx (8)

with
c=01 0] 9)

Thus
cat=fi O][_aa_l ﬂ_i:[_al/a—z 1z, (10)

Hence, with
B-m (11)
1B

B* =[a,/ p 1] (12)

136 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

Thusfrom (4),

Thus the full-state feedback control law is

Step 2. Observer design with known control

The observer designed under the assumption that the control is known was derived before, it is used here.

A

0=0d+k(y-0)

A

>=Q%0—ad+ fu+d+k,(y-0)
‘izks()’_é)

For the desired observer characteristic of s®+a,s* + a,s + a,, the observer gain matrix given by

A

k, a,—a
K=k, |=|a,+Q%*-a(a,-a)
ks

as

(13)

(14)

(15

(16)

(17)

(18)

137 Manukid Parnichkun




ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

Step 3. Compensator design
The compensator dynamic equations are obtained by using the estimated state in (14).

u:—(52+92j§_(51_a]a3—£42 (19)
B B B

and also using this control in (15)-(17).
A block-diagram representation of (15)-(17) and (19) is shown in figure below, which is the same as the block diagram

for the observer with known input, but with the input « given by (19).

ks J = 9
B
> e g, >
y Q ‘ B
k
\ 2 ) I b f P 9

02

k|
p=0
-
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Although the structure of the figure explicitly exhibits the estimates of the state variables, it is not necessary that the
compensator be implemented by that structure. As long as the transfer function between the measure state y = 6 and the
control output u is the same as the transfer function between y and « in the figure, the closed-loop system will have the
same behavior.

The compensator transfer function is

D(s)=G(sI - 4) K (20)
where
—k, 1 0] [o —a,+a 1 0
A =A-BG=|-k,+Q? —a 1|-|Bllg gl=|-d,+ald,-a)-a,-Q* —-a, O (21)
—k, 0 0| |0 —a, 0 0
The resolvent for 4. is given by
S(s_al) N 0
(s1-21€)*1=§ sa, +a@, + Q%a(a, - )] s(s+a,—a) 0 (22)
—a,(s +a,) -a, s+ (a,+a,—a)s+(a, - a)a, —a)+a, +a, +Q?
where
A=s[s®+(a,+a,—a)s+(a, - a)(a, —a)+a, +a, + Q7] (23)
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After some calculation the transfer function of the compensator is determined to be

d;s® +d,s+d,

PO v, —a)s + (@ - a)(a, )+ dy @, + O @9
where
dy = @, (G, — @)+ a,(@, — @) —a(d, — ) (@, —a) + Q (4, + @ — 2a) +d, (25)
d, = a,a, + Q*[(a, - a)(@, - a) +a,]+ Q* +a,a, (26)
d, = aJla, + (a, - a)@, - a)] (27)

Note that the transfer function of the compensator as given by D(s) has a pole at the origin which resulted in this case
form the unknown disturbance which is estimated by the observer. As a result of the pole at the origin, the cascade of the
compensator and the original plant aslo has a pole at the origin, resulting in a“type 1" closed-loop transfer function which

will ensure that the steady-state error for a constant disturbance is zero.
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11.2 Reduced-Order Observers

For the special case in which the observation can be used to solve for a substate:

y=Cpx, (11.2-1)

with C; being a nonsingular matrix,
Y=x=Cy (11.2-2)
X,=Ly+z (11.2-3)
t=Fz+Gy+Hu=F%,+gy+Hu (11.2-4)
F=A4,-LC4, (11.2-5)
G = Ay — LC, A, + FL;g = (4, — LC,4,))C;* (11.2-6)
H=B,-LCB, (11.2-7)

The control law
u=-Gr=-[G, G, ]El} (11.2-8)
2
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)

G,

(]
h

X3
G, |

H

Figure 11.2-1 Block Diagram of Compensator Using Reduced-Order Observer

142 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

e=x—fc={xl_)fl} (11.2-9)
Xo =X
The dynamics of the plant
X = Ax—BG(x—e) = (4—BG)x + B(Ge, + G,e,) = (4 — BG)x + BG,e, (11.2-10)
X, =X (11.2-11)
e, =0 (11.2-12)
é, = Fe, (11.2-13)
e
F A,

Figure 11.2-2 Block Diagram Representation of State and Error in System with Compensator Using Reduced-Order

Observer
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Lj B ﬁf BFG k } (11.2-14)

The combined plant characteristic equation

LA _BG‘ =|s1— 4 sI-F|=0 (11.2-15)
0 sI-F
e,(s) = (s — F) e, (0) (11.2-16)
x(s)=(sI —A4,)"BGye,(s)+(sI —4,)"x(0) (11.2-17)
x(s)=(sI —A4,)"'BG,(sI —F)"e,(0)+ (s —A4,) " x(0) (11.2-18)

adi(sI — A )BG ,adi(s — F)

s —A)'BG,(s[-F)* =
( ¢) 5 ) ST—A_[[s —F]

(11.2-19)
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