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State-Space Control Theory 

 
Modeling and analysis approaches of linear systems 

• Transfer function or frequency-domain approach 

• State-space approach 

o All the differential equations are first-order equations.  

o The number of first-order differential equations is equal to the order of the system.  

o The dynamic variables that appear in the system of first-order equations are called the state variables.  

o The number of state variables in the model of a physical process is unique, although the identity of these 

variables may not be unique 
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1 Physical Notion of System State 

 

 
Figure 1-1 DC Motor Driving Inertial Load 

 
iK1=τ                                                                                       (1-1) 

ω2Kv =                                                                                      (1-2) 

When armature inductance is small and negligible, 

Rive =−                                                                                      (1-3) 

When viscosity friction is small and negligible, 
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Figure 1-2 Block Diagram Representing DC Motor Driving Inertial Load 
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For k order system, state variables: x1, x2,…, xk  

Control inputs: u1, u2,…, ul.  

General form of the dynamic system 

),,,,,,,,( 21211
1

1 tuuuxxxf
dt
dxx lk LL& ==  

),,,,,,,,( 21212
2

2 tuuuxxxf
dt

dxx lk LL& ==  

……………………………………..                                                         (1-10) 
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x: state vector  

u: input vector 

)f(x,u,t
dt
dxx ==&                                                                          (1-12) 
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In the state-space model of a linear process, the general differential equations take the special form: 

llkk utbutbxtaxta
dt
dxx )()()()( 11111111

1
1 +++++== LL&  

llkk utbutbxtaxta
dt

dxx )()()()( 21212121
2
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…………………………………………………..                                               (1-13) 
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dt

dxx )()()()( 1111 +++++== LL&  

State equation, 
B(t)uA(t)x

dt
dxx +==&                                                                   (1-14) 
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A(t): state matrix  

B(t): input matrix 

For linear time-invariant processes, the state equation 

BuΑxx +=&                                                                               (1-16) 

where A and B are constant matrices. 
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Measured outputs: y1, y2,…, ym.  
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y(t): output vector or observation vector  

In a linear system the output vector is also a linear combination of the state and the input, observation equation 

)D(t)u(tC(t)x(t)y(t) +=                                                                 (1-18) 

C(t): output matrix  

For time-invariant processes, C(t) and D(t) are constant matrices. 
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Two types of input: 

1. Control inputs, u, produced intentionally by the operation of the control system 

2. Exogenous inputs, x0, present in the environment and not subject to control within the system 

The general representation of a linear system  

0ExBuAxx ++=&                                                                         (1-19) 

 

 
Figure 1-3 Block-Diagram Representation of General Linear System 
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Consider the system defined by 

uyyyy 66116 =+++ &&&&&&                         (1) 

Let’s choose the state variables as 

yx =1                             (2) 

yx &=2                            (3) 

yx &&=3                            (4) 

Then we obtain 

21 xx =&                             (5) 

32 xx =&                            (6) 

uxxxx 66116 3213 +−−−=&                               (7) 

Or in the matrix form of state-space representation as 
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Block diagram, representing this system, is shown below. 
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Consider again the system  

uyyyy 66116 =+++ &&&&&&                      (11) 

Taking Laplace transformation of the system with zero initial condition, we get 

)(6)(6)(11)(6)( 23 susyssysyssys =+++                                 (12) 

The system transfer function then becomes 
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By expanding the transfer function into partial fractions, we obtain 
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Let’s define 
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The inverse Laplace transformations of (16)-(18) give 

uxx 311 +−=&                            (19) 

uxx 62 22 −−=&                           (20) 

uxx 33 33 +−=&                            (21) 

Or in the matrix form of state-space representation as 
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Since from (15)-(18), 
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Block diagram, representing this system, is shown below. 
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2 Solution of Linear Differential Equations in State-Space Form 

 
General differential equation of an unforced system 

Axx =&                                                                                 (2-1) 

The solution is the form of 

cetx At=)(                                                                               (2-2) 

where eAt is the matrix exponential function 

LLL ++++==++++=++++=
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 ;7183.2
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111 ,
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2
32 tAtAAtIeexxxe Atx                       (2-3) 

At time τ, the state x(τ) is given.  

cex Aττ =)(                                                                               (2-4) 

)()( 1 ττ xec A −=                                                                             (2-5) 

The general solution  

)()()()( )(1 ττ ττ xexeetx tAAAt −− ==                                                                 (2-6) 

General differential equation of a forced system,  

BuAxx +=&                                                                                (2-7) 

The solution is the form of 

)()( tcetx At=                                                                               (2-8) 
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)()()()( tButcAetcetcAe AtAtAt +=+ &                                                                (2-9) 

     )()( tBuetc At−=&                             (2-10) 
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The combined solution of free and forced response  
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T

tAtA dBuexetx λλτ λτ )()()( )()(                                                            (2-13) 

At time τ, the state x(τ) is given.  
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When B and C are time-varying, the solution is generalized to 

∫ −− +=
t

tAtA duBexetx
τ

λτ λλλτ )()()()( )()(                                                          (2-18) 

∫ −− +=
t
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When A is time-varying, the solution of xtAx )(=&  is generalized to 

)(),()( ττφ xttx =                                                                         (2-20) 

The matrix φ(t, τ) that relates the state at time t to the state at time τ is generally known as the state-transition matrix.  

The complete general solution  
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The differential equation for the position of a mass without friction to which an external force f is applied is 

umfx == /&&                                (1) 

Defining the state variables by 

xxxx &== 21  ,                                (2) 

result in the state-space form 

21 xx =&                           (3) 
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Using the series definition 
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Thus, the solution which follows the general solution 
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3 Solution by the Laplace Transform: The Resolvent 
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)()()]([                                                                  (3-1) 

Laplace transform can be applied also when f(t) is a vector. 
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)()()( tButAxtx +=&                                                                           (3-3) 

)()()0()( sBusAxxssx +=−                                                                    (3-4) 

                      )()0()()( sBuxsxAsI +=−                                       (3-5) 

)()()0()()( 11 sBuAsIxAsIsx −− −+−=                                                              (3-6) 
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eAt: state transition matrix for a time-invariant system  

1)()( −−= AsIsφ                                                                         (3-11) 

φ : resolvent of A 

• The steps in calculating the state-transition matrix using the resolvent: 

1. Calculate sI-A. 

2. Obtain the resolvent by inverting (sI-A)-1. 

3. Obtain the state-transition matrix by taking the inverse Laplace transform of the resolvent, element by element. 

     For a general kth-order system the matrix sI-A has the following appearance 
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⎢

⎣

⎡
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)()( 1

AsI
AsIadjAsI

−
−

=− −                                                                     (3-13) 

k
kk asasAsI +++=− − L1

1||                                                                (3-14) 

• |sI-A |: characteristic polynomial of the matrix A.  

• The roots of characteristic polynomial are called the characteristic roots or the eigenvalues, or the poles of the system 

and determine the essential features of the unforced dynamic behavior of the system. 
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                     E1=I 

                          E2-AE1=a1I 

                                      E3-AE2=a2I 

……………                              (3-19) 

                       Ek-AEk-1=ak-1I 

                            -AEk=akI 

The subsequent coefficients 

E2=AE1+a1I 

E3=AE2+a2I 

……………                                             (3-20) 

Ek=AEk-1+ak-1I 

Ek+1=AEk+akI=0                                   (3-21) 
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The dynamic of a dc motor driving an inertial load is represented by 
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(1) is equivalent with 

BuAxx +=&                             (2) 

The matrices of the state-space characterization are 
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Finally, taking the inverse Laplace transforms of each term in (5) we obtain 
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4 Input-Output Relations: Transfer Functions 

 
)()()( tButAxtx +=&                                                                           (4-1) 

Initial state is not considered in transfer function determination. 

x s sI A Bu s( ) ( ) ( )= − −1
                                                                       (4-2) 

y t Cx t Du t( ) ( ) ( )= +                                   (4-3) 

y s Cx s Du s( ) ( ) ( )= +                                   (4-4) 

Transfer-function matrix 

DBAsICsH +−= −1)()(                                       (4-5) 

The corresponding impulse-response matrix 

H t Ce B D tAt( ) ( )= + δ                                              (4-6) 

In case that there is no direct connection from the input to the output, D = 0, the degree of the numerator in H(s) is always 

lower than the degree of the denominator.  
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5 Transformation of State Variables 

 
A linear transformation between 2 formulations of state variables  

z Tx=                                     (5-1) 

z: state vector in the new formulation  

x: state vector in the original formulation.  

When the transformation matrix T is a nonsingular k by k matrix.  

x T z= −1                                     (5-2) 

&x Ax Bu= +                                       (5-3) 

y Cx Du= +                                       (5-4) 

T z AT z Bu− −= +1 1&                                          (5-5) 

          &z TAT z TBu= +−1                                    (5-6) 

y CT z Du= +−1
                                        (5-7) 

&z Az Bu= +                                       (5-8) 

y Cz Du= +                                       (5-9) 

A TAT= −1 , B TB= , C CT= −1 , D D=                               (5-10) 

• All formulations of the same system always have the same characteristic polynomial.  
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Consider again the system defined by 

uyyyy 66116 =+++ &&&&&&                           (1) 

At least the following two pairs are choices to represent this system.  

[ ]001     ,
6
0
0

     ,
6116
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010

111 =
⎥
⎥
⎥
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⎢
⎢
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⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
= CBA                                (2) 

and 

[ ]111     ,
3
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3
     ,
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⎥
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⎢
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⎢

⎣

⎡

−
−

−
= CBA                        (3) 

The transformation matrix below is used to transform the system from (3) into (2), 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−=
941
321

111
T                             (4) 

1
1

2

6116
100
010

5.05.11
143
5.05.23

300
020
001
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321

111
ATTA =

⎥
⎥
⎥
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⎢
⎢
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⎣
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=
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⎢
⎢
⎢

⎣

⎡
−−−

⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡

−
−

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−=−                      (5) 
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12   
6
0
0

3
6

3

941
321

111
BTB =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
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⎥

⎦
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⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−=                                              (6) 

[ ] [ ] 1
1

2 001
5.05.11
143
5.05.23

111 CTC ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−=−                                         (7) 

[ ] 12 0 DD ==                                 (8) 

 

• To determine transformation matrix, T, when A  and A  are given. Solve 2k  unknown in T in 

A TAT= −1 , B TB= , C CT= −1 , D D=                               (5-11) 
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6 State-Space Representation of Transfer Functions: Canonical Forms 
 
6.1 First Companion Form 
 
• In the first companion form, the coefficients of the denominator of the transfer function appear in one of the row of the 

A matrix.  

Transfer function of a single-input, single-output system of the form 

k
kk asassu

sysH
+++

== − L1
1

1
)(
)()(                                                          (6.1-1) 

)()()( 1
1 susyasas k

kk =+++ − L                                                             (6.1-2) 

uyayDayD k
kk =+++ − L1

1                                                               (6.1-3) 

where Diy: diy/dti.  

uyayDayD k
kk +−−−= − L1

1                                                            (6.1-4) 
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Figure 6.1-1 State-Space Realization of Transfer Functions in First Companion Form 

(a) 
k

kk asas
sH

+++
= − L1

1

1)(  , (b) 
k

kk
k

kk

asas
bsbsbsH

+++
+++

= −

−

L

L
1

1

1
10)(  
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The corresponding state equations 

21 xx =&  

32 xx =&  

… …                                                                                  (6.1-5) 

kk xx =−1&  

               uxaxaxax kkkk +−−−−= − 1211 L&  

The output equation  

1xy =                                     (6.1-6) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

=

−− 121

1000

0100
0010

aaaa

A

kkk L

L

MOMMM

L

L

, 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
0

0
0

MB , [ ]0001 L=C , [ ]0=D                                    (6.1-7) 

• The form of matrix A is said to be in companion form.  

• The different numbering of the state variables will make different form of matrices A, B, and C. All of them are valid  
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General transfer function 

k
kk

k
kk

asas
bsbsb

su
sysH

+++
+++

== −

−

L

L
1

1

1
10

)(
)()(                                                            (6.1-8) 
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sy
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sy
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=⋅= −
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L

L
1

1

1
10

)(
)(

)(
)(

)(
)(                                                      (6.1-9) 

k
kk bsbsb

sz
sy

+++= − L1
10)(

)(                                                              (6.1-10) 

k
kk asassu

sz
+++

= − L1
1

1
)(
)(                                           (6.1-11) 

)()()( 1
10 szbsbsbsy k

kk +++= − L                                                         (6.1-12) 

zbzDbzDby k
kk +++= − L1

10                                                            (6.1-13) 

zx =1  

21 xx =&  

32 xx =&  

… …                                                                                  (6.1-14) 

kk xx =−1&  

               uxaxaxax kkkk +−−−−= − 1211 L&  
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ubxbabxbabxbaby kkkkk 0011201110 )()()( +−++−+−= −− L                                     (6.1-15) 
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⎡

=

1
0

0
0

MB , 0[ babC kk −=   011 bab kk −− −   …  ]011 bab − ,  ][ 0bD =      (6.1-16) 

For single-input, multiple-output system  

k
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k
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1
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11011
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…………………………                                                               (6.1-17) 
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   (6.1-18) 
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Figure 6.1-2 State-Space Realization of Single-Input, Multiple-Output System 
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When state variables are numbered from left to right instead of right to left. 
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MB , 011[ babC −=   022 bab −   …  011 bab kk −− −   ]0bab kk − ,  ][ 0bD =      (6.1-19) 

 

 
Figure 6.1-3 Numbering State Variables from Left to Right 
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Figure 6.1-4 Alternative First Companion Form of State-Space Realization 

 
upxx 121 +=&  

upxx 232 +=&  

     … … … …                               (6.1-20) 

upxx kkk 11 −− +=&  

upxaxax kkkk +−−−= 11 L&  

upxy 01 +=                                                                              (6.1-21) 
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DupupxDy 012 ++=  

                uDpDupupxyD 2
0123

2 +++=  

                         …………………………….       (6.1-22) 

                       uDpuDpDupupxyD kk
kkk

k 1
0

2
121

1 −−
−−

− +++++= L  

                                   uDpuDpDupupxaxaxayD kk
kkkkk

k
0

1
111121 +++++−−−−= −

−− LL  
upapapapyaDyayDayD kkkkkk

kk )( 011111
1

1 ++++=++++ −−−
− LL  

                           Dupapap kkk )( 01121 −−− ++++ L  

        uDpap k 1
011 )( −+++L                                                  (6.1-23) 

    uDp k)( 0+  

k
kk
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bsbsb

su
sysH

+++
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10
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)()(                                                            (6.1-24) 

ubuDbuDbyaDyayDayD k
kk

kk
kk +++=++++ −

−
− LL 1

101
1

1                                       (6.1-25) 

     00 bp =  

                                                                                 1011 bpap =+  

    ……………………                                                             (6.1-26) 

                                                          101121 −−−− =+++ kkkk bpapap L  

   kkkkk bpapapap =++++ −− 01111 L  
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Figure 6.1-5 State-Space Realization of Multiple-Input, Single-Output System 
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6.2  Second Companion Form 

 
• In the first companion form, the coefficients of the denominator of the transfer function appear in one of the column of 

the A matrix.  

For a single-input, single-output system,  
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Figure 6.2-1 State-Space Realization of Single-Input, Single-Output System 

 
ububxaxx 101121 )( ++−=&  

ububxaxx 201232 )( ++−=&  

……………………                                                                      (6.2-6) 

  ububxaxx kkkk 10111 )( −−− ++−=&  

ububxax kkk ++−= )( 01&  

                                  ubxy 01 +=                                                                         (6.2-7) 
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6.3 Jordan Form: Partial Fraction Expansion 
 
• This canonical form follows directly from the partial fraction expansion of the transfer functions.  

When the poles of the transfer function are all different. The partial fraction expansion of the transfer function  
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Figure 6.3-1 Complex Jordan Form of Transfer Function with Distinct Roots 
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When the poles are complex conjugates, ωσ js +−=1  and ωσ js −−=2 , with corresponding residues γλ jr +=1  and 

γλ jr −=2 .  
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Figure 6.3-2 Companion-Form Realization of Pair of Complex Conjugate Terms as a Real Second-Order Subsystem 
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When the system has repeated roots, the partial fraction expansion of the transfer function H(s) will be of the form 
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Figure 6.3-3 Jordan-Block Realization of Part of Transfer Function Having Repeated Pole 
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The state vector of the overall system consists of the concatenation of the state vectors of each of the Jordan blocks. 
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⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

kA

A
A

A

A

L

MOMMM

L

L

L

000

000
000
000

3

2

1

, 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

kB

B
B
B

B
M

3

2

1

, [ ]kCCCCC L321=                    (6.3-26) 
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7 Stability 

 
Consider a system whose equilibrium state exists at the origin x = 0. The Euclidean length of the vector from the origin, 

often called the norm, is written as 

[ ] 2/122
2

2
1

2/1

2

1

21
2/1 )()( n

n

n xxx

x

x
x

xxxxxx +++=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=′= L
M

L                                       (7-1) 

 
Figure 7-1 Stability Regions in State Space 
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• Within the n-dimension state space, S(R) is a spherical region of radius R. Then the region S(R) is said to be stable if 

for any S(ε) a transient starting in S(ε) does not leave S(R).  

• If there exists a 0>δ , and x(0) is in the sphere S(δ), and the transient solution approaches the equilibrium state x = 0 as 

time approaches infinity, then the system solution is asymptotically stable.  

• If δ can be arbitrarily large then the solution x = 0 is asymptotically stable in the large, often called global stability.  
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7.1 The Direct Method of Liapunov 

 
• The direct method of Liapunov is based on the concept of energy and the relation of stored energy and system stability. 

The idea is that for a stable system the stored energy will decay with time.  

• The energy of a system is a positive quantity and if the time-derivative of the energy is negative we may denote the 

system as asymptotically stable. 

A system is asymptotically stable in some region of the state space if, the Liapunov function V 

V(x) > 0 for x ≠ xe,          (7.1-1) 

dV/dt = )(xV&  < 0 for x ≠ xe ,         (7.1-2) 

V(x) = 0 for x = xe,         (7.1-3) 

V(x) →∞ for ||x||→∞.          (7.1-4) 

xe: the equilibrium state.  
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Consider the system defined by 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−

=⎥
⎦

⎤
⎢
⎣

⎡

2

1

2

1

11
10

x
x

x
x
&

&
                            (1) 

Clearly, the only equilibrium state is the origin, x = 0.  

     Let’s choose the following scalar function as a possible Liapunov function: 
2
2

2
12)( xxxV +=                                    (2) 

which is positive definite function. Then  
2
2212211 2224)( xxxxxxxxV −=+= &&&                       (3) 

)(xV&  is indefinite. This implies that this particular function V(x) is not a Liapunov function, and therefore stability cannot 

be determined by its use. 

     If we choose the following scalar function as a possible Liapunov function, 
2
2

2
1)( xxxV +=                                   (4) 

which is positive definite function. Then  
2
22211 222)( xxxxxxV −=+= &&&                               (5) 

which is negative semidefinite. If )(xV&  is to vanish identically for 1tt ≥ , then x2 must be zero for all 1tt ≥ . This requires 

that 02 =x&  for 1tt ≥ . Since 

212 xxx −−=&                                  (6) 
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x1 must also be equal to zero for 1tt ≥ . This means that )(xV&  vanishes identically only at the origin. Hence, the equilibrium 

state at the origin is asymptotically stable in the large. 

     If we choose the following scalar function as a possible Liapunov function instead, 

[ ]2
2

2
1

2
21 2)(

2
1)( xxxxxV +++=                                 (7) 

which is positive definite function. Then  

)()(2)()( 2
2

2
12222111121 xxxxxxxxxxxxxV +−=+++++= &&&&&                                   (8) 

which is negative definite. Since V(x) → ∞ as ||x|| → ∞, the equilibrium state at the origin is asymptotically stable in the 

large. 

 
Axx =&                                                                                     (7.1-5) 

PxxxV ′=)(                                                                                  (7.1-6) 

PxxxPxxV ′+′= &&& )(                                                                            (7.1-7) 

xPAPAxPxAxPAxxV )()( ′+′=′+′=&                                                              (7.1-8) 

For an asymptotically stable system, V(x) is positive, )(xV&  is negative. 

QxxV ′−=&                                                                               (7.1-9) 

PAPAQ ′+=−                                                                           (7.1-10) 
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For asymptotic stability of a linear system it is sufficient that Q be positive definite.  

A necessary condition for a positive definite Q  

[ ]11det q ,  ⎥
⎦

⎤
⎢
⎣

⎡

2221

1211det
qq
qq , …, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nnnn

n

n

qqq

qqq
qqq

L

MOMM

L

L

21

22221

11211

det  > 0                                                (7.1-11) 

The rate of decay of the Liapunov function, η, the ratio of VV /&− .  

Pxx
Qxx
′
′

=η                                                                            (7.1-12) 

Q = I,  

Pxx
x
′

=
2||||η                                                                           (7.1-13) 

The quotient 
xx

Pxx
′
′ , called the Rayleigh quotient, satisfies the relation minmax λλ ≥

′
′

≥
xx

Pxx , where λmax and λmin are the 

characteristic roots such that min21max λλλλ ≥≥≥ L .  

minmax

11
λ

η
λ

≤≤                                                                        (7.1-14) 

 

 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                             CONTROL THEORY  

53                                                                                             Manukid Parnichkun 

 

 
The general solution of P for a linear second-order system  

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

aa
aa

A  

Q is assigned to be identity matrix I, which is positive definite matrix.  

IPAPA −=′+  

⎥
⎦

⎤
⎢
⎣

⎡

2212

1211

pp
pp

⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

aa
aa

⎥
⎦

⎤
⎢
⎣

⎡
+

2212

2111

aa
aa

⎥
⎦

⎤
⎢
⎣

⎡

2212

1211

pp
pp

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

10
01     

                                                        ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
++
++

+⎥
⎦

⎤
⎢
⎣

⎡
++
++

10
01

2222121212221112

2221121112211111

2222121221221112

2212121121121111

papapapa
papapapa

apapapap
apapapap     

                                                           ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
++++++
++++++

10
01

22221212222212121222111221221112

22211211221212111221111121121111

papaapappapaapap
papaapappapaapap  

                                                              ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
++++

++++
10

01
22)(

)(22

2222121222211222111112

2221122211111212211111

papapapaapa
papaapapapa  

or                                                                 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

1
0
1

220
)(

022

22

12

11

2212

21221112

2111

p
p
p

aa
aaaa

aa
 

so                                                            ⎥
⎦

⎤
⎢
⎣

⎡

+++−
+−++−

=
)(det)(

)()(det
))(det(2

1
2

12
2

1111212212

11212212
2

22
2

21

aaAaaaa
aaaaaaA

AtraceA
P  
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where traceA is the sum of the diagonal terms of A, a11+a22, and detA is the determinnat of A, a11a22-a12a21. The system is 

asymptotically stable if and only if the matrix P is positive definite. Therefore the principal minors of P must be positive, 

0
))(det(2

det 2
22

2
21

11 >
++

−=
AtraceA

aaAp  

and                                                                   0
)(det)(2

)()(det 2

2
2112

2
2211 >

−++
=

AtraceA
aaaaP  

Conditions that make the system be stable are 

0det 21122211 >−= aaaaA  

and                                         02211 <+= aatraceA  

If we determine the stability of the system by Routh-Hurwitz algorithm, we will find that the conditions that make the 

system be stable are exactly the same. 

 

 

 

 

 

 

 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                             CONTROL THEORY  

55                                                                                             Manukid Parnichkun 

 

 
Consider again the system defined by 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−

=⎥
⎦

⎤
⎢
⎣

⎡

2

1

2

1

11
10

x
x

x
x
&

&
                          (1) 

Clearly, the only equilibrium state is the origin, x = 0.  

     Let’s assume a tentative Liapunov function: 

PxxxV ′=)(                               (2) 

which P is determined from 

IPAPA −=′+                                (3) 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−
−

+⎥
⎦

⎤
⎢
⎣

⎡
−−⎥

⎦

⎤
⎢
⎣

⎡
10

01
11
10

11
10

2221

1211

2221

1211

pp
pp

pp
pp                      (4) 

By expanding this matrix equation, we obtain the following equations. 

12 12 −=− p                               (5) 

0221211 =−− ppp                                 (6) 

0211122 =−+− ppp                                  (7) 

122 2212 −=− pp                              (8) 

Solving for P, we get 
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⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
12/1
2/12/3

2221

1211

pp
pp                                        (9) 

To test the positive definiteness of P, we check the determinants of the successive principal minors: 

0
12/1
2/12/3

     ,0
2
3

>>                                    (10) 

Clearly, P is positive definite. Hence the equilibrium state at the origin is asymptotically stable in the large, and a 

Liapunov function is 

( )2
221

2
1 223

2
1)( xxxxPxxxV ++=′=                      (11) 

     )()( 2
2

2
1 xxxV +−=&                               (12)  
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8 Controllability and Observability 

 

 
Figure 8-1 Fourth-Order System 
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Consider the differential equations of a fourth-order system.  

uxxxxx
uxxxx

uxxx
uxxxxx

−−−−−=
+−−−=

−−−=
++++=

43214

3213

212

43211

5222
2422

232
232

&

&

&

&

                                                            (8-1) 

4321 2467 xxxxy +++=                                                                    (8-2) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−

−−
=

5222
0422
0032
1232

A , 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

1
2
2

1

B , [ ]2467=C                                                (8-3) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+++−−−−−−−−−
−−+++−−−−−−
−−−−−++−−−
+++++++++

Δ
=− −

485462462462
222761012210122

182164168740182
127241423621364712

)(
1)(

23222

2322

232

22223

1

sssssssss
ssssssss
sssssss

sssssssss

s
AsI                        (8-4) 

24503521||)( 234 ++++=−=Δ ssssAsIs                                                       (8-5) 

1
1

)4)(3)(2)(1(
)4)(3)(2(

24503521
24269)()( 234

23
1

+
=

++++
+++

=
++++

+++
=−= −

sssss
sss

ssss
sssBAsICsH                             (8-6) 
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From the transformation of the state variables, 

Txx =                                                                                  (8-7) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1111
1222
1233
1234

T    and   
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−

=−

2100
1210

0121
0011

1T                                                    (8-8) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

== −

4000
0300
0020
0001

1TATA ,  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

0
1
0
1

TBB ,  [ ]00111 == −CTC                                   (8-9) 

The corresponding equations  

44

33

22

11

4
3
2

xx
uxx

xx
uxx

−=

+−=

−=

+−=

&

&

&

&

                                                                       (8-10) 

21 xxy +=                                                                           (8-11) 

Only the first subsystem 1x  contributes to the transfer function H(s) = 1/(s+1). 
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Figure 8-2 System Equivalent of Figure 8-1 

 
1x :  affected by the input;   visible in the output 

2x :  unaffected by the input;  visible in the output 

3x :  affected by the input;   invisible in the output 

4x :  unaffected by the input;  invisible in the output 
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• Transfer function of the system is determined only by the controllable and observable subsystem.  

• If the transfer function of a single-input, single-output system is of lower degree than the dimension of the state-space, 

then the system must contain an uncontrollable subsystem, or an unobservable subsystem, or possibly both.  

• If a system contains an uncontrollable subsystem it is said to be uncontrollable. 

• If a system contains and unobservable subsystem it is said to be unobservable.  

• If at least one of the uncontrollable or unobservable subsystems is unstable, the resulting behavior will be disastrous. 

 

Uncontrollable Causes 

1. redundant state variables 

2. physically uncontrollable system 

3. too much symmetry 

Unobservable Cause 

1. when state variable is not measured directly and is not fed back to state variables that are measured. 
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8.1 Definitions and Algebraic Conditions for Controllability and Observability 

 
Definition of Controllability: A system is said to be controllable if and only if its is possible, by means of the input, to 

transfer the system from any initial state x(t) = xt to any other state xT = x(T) in a finite time T-t ≥  0. 

Definition of Observability: An unforced system is said to be observable if and only if it is possible to determine any 

arbitrary initial state x(t) = xt by using only a finite record, y(τ) for Tt ≤≤ τ , of the output. 

Controllability Theorem: A system is controllable if and only if the matrix 

∫ ′′=
T

t

dTBBTtTP λλφλλλφ ),()()(),(),(                                                             (8.1-1) 

is nonsingular for some T > t, where ),( tTφ  is the state-transition matrix of the system. Matrix P(T, t) is called 

controllability grammian. 

Observability Theorem: A system is observable if and only if the matrix 

∫ Φ′Φ′=
T

t

dtCCttTM λλλλλ ),()()(),(),(                                                         (8.1-2) 

is nonsingular for some T > t, where ),( tTφ  is the state-transition matrix of the system. Matrix M(T, t) is called 

observability grammian. 
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Algebraic Controllability Theorem: The time-invariant system BuAxx +=&  is controllable if and only if the rank r(Q) of 

the controllability test matrix 

[ ]BAABBQ k 1−= L                                                                       (8.1-3) 

is equal to k, the order of the system. 

Algebraic Observability Theorem: The unforced time-invariant system Axx =& and Cxy =  is observable if and only if the 

rank r(N) of the observability test matrix 

[ ]CACACN k ′′′′′= −1)(L                                                                  (8.1-4) 

is equal to k, the order of the system. 

• The algebraic controllability and observability tests are only valid for time-invariant systems. 
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Rank of the matrix  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
−−

27931
541862

281042
1111

                          (1) 

is determined by finding for the maximum non zero determinant matrix which is obtained from crossing row or column of 

the original matrix. 

Since 

0

27931
541862

281042
1111

=

−−
−−

−−
−−

                         (2) 

rank of this matrix is less than 4. 

And since all 16 determinants of the matrices which are obtained from crossing 1 row and 1 column of the original matrix 

0

333231

232221

131211

=
aaa
aaa
aaa

                                (3) 

rank of this matrix is less than 3. 

But since at least 
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0
42
11
≠

−
−                               (4) 

rank of this matrix is equal to 2. 

Causes of linearly dependency of this matrix: 

1. The 4th row is obtained from summation of the 1st and 2nd rows. 

2. The 3rd row is obtained from multiplication the 4th row with 2. 

 

Consider controllability of the system in (a)-(c). 

(a)                                       u
x
x

x
x

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
0
1

10
11

2

1

2

1

&

&
                                     (1) 

Determine matrix Q 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
==

00
11

ABBQ                         (2) 

Since Q is singular and its rank is 1, this system is uncontrollable. 

(b)                                         u
x
x

x
x

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
1
0

12
11

2

1

2

1

&

&
                          (3) 

Determine matrix Q 
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[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

==
11

10
ABBQ                            (4) 

Since Q is nonsingular and its rank is 2, this system is controllable. 

(c)                                          
)1)(5.2(

5.2
)(
)(

−+
+

=
ss

s
su
sy                          (5) 

Clearly, cancellation of the factor (s + 2.5) occurs in the numerator and denominator of this transfer function. Thus, one 

degree of freedom is lost. Because of this cancellation, this system is either uncontrollable or unobservable. 

     The same conclusion can be obtained by writing this system in the form of state-space, 

  u
x
x

x
x

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
1
0

5.15.2
10

2

1

2

1

&

&
 and [ ] ⎥

⎦

⎤
⎢
⎣

⎡
=

2

115.2
x
x

y                                      (6) 

Determine matrix Q 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

==
5.11

10
ABBQ                           (7) 

Since Q is not singular and its rank is 2, this system is controllable. 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=′′′=

11
5.25.2

CACN                         (8) 

Since N is singular and its rank is 1, this system is unobservable. 
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Consider the system 

u
x
x
x

x
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
0
0

6116
100
010

3

2

1

3

2

1

&

&

&

                        (1) 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

1

154
x
x
x

y                           (2) 

Determine matrix Q 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−==
2561

610
100

2BAABBQ                             (3) 

Since the rank of the matrix Q is 3, this system is controllable 

Determine matrix N 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−
−

=′′′′′=
111

575
664

)( 2 CACACN                           (4) 

Since |N| = 0, the rank of the matrix N is less than 3, this system is unobservable 

     In fact, in this system cancellation occurs in the transfer function of the system. The transfer function between x(s) and 

u(s) is 
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)3)(2)(1(
1

)(
)(

+++
=

ssssu
sx                             (5) 

and the transfer function between y(s) and x(s) is 

)4)(1(
)(
)(

++= ss
sx
sy                                    (6) 

Therefore, the transfer function between the output y(s) and the input u(s) is 

)3)(2)(1(
)4)(1(

)(
)(

+++
++

=
sss

ss
su
sy                         (7) 

Clearly, the (s+1) cancels each other. This means that there are nonzero initial states x(0), which cannot be determined 

from the measurement of y(t). 
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8.2 Disturbances and Tracking Systems: Exogenous Variables 

 
dFxBuAxx ++=&                              (8.2-1) 

dx : disturbance vector  

rx : reference state vector 

ddd xAx =&                                     (8.2-2) 

rrr xAx =&                                     (8.2-3) 

rxxe −=                                      (8.2-4) 

BuExAeBuFxxAAAeAxBuFxxeAxxe drrrdrr ++=++−+=−+++=−= 0)()(&&&                                (8.2-5) 

[ ]FAAE r |−=                                 (8.2-6) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

d

r

x

x
x __0                            (8.2-7) 

0x : exogenous input vector  
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Figure 8.2-1 State-Space Representation of System with Disturbances and Reference Input. 
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Metastate vector, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0

__
x

e
x                          (8.2-8) 

Metastate equation, 

uBAxx +=&                           (8.2-9) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0|0
______

|

A

EA
A , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
__
B

B , and 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

d

r

A

A
A

|0
______
0|

0                     (8.2-10) 

When only the error can be measured, the observation equation  

Cx== Cey                                     (8.2-11) 

[ ]00|C=C                             (8.2-12) 

When it is possible to measure the error, the reference state, and the disturbance state, the observation equation   

ddrre xCxCeCy ++=                               (8.2-13) 

[ ]dre CCC |=C                              (8.2-14) 

• The subsystems for the disturbance dx  and the reference rx  are clearly not controllable.  

• With dC  and rC  present, the system is likely to be observable. But even if only eC  is present, the system may be 

observable because there is a path from rx  to the output through the subsystem that generates the error. 
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9 Shaping the Dynamic Response 

 
• In pole-placement method, it is possible to place the closed-loop poles anywhere in the complex s plane.  

• All the state variables must be accessible for measurement or estimated from measured output.  

Gxu −=                                     (9-1) 

G: gain matrix in a linear feedback law 

xGu ˆ−=                           (9-2) 

x̂ : state vector of the observer, estimation of the state vector 

 
9.1 Design of Regulators for Single-Input, Single-Output Systems 

 
[ ]kggggG L21=′=                           (9.1-1) 

BuAxx +=&                           (9.1-2) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

kb

b
b

bB
M
2

1

                            (9.1-3) 

With the control law xgGxu ′−=−= , 

xgbAx )( ′−=&                            (9.1-4) 
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• Our objective is to find the matrix gG ′=  which places the closed-loop dynamics matrix at the locations desired. 

gbAAc ′−=                       (9.1-5) 

• There are k gains and k poles for a kth order system, so there are precisely as many gains as needed to specify each of 

the closed-loop poles. 

k
kk

c asasgbAsIAsI ˆˆ 1
1 +++=′+−=− − L                  (9.1-6) 

In the first companion form and left to right numbering of state variables,  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −−−−

=

−

0100

0010
0001

121

L

MMOMM

L

L

L kk aaaa

A                         (9.1-7) 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=′

0000

0000
0000

0

0
0
1 321

321

L

MOMMM

L

L

L

L

M

k

k

gggg

gggggb           (9.1-8) 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤
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⎢
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⎣

⎡ −−−−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −−−−−−−−

=′−=

−−−

0100

0010
0001
ˆˆˆˆ

0100

0010
0001

121112211

L

MMOMM

L

L

L

L

MMOMM

L

L

L kkkkkk

c

aaaagagagaga

gbAA      (9.1-9) 

aagaga iii −==+ ˆor  ˆ                                 (9.1-10) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

kk a

a
a

a

a
a

ˆ

ˆ
ˆ and 

11

MM                                 (9.1-11) 

 

 
Figure 9.1-1 State Variable Feedback for a System in First Companion Form 
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• Transformation of state vector from original form, x , to the first companion form, x , 

Txx =                              (9.1-12) 

ubxAx +=&                                   (9.1-13) 

TbbTATA == −  and 1                             (9.1-14) 

aaaag −=−= ˆˆ                                   (9.1-15) 

xgxTgxgu ′−=′−=′−= −1                              (9.1-16) 
1−′=′ Tgg                               (9.1-17) 

)ˆ( aaTgTg −′=′=                          (9.1-18) 

• The desired transformation matrix T is the product of two matrices V and U: 

VUT =                                 (9.1-19) 

• The first matrix transforms the original system into an intermediate system in the second companion form. 

• The second transformation transforms the intermediate system into the first companion form. 

Uxx =~                                 (9.1-20) 

ubxAx ~~~~ +=&                                    (9.1-21) 

UbbUAUA == − ~
 and 

~ 1                                (9.1-22) 

• U is the inverse of controllability test matrix Q. 

[ ] 111 −−− == bAAbbQU kL                          (9.1-23) 
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xVx ~=                                          (9.1-24) 

bVbVAVA
~

 and 
~ 1 == −                                         (9.1-25) 

• V-1 is the transpose of the upper left-hand k-by-k submatrix of the triangular Toeplitz matrix . 
1

2

11

1

100

10
1 −

−

−

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

L

MOMM

L

L

k

k

a
aa

WV                          (9.1-26) 

)ˆ()( aaVUg −′=                        (9.1-27) 
11  and −− == QUWV                          (9.1-28) 

111 )( −−− == QWQWVU                           (9.1-29) 

)ˆ(])[( 1 aaQWg −′= −                          (9.1-30) 
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A dc motor driving an inertial load constitutes a simple instrument servo for keeping the load at a fixed position. The 

state-space equations for the motor-driven inertia  

ωθ =&                            (9.1-31) 

uβαωω +−=&                                (9.1-32) 

θ : angular position  

ω : angular velocity 

u : the applied voltage, 

JR
K

JR
KK 121  and =−= βα                                     (9.1-33) 

If the desired position θr is constant. 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
r

rx
θ

                                                                        (9.1-34) 

rrrr xxAx ⎥
⎦

⎤
⎢
⎣

⎡
==

00
00

&                                                                  (9.1-35) 

⎥
⎦

⎤
⎢
⎣

⎡ −
=−=

ω
θθ r

rxxe                            (9.1-36) 

[ ] rxArABuAee −++=&                                                                (9.1-37) 

 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                             CONTROL THEORY  

78                                                                                             Manukid Parnichkun 

 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−
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100
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10 ru
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αβωαω&
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           (9.1-38) 

u
ee

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
βωαω
0

0
10

&

&
                        (9.1-39) 

 

 
Figure 9.1-2 Implementation of an Instrument Servo 
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The characteristic polynomial of the system  

ss
s

s
AsI α

α
+=

+
−

=− 2

0
1                     (9.1-40) 

The desired characteristic polynomial of the system  

21
2 ˆˆ asasAsI c ++=−                          (9.1-41) 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
α

a                              (9.1-42) 

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

ˆ
ˆ

ˆ
a
a

a                              (9.1-43) 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

==
10

1
 and 

0 α
αββ
β

WAbbQ                             (9.1-44) 

)(  
0

0
′=⎥

⎦

⎤
⎢
⎣

⎡
= QWQW

β
β                                        (9.1-45) 

 
0/1
/10

])[( 1
⎥
⎦

⎤
⎢
⎣

⎡
=′ −

β
β

QW                               (9.1-46) 
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⎦
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1
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a

a
a

g                              (9.1-47) 
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For a control law of the form 

ω21 gegu −−=                           (9.1-48) 

ω=e&                               (9.1-49) 

ωβαβω )( 21 geg +−−=&                                (9.1-50) 

⎥
⎦

⎤
⎢
⎣

⎡
+−−

=
)(

10

21 βαβ gg
Ac                       (9.1-51) 

ββα 12
2 )( gsgsAsI c +++=−                         (9.1-52) 

ββα 1221 ˆ and ˆ gaga =+=                                (9.1-53) 

βαβ /)ˆ( and /ˆ 1221 −== agag                      (9.1-54) 
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An inverted pendulum can be stabilized by a closed-loop feedback system. A possible control system implementation is 

shown in figure below for a pendulum constrained to rotate about a shaft at its bottom point. 
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The dynamic equations governing the inverted pendulum in which the point of attachment does not translate is given by 

u
R
K

R
KKmglu

R
K

R
KKmglmlJm

1211212 sin][ +−≈+−=+ ωθωθω&                                              (1) 

ωθ =&                            (2) 

uβαωθω +−Ω= 2&                    (3) 

where  

JR
KK 21−=α  and 

JR
K 1=β                              (4) 

with the inertial J being the total reflected inertia: 
2mlJJ m +=                              (5) 

and m is the pendulum bob mass, l is the distance of the bob from the pivot.  

     The natural frequency Ω is given by 

mlJl
g

mlJ
mgl

mm /2
2

+
=

+
=Ω                                (6) 

     Since the linearization is valid only when the pendulum is nearly vertical, we shall assume that the control objective is 

to maintain θ = 0. Thus we have a simple regulator problem. 
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The matrices A and B are 

⎥
⎦

⎤
⎢
⎣

⎡
−Ω

=
α2

10
A , ⎥

⎦

⎤
⎢
⎣

⎡
=

β
0

B                           (7) 

The open-loop characteristic polynomial is 

22
2

1
Ω−+=

+Ω−
−

=− ss
s

s
AsI α

α
                       (8) 

Thus 

α=1a  and 2
2 Ω−=a                           (9) 

The open-loop system is unstable. 

     The controllability test matrix and the W matrix are 

⎥
⎦

⎤
⎢
⎣

⎡
−

=
αββ
β0

Q  and ⎥
⎦

⎤
⎢
⎣

⎡
=

10
1 α

W                   (10) 

And 

⎥
⎦

⎤
⎢
⎣

⎡
=′ −

0/1
/10

])[( 1

β
β

QW                           (11) 

Thus the gain matrix required for pole placement is 

⎥
⎦

⎤
⎢
⎣

⎡

−
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⎦

⎤
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g                            (12) 
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⎥
⎦

⎤
⎢
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⎡
+−−Ω

=
)(

10

21
2 βαβ gg

Ac                       (13) 

2
12

2 )( Ω−+++=− ββα gsgsAsI c               (14) 
2

1221 ˆ and ˆ Ω−=+= ββα gaga                                (15) 

βαβ /)ˆ( and /)ˆ( 12
2

21 −=Ω+= agag                (16) 
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9.2 Multiple-Input System 

 
• In a controllable system with multiple inputs, there will be more gains available than are needed to place all of the 

closed-loop poles.  

• It is possible to specify all the closed-loop poles and still be able to satisfy other requirements.  

• Design approaches of multiple-input system 

o Setting some of the gains to zero.  

o Selecting a particular structure for the gain matrix to make each control variable depend on a different group 

of state variables which are physically more closely related to that control variable than to the other control 

variables 
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Consider the system defined by 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
10
01

     ,
321
100
010

BA                                   (1) 

If we want to find a state-feedback gain matrix such that the closed-loop system has eigenvalues at -1, -2, and -3, 
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Currently the system has eigenvalues at 3.63, -0.31±0.42i and unstable. 

Consider the effect from the first input u1, 
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Since Q1 is not singular matrix, we can find state-feedback gains from the input u1. 
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Characteristic equation of the closed-loop system is obtained from 

32
2

1
323 ˆˆˆ6116)3)(2)(1(|| asasasssssssAsI c +++=+++=+++=−                    (9) 

Or 
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Thus, 
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Since by only the input u1, the compensated system meets the requirement already, the gains of the state feedback from 

the other input u2 are zeros. 

Thus, 

⎥
⎦

⎤
⎢
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=
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40259

G                                   (12) 

Alternative solution 

Consider the effect from the second input u2, 
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=
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2Q                                            (14) 

Since Q2 is not singular matrix, we can find state-feedback gains from the input u2. 
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Characteristic equation of the closed-loop system is obtained from 

32
2

1
323 ˆˆˆ6116)3)(2)(1(|| asasasssssssAsI c +++=+++=+++=−                      (18) 

Or 
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Thus, 
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Since by only the input u2, the compensated system meets the requirement already, the gains of the state feedback from 

the other input u1 are zeros. 

Thus, 

⎥
⎦

⎤
⎢
⎣

⎡
=

14.18971.3
000

G                                  (21) 

Alternative solution 

If the requirement that u1 depends on x1 and x2 whereas u2 depends on x3 only, thus 
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                  (24) 

Characteristic equation of the closed-loop system is obtained from 

32
2

1
323 ˆˆˆ6116)3)(2)(1(|| asasasssssssAsI c +++=+++=+++=−                          (25) 
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Or 

9     ;63 1111 ==− gg                                    (26) 

20     ;112)9(32232 23231123 ==−−=−− gggg                           (27) 

68.18     ;6120)9(220)9)(20(2122 12121223121123121123 ==−++−−=−++−− gggggggggg                    (28) 

Thus, 
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=
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G                                (29) 
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9.3 Disturbances and Tracking Systems: Exogenous Variables 

 
rxxe −=                                    (9.3-1) 

rrr xAx =&                                   (9.3-2) 

ddd xAx =&                                   (9.3-3) 

0)( ExBuAeBuFxxAAAee drr ++=++−+=&                         (9.3-4) 

A linear control law,  

ddrr xGxGGexGGeu −−−=−−= 00                             (9.3-5) 

 

 
Figure 9.3-1 Schematic of Feedback System for Process with Reference State and Disturbance Input. 
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• The design is based on the assumption that the exogenous input vector x0 as well as the system error e are accessible 

for measurement during the operation of the control system.  

The closed-loop dynamics  

)( 000 xGGeBExAee +−+=&                                     (9.3-6) 

• The most desirable is to choose the gains G and G0 to keep the system error zero, which is not possible in the system 

that has number of control inputs less than number of state variables. 

• More reasonable performance objectives, having number of control inputs not less than measured output, are the 

followings: 

(a) The closed-loop system should be asymptotically stable. 

(b) The measured output is zero at the steady state. 

The steady-state condition is characterized by a constant error state vector, 

0)( 000 =+−+= xGGeBExAee&                (9.3-7) 

00 )()( xEBGeBGA −=−                       (9.3-8) 

00
1 )()( xEBGBGAe −−= −                        (9.3-9) 

• When the number of control inputs equals to number of state variables and BBGA 1)( −−  is a square matrix and 

invertible, e can be controlled to zero at steady state. 

00
1 )()(0 xEBGBGA −−= −                    (9.3-10) 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                             CONTROL THEORY  

94                                                                                             Manukid Parnichkun 

 

 
0

11 )()( BGBGAEBGA −− −=−                       (9.3-11) 

EBGABBGAG 111
0 )(])[( −−− −−=            (9.3-12) 

• When the number of control inputs equals to number of measured outputs and BBGAC 1)( −−  is a square matrix and 

invertible, y can be controlled to zero at steady state. 

0)()( 00
1 =−−== − xEBGBGACCey              (9.3-13) 

EBGACBGBGAC 1
0

1 )()( −− −=−                                  (9.3-14) 

EBGACBBGACG 111
0 )(])([ −−− −−=                                    (9.3-15) 

EBG #
0 =                                                        (9.3-16) 

when 111# )(])([ −−− −−= BGACBBGACB . 

Example: Consider a state-space a system represented by  

dx
f
f

u
b
b

x
x

aa
aa

x
x
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⎥
⎦

⎤
⎢
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⎡
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⎤
⎢
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⎡

2

1

2

1

2

1

2221

1211

2

1

&

&
                          (9.3-17) 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1
21 x

x
ccy                             (9.3-18) 

Assume that the desired (reference) state is 

const 11 == xx r                           (9.3-19) 

const 22 == xx r                           (9.3-20) 
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0=rA                                   (9.3-21) 

When the characteristic equation of 0ˆˆ 21
2 =++ asas  is desired, by pole placement method, 

[ ] ⎥
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−
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== 3
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baaabbaababaabaaaba

baba
baaabbaababaabaaabaggG    (9.3-22) 

EBEBGACBBGACG #111
0 )(])([ =−−= −−−                                                  (9.3-23) 

1
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2112111111 )(
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=−=
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BGAAc                                                (9.3-24) 
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1
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Ac                       (9.3-25) 

 
))(())((

))()(())()(()(
1221211222221111

21111221121112212222211

gbagbagbagba
bgbacgbacbgbacgbacBBGAC

−−−−−
−−−−−−−

=− −                    (9.3-26) 

p
gbagbagbagba

bacacbacacBBGAC =
−−−−−

−−−
=− −

))(())((
)()()(

1221211222221111

211212112122211                                (9.3-27) 

[ ] ⎥
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−−−
−−−
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⋅=

11111221

21122222
21

1221211222221111
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)(
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))(())((
11

gbagba
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cc
gbagbagbagbap

B                      (9.3-28) 

[ ])()()()(
)()(

1
21121111121221222221

21121211212221

# gbacgbacgbacgbac
bacacbacac

B −−−−−−
−−−

=                   (9.3-29) 

21121211212221

2211211111211221222221#

)()(
))()(())()((

bacacbacac
fgbacgbacfgbacgbacFBGd −−−

−−−+−−−
==                           (9.3-30) 
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9.4 Where Should the Closed-Loop Poles Be Placed? 

 
)ˆ(])[( 1 aaQWg −′= −                             (9.4-1) 

• The larger the gain, the larger the control input.  

• The actuator which supplies the control u cannot be arbitrarily large without incurring penalties of cost and weight.  

• Limiting the control may be to avoid the potential damaging effects of stresses on the process that large inputs might 

cause.  

• If the control signal is larger than possible or permissible for reasons of safety, the actuator will saturate at a lower 

input level.  

• The less the poles are moved, the smaller the gain matrix.  

• The less controllable the system, the larger the gains that are needed to effect a change in the system poles.  

• Efficient use of the control signal would require that all the closed-loop poles be about the same distance from the 

origin. 

The choice of closed-loop poles: 

• Select a bandwidth high enough to achieve the desired speed of response. 

• Keep the bandwidth low enough to avoid exciting unmodeled high-frequency effects and undesired response to noise. 

• Place the poles at approximately uniform distances from the origin for efficient use of the control effort. 
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Figure 9.4-1 Butterworth Pole Configuration 
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• The Butterworth polynomials 0/),( ωszzBk =  of the first few are 

1)(1 += zzB                    (9.4-2) 

12)( 2
2 ++= zzzB                  (9.4-3) 

122)( 23
3 +++= zzzzB                  (9.4-4) 

16132.2)22(613.2)( 234
4 +++++= zzzzzB                (9.4-5) 

• As the number of poles becomes high, one pair of poles comes precariously close to the imaginary axis. It might be 

desirable to move these poles farther into the left half-plane. 
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10 Linear Observer 

 
• In order to place the poles at arbitrary locations, it is necessary to have all the state variables available for feedback.  

• If the system is observable, it is possible to estimate the state variables that are not directly accessible to measurement 

using the measurement data.  

• State-variable estimates may be even preferable to direct measurements, because the errors introduced by the 

instruments may be larger than the errors in estimating these variables. 

• A dynamic system whose state variables are the estimates of the state variables is called an observer.  

• For any observable linear system, an observer can be designed having the property that the estimation error can be 

made to go to zero as fast as one may desire. The design technique is equivalent to pole placement in feedback system 

design. 
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10.1 Structure and Properties of Observers 

 
A dynamic system in state-space representation 

BuAxx +=&                                      (10.1-1) 

• A control law u = -Gx can be used only x is acccssible for measurement.  

• Instead of being able to measure the state x, only the output is measurable. 

DuCxy +=                            (10.1-2) 

An estimation of x(t), )(ˆ tx , follows a dynamic of the observer. 

KyuBxAx ++= ˆˆˆ&̂                              (10.1-3) 

xxe ˆ−=                                    (10.1-4) 

uBKDBxAKCAeADuCxKuBexABuAxxxe )ˆ()ˆ(ˆ)(ˆ)(ˆˆ −−+−−+=+−−−−+=−= &&&         (10.1-5) 

KCAA −=ˆ                                     (10.1-6) 

KDBB −=ˆ                           (10.1-7) 

)ˆ(ˆ)(ˆ)(ˆ DuxCyKBuxAKyuKDBxKCAx −−++=+−+−=&              (10.1-8) 

• The difference between the actual measurement y and the estimated measurement is often called the residual. 

CexxCDuxCyr =−=−−= )ˆ(ˆ                                 (10.1-9) 

• In most of the systems, the measured output depends only on state variables not input, thus, Cxy = . 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                             CONTROL THEORY  

101                                                                                             Manukid Parnichkun 

 

 

 
Figure 10.1-1 Block Diagram of Linear Observer 

 
eAe ˆ=&                                 (10.1-10) 

)0()ˆ()( 1eAsIse −−=                                                  (10.1-11) 

)0(ˆ)0()0( xxe −=                                                (10.1-12) 
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• In order for the error to approach zero asymptotically it is necessary that Â  be a stability matrix.  

• Determination of the feedback matrix K is a pole-placement similar to response shaping of a system with full-state 

variable feedback. 

• The eigenvalues of KCAA −=ˆ  can be placed at arbitrary location if the observability test matrix is of rank k. 

[ ]CACACN k ′′′′′= −1)(L                        (10.1-12) 

• If there is only a single output, then the observer gain matrix K becomes a column vector and is uniquely determined 

by the desired eigenvalues of Â . 

• The presence of more than one output provides more flexibility: it is possible to place all the eigenvalues and do other 

things. Or, alternatively, some of the observer gains can be set to zero to simplify the resulting observer structure. 

KyuKDBxAKyuKDBxKCAx +−+=+−+−= )(ˆˆ)(ˆ)(&̂                                      (10.1-13) 

)0(ˆ)()()()(ˆ)ˆ( xsKysuKDBsxAsI ++−=−                        (10.1-14) 

)0(ˆ)ˆ()()ˆ()()()ˆ()(ˆ 111 xAsIsKyAsIsuKDBAsIsx −−− −+−+−−=              (10.1-15) 

where KCAA −=ˆ . 
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10.2 Pole-Placement for Single-Output Systems 

 

[ ] xcCx

x

x
x

cccxcxcxcy

k

kkk ′==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=+++=
M

LL 2

1

212211                                    (10.2-1) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

kk

k
k

kK
M
2

1

                            (10.2-2) 

ckAA ′−=ˆ                                     (10.2-3) 

)ˆ(])[( 1 aaNWk −′= −                              (10.2-4) 

[ ]CACACN k ′′′′′= −1)(L                           (10.2-5) 
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ˆ                            (10.2-6) 

kaaa ˆ , ,ˆ ,ˆ 21 L : the coefficients of the desired characteristic equation: 

0ˆˆˆˆ 2
2

1
1 =++++=− −−

k
kkk asasasAsI L                                     (10.2-7) 
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kaaa  , , , 21 L : the coefficients of the original characteristic equation: 
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1
1 =++++=− −−
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kkk asasasAsI L                                  (10.2-8) 
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Example: Consider a dc motor driving an inertia load.  

)ˆ(ˆˆ xCyKBuxAx −++=&                             (10.2-10) 
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&

&
                          (10.2-14) 

)ˆ(ˆˆ 1 eeke −+= ω&                                    (10.2-15) 

)ˆ(ˆˆ 2 eeku −++−= βωαω&                                          (10.2-16) 
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⎥
⎦

⎤
⎢
⎣

⎡
==

2

1

k
k

kK                      (10.2-17) 

)ˆ(])[( 1 aaNWk −′= −                          (10.2-18) 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=′′′=

10
01

CACN                             (10.2-19) 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
1 α

W                                 (10.2-20) 

⎥
⎦

⎤
⎢
⎣

⎡
−

=′⎥
⎦

⎤
⎢
⎣

⎡
=′ −

1
01

])([ ,
1
01

)( 1

αα
NWNW                            (10.2-21) 

The open-loop characteristic polynomial, 

sssD α+= 2)(                       (10.2-22) 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
α

a                                  (10.2-23) 

The desired observer characteristic polynomial, 

21
2 ˆˆ)(ˆ asassD ++=                           (10.2-24) 

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

ˆ
ˆ

ˆ
a
a

a                                  (10.2-25) 
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⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=⎥

⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
=

)ˆ(ˆ
ˆ

ˆ
ˆ

1
01

12

1

2

1

2

1

αα
αα

α aa
a

a
a

k
k

k                       (10.2-26) 

In the straight forward consideration, 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−

=−=
αα 2

1

2

1 1
01

0
10ˆ

k
k

k
k

KCAA                             (10.2-27) 

⎥
⎦

⎤
⎢
⎣

⎡
+−

+
+++

=⎥
⎦

⎤
⎢
⎣

⎡
+
−+

=−
−

−

1221

1

2

11 1
))((

11
)ˆ(

ksk
s

kskssk
ks

AsI
α

αα
                                    (10.2-28) 

21
2

211
2 ˆˆ)( asaskksks ++=++++ αα                       (10.2-29) 

The relations between the estimation of state variables and the observation y and control input u, 

)()ˆ()()()ˆ()(ˆ 11 sKyAsIsuBAsIsx −− −+−=                               (10.1-30) 

⎥
⎦

⎤
⎢
⎣

⎡
+++

=− −

)(ˆˆ
1)ˆ(

121
2

1

ksasas
BAsI

β
β                                   (10.2-31) 

⎥
⎦

⎤
⎢
⎣

⎡ +

++
=⎥

⎦

⎤
⎢
⎣

⎡ ++

++
=− −

sk
ask

asassk
kks

asas
KAsI

2

21

21
2

2

21

21
2

1 ˆ
ˆˆ

1)(
ˆˆ

1)ˆ(
α                            (10.2-32) 

21
2

21
1 ˆˆ

)()ˆ()()(ˆ)(ˆ
asas

seasksusesx
++
++

==
β                       (10.2-33) 

21
2

21
2 ˆˆ

)()()()(ˆ)(ˆ
asas

sseksuksssx
++
++

==
β

ω                       (10.2-34) 
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• The control u that is used in the observer, as well as the input to the plant, is computed using the estimated state. 

ω̂ˆˆ 21 gegxGu −−=−=                         (10.2-35) 
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10.3 Disturbances and Tracking Systems: Exogenous Variables 

 
With the disturbance, xd, and the reference input, xr, e = x-xr, 

0ExBuAee ++=&                            (10.3-1) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

d

r

x

x
x ___0                                      (10.3-2) 

000 xAx =&                                   (10.3-3) 

uBAxx +=&                                    (10.3-4) 

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0

,
0

___ ,
|0

_________
|

x
e

B

A

EA
xBA                           (10.3-5) 

The control law, 

00 xGGeu −−=                          (10.3-6) 

[ ]dr GGG =0                            (10.3-7) 

Cx=+= 0DxCey                            (10.3-8) 

[ ]DC=C                                    (10.3-9) 
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)ˆ(ˆˆ xCKBxAx −++= yu&                              (10.3-10) 

[ ] [ ]
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

00000 ˆ
_
ˆ

|_
0

___
ˆ
_
ˆ

|0
_________

|

ˆ
_
ˆ

x

e
DCy

K

K
u

B

x

e

A

EA

x

e e

&

&

            (10.3-11) 

)ˆˆ(ˆˆˆ 00 xDeCyKxEBueAe e −−+++=&                        (10.3-12) 

)ˆˆ(ˆˆ 00000 xDeCyKxAx −−+=&                              (10.3-13) 

 
Figure 10.3-1 Block Diagram of Observer Including Estimation of Exogenous Vector 
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The closed-loop matrix for the metasystem, 

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=−=
DKACK
DKECKA ee

000

ˆ KCAA                        (10.3-14) 

• The closed-loop poles of the observer can be placed at arbitrary locations if the metasystem is observable, or N of the 

metasystem is invertible. 

[ ]CACACN 1)( −+′′′′= νkL                     (10.3-15) 

If the observer for the system error has already been designed, it might be desirable to amend the existing observer.  

0ˆ~ˆ xVee +=                                 (10.3-16) 

e~ : the observer for the process with x0 = 0 

)~(~~~ eCyKBueAe −++=&                            (10.3-17) 

K~ : the gain matrix for the observer in the absence of x0  

                                                 0ˆ~ˆ xVee &&& +=  

                                                    ))ˆ)ˆ~((ˆ()~(~~
00000 xDxVeCyKxAVeCyKBueA −+−++−++=  

0000 ˆ))(()~)(~(~ xDCVVKVAeCyVKKBueA +−+−+++=                                                 (10.3-18) 

                                                 )ˆ)(~(ˆ)ˆ~(ˆ 000 xDCVeCyKxEBuxVeAe e +−−++++=&  

0ˆ))(()~(~ xDCVKEAVeCyKBueA ee +−++−++=                                                        (10.3-19) 
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eKVKK =+ 0

~                                   (10.3-20) 

)()(00 DCVKEAVDCVVKVA e +−+=+−                                (10.3-21) 

DKEVCKAVA ~)~(0 −=−−                                         (10.3-22) 

)~()]~([ 1
0 DKECKAAV −−−= −                                           (10.3-23) 

)ˆ)ˆ~((ˆˆ 000000 xDxVeCyKxAx −+−+=&  

)~(ˆ~)~(ˆ))(( 0000000 eCyKxAeCyKxDCVKA −+=−++−=                                        (10.3-24) 

• The input to the estimate of the exogenous vector is the residual of the observer for the process without exogenous 

inputs. 

eCyr ~−=                              (10.3-25) 

• It is thus possible to design that observer first, and then to use its residual to drive the estimator of the exogenous 

inputs. 

• In summary, the design of an observer of the system with exogeneous input: 

Step 1. Design an observer (i.e., find the gain matrix K~ ) for the process without exogenous inputs. 

Step 2. Using the gain K~  found in step 1, find the matrix V. 

Step 3. Find K0 so that dynamics matrix of the estimator of the exogenous vector has the desired pole locations. 
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Figure 10.3-2 Alternate form of observer in which estimate of exogenous input is obtained using “disturbance-free” 

residual. 
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In the motor-driven inverted pendulum problem, if there is a constant disturbance, wind for instance, presented in addition 

to the control input, u, the complete dynamic model is   

ωθ =&                               (1) 

du ++−Ω= βαωθω 2&                             (2) 

0=d&                              (3) 

Thus, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−Ω=

000
1
010

2 αA  and 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0

0
βB                            (4) 

or  

⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

E                               (5) 

If the observation vector depends only on the angular position θ, thus, 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

d
y ω

θ
001                          (6) 

Thus, 

[ ]01=C  and  0=D                                        (7) 
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The observability test matrix for the metasystem is 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
Ω

=′′′′′=
100

10
01 2

2 αCACACN                          (8) 

The open-loop characteristic equation is 

)(
00

1
01

222 Ω−+=−+Ω−
−

=− sss
s

s
s

sI ααA                       (9) 

Thus, 

α=1a , 2
2 Ω−=a , and 03 =a                           (10) 

and hence 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ Ω−
=

100
10

1 2

α
α

W                       (11) 

Thus, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=′−

100
01
001

])[( 1 αNW                           (12) 
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When the desired characteristic equation of the observer is 0ˆˆˆ 32
2

1
3 =+++ asasas , the gain matrix is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦
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⎢
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⎡
−−Ω+

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Ω+
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

3

2

1

3

1
2

2

1

3

2
2

1

ˆ
)ˆ(ˆ

ˆ

ˆ
ˆ
ˆ

100
01
001

k
k
k

a
aa

a

a
a
a

αα
αα

αK                                    (13) 

The observer dynamics are given by )ˆ(ˆˆ xCKBxAx −++= yu& , 

)ˆ(ˆˆ
1 θωθ −+= yk&                                 (14) 

)ˆ(ˆˆˆˆ 2
2 θβωαθω −+++−Ω= ykdu&                            (15) 

)ˆ(ˆ
3 θ−= ykd&                                         (16) 

and has the block-diagram representation shown below. 
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For the alternate method of design, the disturbance-free observer follows )~(~~~ eCyKBueAe −++=& .  

Characteristic equation of the disturbance-free observer, 

0
1 22

2 =Ω−+=
+Ω−
−

=− ss
s

s
sI α

α
A                                                         (17) 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=′′′=

10
01

CACN  and ⎥
⎦

⎤
⎢
⎣

⎡
=

10
1 α

W                         (18) 

Thus, 

⎥
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⎤
⎢
⎣

⎡
−

=′−

1
01

])[( 1

α
NW                       (19) 

When the desired characteristic equation of the disturbance-free observer is 0ˆˆ 21
2 =++ asas , the gain matrix is 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦
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⎢
⎣

⎡
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⎤
⎢
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−

′= −

2

1

1
2

2

1
2

2

1

22

111
~
~

)ˆ(ˆ
ˆ

ˆ
ˆ

1
01

ˆ
ˆ

])[(~
k
k

aa
a

a
a

aa
aa

NWK
αα

αα
α

                                 (20) 

The closed-loop matrix of the disturbance-free observer is 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡

−−Ω
−

=⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−Ω

=−=
αα 2

2
1

2

1
2 ~

1~
01~

~10~~
k

k
k
kCKAA                               (21) 

The correction matrix, EAECKAV 11 ~)~( −− −=−−=  

⎥
⎦

⎤
⎢
⎣

⎡
−+Ω−
−−

=−= −−

12
2

2

11 ~~
1

ˆ
1)~(~

kka
CKAA

α                           (22) 
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⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
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=−−= −

1212
2

2

1 ~
1

ˆ
1

1
0

~~
1

ˆ
1)~(

kakka
ECKAV

α                                  (23) 

The disturbance estimator follows )~(ˆ~)~(ˆ))((ˆ 00000000 eCyKxAeCyKxDCVKAx −+=−++−=& . 

[ ]
221

2

ˆ
1

ˆ/~
ˆ/1

01
aak

a
DCV =⎥

⎦

⎤
⎢
⎣

⎡
=+                             (24) 

)~(ˆ)ˆ/(ˆ
2 θ−+−= ykdakd dd

&                                       (25) 

The disturbance-estimation gain kd can determined from the remaining of the desired characteristic equation. 

 dd asaksAsI ˆˆ/~
20 +=+=−                                                                     (26) 

dd aak ˆˆ2=                                                                                   (27) 

The equation for the disturbance-free observer is 

)~(~~~
1 θωθ −+= yk&                                 (28) 

)~(
~~~~

2
2 θβωαθω −++−Ω= yku&                            (29) 

when 0ˆ~ˆ xVee += , 

d
a

ˆ
ˆ
1~ˆ

2

+=θθ                                (30) 

d
a
k ˆ
ˆ

~
~ˆ

2

1+= ωω                                (31) 
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A block diagram showing the implementation is given below.  

 
The overall dynamic of the observer follows 0)ˆ)(ˆˆ( 21

2 =+++ dasasas . 
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10.4 Reduced-Order Observers 

 
Cxy =                                (10.4-1) 

When C is a nonsingular matrix,  

yCxx 1ˆ −==                                   (10.4-2) 

• In many applications, it is possible to group the state variables into two sets: those that can be measured directly and 

those that depend indirectly on the former.  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2

1

___
x

x
x                                    (10.4-3) 

uBxAxAx 12121111 ++=&                                  (10.4-4) 

uBxAxAx 22221212 ++=&                                  (10.4-5) 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

2

1

111 ___0|
x

x
CxCy                         (10.4-6) 

)ˆ(ˆˆˆ 11112121111 xCyKuBxAxAx −+++=&                                         (10.4-7) 

)ˆ(ˆˆˆ 11222221212 xCyKuBxAxAx −+++=&                              (10.4-8) 
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yCxx 1

111 ˆ −==                                    (10.4-9) 

uBxAyCAx 2222
1

1212 ˆˆ ++= −&                             (10.4-10) 

• The dynamic behavior of the reduced-order observer is governed by the eigenvalues of A22 which is a submatrix of the 

open-loop dynamics matrix A, a matrix over which the designer has no control.  

• If the eigenvalues of A22 are suitable, then the observer could be designed. But there is no assurance that the 

eigenvalues of A22 are suitable. 

A suitably general structure for the estimation of 22x̂  is given by 

zLyx +=2ˆ                                (10.4-11) 

HuyGFzz ++=&                                    (10.4-12) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=−=

2

1

22

11

___
ˆ

_____
ˆ

ˆ
e

e

xx

xx
xxe                                     (10.4-13) 

0ˆ111 =−= xxe                                   (10.4-14) 

zyLuBxAxAxxe &&&&& −−++=−= 2222121222 ˆ  

  HuyGFzuBxAxACLuBxAxA −−−++−++= )]([ 121211112222121             (10.4-15) 

1122222ˆ xLCexLyexLyxz −−=−−=−=                                          (10.4-16) 
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uHBLCBxFALCAxFLCCGALCAFee )()()( 1122121221111112122 −−+−−++−−+=&                (10.4-17) 

12122 ALCAF −=                                  (10.4-18) 

112 BLCBH −=                                   (10.4-19) 

1111211 FLCALCACG +−=                               (10.4-20) 

22 Fee =&                              (10.4-21) 

)0()()( 2
1

2 eFsIse −−=                                                  (10.4-22) 

• Selecting the gain matrix L of the reduced order observer to place the eigenvalues of F is the same type of problem as 

selecting the gain matrix K to place the eigenvalues of Â .  

• In order to place the poles of F, it is necessary that the corresponding controllability test matrix is invertible. 

[ ]112
1

22112221121 )( CAACAACAN lk ′′′′′′′′= −−L                                (10.4-23) 

FLCALCAG +−= −1
111121 )(                                 (10.4-24) 

HuygxFHuyCALCAxFHuyFLCALCALyxFHuyGFzz ++=+−+=++−+−=++= −−
2

1
1111212

1
1111212 ˆ)(ˆ])[()ˆ(&   (10.4-25) 

1
111121 )( −−= CALCAg                                        (10.4-26) 
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Figure 10.4-1 Reduced-Order Observer for Observation y = C1x1 with C1 Nonsingular 
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Example: Metastate form of a system is represented by 
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x
x
x
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x
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⎥
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⎢
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⎥
⎥
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⎢
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⎥

⎦
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⎢
⎢

⎣

⎡

0000
2

1

2

1

22221

11211

2

1

&

&

&

                      (10.4-27) 

A. Full-order observer, assuming only x1 is measured. 

1xy =  or [ ]001=C                             (10.4-28) 

B. Full-order observer, assuming both x1 and x2 are measured. 

11 xy =  and 22 xy =  or ⎥
⎦

⎤
⎢
⎣

⎡
=

010
001

C                               (10.4-29) 

C. Reduced- (second-) order observer, assuming only x1 is measured. 

D. Reduced- (first-) order observer, assuming both x1 and x2 are measured. 
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Case A Full-order observer with one measured variable 

)ˆ(ˆˆˆˆ 11112121111 xykubxexaxax d −++++=&                          (10.4-30) 

)ˆ(ˆˆˆˆ 12222221212 xykubxexaxax d −++++=&                         (10.4-31) 

)ˆ(ˆ 13 xykxd −=&                                            (10.4-32) 

The gain matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

1

k
k
k

K                                (10.4-33) 

The open-loop characteristic polynomial 

])([
00

211222112211
2

22221

11211

aaaasaass
s
easa
eaas

AsI −++−=−−−
−−−

=−                                 (10.4-34) 

)( 22111 aaa +−= , 211222112 aaaaa −= , and 03 =a                                  (10.4-35) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+−
−+−

=
100

)(10
)(1

2211

211222112211

aa
aaaaaa

W                             (10.4-36) 
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The observability test matrix  

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+
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CACACN                                (10.4-37) 
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NW                                       (10.4-38) 
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NWK               (10.4-39) 
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Case B Full-order observer with two measured variables 

)ˆ()ˆ(ˆˆˆˆ 22121111112121111 xykxykubxexaxax d −+−++++=&                               (10.4-40) 

)ˆ()ˆ(ˆˆˆˆ 22221121222221212 xykxykubxexaxax d −+−++++=&                               (10.4-41) 

)ˆ()ˆ(ˆ 22321131 xykxykxd −+−=&                                (10.4-42) 

The observer gain matrix  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3231

2221

1211

kk
kk
kk

K                                   (10.4-43) 

• There are six gains to be selected: twice as many as are needed to place all the closed-loop poles. There are many 

solutions. 

• If y1 is used to estimate x1 and y2 is used to estimate x2. For estimating xd, we might consider using the sum of 11 x̂y −  

and 22 x̂y − , which would happen when k31 = k32 = k3.  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

2

1

0
0

kk
k

k
K                                (10.4-44) 

• Determination of the three gains k1, k2, and k3 needed to place the eigenvalues of KCAA −=ˆ  is straightforward problem 

in algebra. 
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Case C Reduced-order observer with one measurement 
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                                                               (10.4-45)  

yyCx == −1
11̂                       (10.4-46) 

zLyx +=2ˆ                                 (10.4-47) 

112ˆ zylx +=                                 (10.4-48) 

22ˆ zylxd +=                                 (10.4-49) 

HuygxFz ++= 2ˆ&                                   (10.4-50) 

uhygxfxfz d 11122111 ˆˆ +++=&                               (10.4-51) 

uhygxfxfz d 22222212 ˆˆ +++=&                               (10.4-52) 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−−
−−

=⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=−=

2221

1211

12122

11212122
112

2

1222
12122 00 ff

ff
elal

eleala
ea

l
lea

ALCAF              (10.4-53) 
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CALCAg                               (10.4-54) 
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BLCBH                         (10.4-55) 
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The characteristic equation for F  

0ˆˆ)( 21
2

211222112211
2 =++=−++−=− asasffffsffsFsI                       (10.4-56) 

12121221ˆ elalaa ++−=                                                              (10.4-57) 

221221222ˆ lealeaa +−=                                     (10.4-58) 

212122

2
2

ˆ
eaea
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=                                     (10.4-59) 
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l                                  (10.4-60) 
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Case D Reduced-order observer with two measurements 
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                                                               (10.4-61)  

yyCx == −1
11̂                       (10.4-62) 

11ˆ yx =                              (10.4-63) 

22ˆ yx =                                          (10.4-64) 

zLyx +=2ˆ                                 (10.4-65) 

zylylxd ++= 2211ˆ                           (10.4-66) 

HuygxFz ++= 2ˆ&                                     (10.4-67) 

huygygxfz d +++= 2211ˆ&                              (10.4-68) 

[ ] [ ] 2211
2

1
2112122 0 elel

e
e

llALCAF −−=⎥
⎦

⎤
⎢
⎣

⎡
−=−=                                         (10.4-69) 

[ ] [ ] [ ]222121212111
2221

1211
21

1
111121 00)( alalalal

aa
aa

llCALCAg −−−−=⎥
⎦

⎤
⎢
⎣

⎡
−=−= −        (10.4-70) 

[ ] [ ] 2211
2

1
21112 0 blbl

b
b

llBLCBH −−=⎥
⎦

⎤
⎢
⎣

⎡
−=−=                 (10.4-71) 
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The characteristic equation for F  

0ˆ12211 =+=++=− aselelsFsI                                (10.4-72) 
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11 Compensator Design by the Separation Principle 

 
11.1 Compensators Designed Using Full-Order Observers 

 
The standard dynamic process 

BuAxx +=&                                        (11.1-1) 

Observation  

Cxy =                                     (11.1-2) 

A full-state feedback control law 

Gxu −=                                     (11.1-3) 

An observer 

)ˆ(ˆˆ xCyKBuxAx −++=&                                  (11.1-4) 

The control law in the separation principle 

xGu ˆ−=                                   (11.1-5) 

The combined plant dynamics  

xBGAxx ˆ−=&                           (11.1-6) 

The combined observer  

)ˆ(ˆˆˆ xCCxKxBGxAx −+−=&                                (11.1-7) 
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The observer error 

xxe ˆ−=                                      (11.1-8) 

BGexABGexBGAexBGAxx c +=+−=−−= )()(&              (11.1-9) 

eAeKCAe ˆ)( =−=&                               (11.1-10) 

 

 
Figure 11.1 Control System Using Observer in Compensator 
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Figure 11.1-2 Block-Diagram Representation of State and Error in System with Compensator Designed by Separation 

Principle 

 

⎥
⎦

⎤
⎢
⎣

⎡
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⎦

⎤
⎢
⎣

⎡
⎥
⎦
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⎢
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⎤
⎢
⎣

⎡
e
x

A
e
x

A
BGA

e
x

c
c ˆ

ˆ0&

&
                            (11.1-11) 

The combined plant characteristic equation 

0ˆ
ˆ0

ˆ =−−=
−

−−
=− AsIAsI

AsI
BGAsI

AsI c
c

c                    (11.1-12) 

0)()ˆ( eseAsI =−                                     (11.1-13) 

0
1)ˆ()( eAsIse −−=                                      (11.1-14) 

0)()()( xsBGesxAsI c +=−                               (11.1-15) 

0
1

0
11

0
11 )()ˆ()()()()()( xAsIeAsIBGAsIxAsIsBGeAsIsx cccc

−−−−− −+−−=−+−=                       (11.1-16) 
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|ˆ|||
)ˆ( adj )( adj)ˆ()( 11

AsIAsI
AsIBGAsIAsIBGAsI

c

c
c

−−
−−

=−− −−                                     (11.1-17) 

KyxKCBGAxCCxKxBGxAx +−−=−+−= ˆ)()ˆ(ˆˆ&̂           (11.1-18) 

)()()(ˆ 1 sKyKCBGAsIsx −++−=                                    (11.1-19) 

)()()(ˆ)( 1 sKyKCBGAsIGsxGsu −++−−=−=                                  (11.1-20) 

The transfer function D(s) of the compensator 

)()()( sysDsu −=                          (11.1-21) 

KAsIGKKCBGAsIGsD c
11 )ˆ()()( −− −=++−=                               (11.1-22) 

KCABGAKCBGAA cc −=−=−−= ˆˆ                                     (11.1-23) 

 

The steps of the compensator design using observers: 

Step 1. Design the control law under the assumption that all state variables in the process can be measured. 

Step 2. Design an observer to estimate the state of the process for which the control law of step 1 was designed. 

Step 3. Combine the full-state control law design of step 1 with the observer design of step 2 to obtain the compensator 

design. 
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Compensator designed using full-order observer is sampled in the motor-driven inverted pendulum problem here. 

Step 1. Full-state feedback design 

     The other design of the control system with constant disturbance is shown here. The dynamics, including the 

disturbance are given by 

[ ]dux ⎥
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⎤
⎢
⎣

⎡
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⎦
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⎢
⎣
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⎢
⎣

⎡
=

1
0010

2 βω
θ

αω
θ
&

&
&                                     (1) 

The control law for this process is 

00 xGGxu −−=                                    (2) 

The gain matrix G was obtained before and it is used here. For the desired free-disturbance characteristic of 21
2 asas ++ , 

′

⎥
⎦

⎤
⎢
⎣

⎡

−
Ω+

=′=
βα
β

/)(
/)(

1

2
2

a
a

gG                               (3) 

In addition, we need the disturbance gain g0 which is computed by 

EBg #
0 =                                (4) 

where E is the matrix that multiplies the disturbance, in this case 

⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

E                              (5) 
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and since 

111# )( −−−= cc CABCAB                                       (6) 

where 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
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aaBGAAc βαβ
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                         (7) 

The observation matrix C is needed for the computation of B#. For this example, we assume that our sole measurement is 

of the pendulum angular position θ, that is 

Cxy =                                (8) 

with 

[ ]01=C                               (9) 

Thus 

[ ] [ ]221
22

11 /1/1
0
1

01 aaa
aa

a
CAc −−=⎥

⎦

⎤
⎢
⎣

⎡ −−
=−                                (10) 

Hence, with  

⎥
⎦

⎤
⎢
⎣

⎡
=

β
0

B                             (11) 

[ ]ββ /1/1
# aB =                                (12) 
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Thus from (4), 

β
1

0 =g                          (13) 

Thus the full-state feedback control law is 

d
aa

u
β

ω
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θ
β

11
2
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⎞
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⎛ Ω+
−=                                 (14) 

 

Step 2. Observer design with known control 

     The observer designed under the assumption that the control is known was derived before, it is used here. 

)ˆ(ˆˆ
1 θωθ −+= yk&                                    (15) 

)ˆ(ˆˆˆˆ 2
2 θβωαθω −+++−Ω= ykdu&                             (16) 

)ˆ(ˆ
3 θ−= ykd&                                          (17) 

For the desired observer characteristic of 32
2

1
3 ˆˆˆ asasas +++ , the observer gain matrix given by 
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                                (18) 
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Step 3. Compensator design 

     The compensator dynamic equations are obtained by using the estimated state in (14). 

d
aa

u ˆ1ˆˆ 1
2

2

β
ω

β
α

θ
β

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Ω+
−=                                   (19) 

and also using this control in (15)-(17). 

     A block-diagram representation of (15)-(17) and (19) is shown in figure below, which is the same as the block diagram 

for the observer with known input, but with the input u given by (19). 
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     Although the structure of the figure explicitly exhibits the estimates of the state variables, it is not necessary that the 

compensator be implemented by that structure. As long as the transfer function between the measure state y = θ and the 

control output u is the same as the transfer function between y and u in the figure, the closed-loop system will have the 

same behavior. 

     The compensator transfer function is 

KAsIGsD c
1)ˆ()( −−=                           (20) 

where 
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The resolvent for cÂ  is given by 
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where 
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After some calculation the transfer function of the compensator is determined to be 

2
221111

2
32

2
1

ˆ))(ˆ()ˆ([
)(

Ω+++−−+−++
++

=
aaaasaass

dsdsd
sD

αααβ
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where 

311
2

1112121 ˆ)2ˆ())(ˆ()(ˆ)ˆ( aaaaaaaaad +−+Ω+−−−−+−= αααααα                                     (25) 

31
4

211
2

222 ˆˆ]ˆ))(ˆ[(ˆ aaaaaaad +Ω++−−Ω+= αα                         (26) 

)])(ˆ([ˆ 11233 αα −−+= aaaad                           (27) 

      Note that the transfer function of the compensator as given by D(s) has a pole at the origin which resulted in this case 

form the unknown disturbance which is estimated by the observer. As a result of the pole at the origin, the cascade of the 

compensator and the original plant aslo has a pole at the origin, resulting in a “type 1” closed-loop transfer function which 

will ensure that the steady-state error for a constant disturbance is zero. 
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11.2 Reduced-Order Observers 

 
For the special case in which the observation can be used to solve for a substate: 

11xCy =                                (11.2-1) 

with C1 being a nonsingular matrix, 

yCxx 1
111ˆ
−==                         (11.2-2) 

zLyx +=2ˆ                                  (11.2-3) 

HuygxFHuyGFzz ++=++= 2ˆ&              (11.2-4) 

12122 ALCAF −=                         (11.2-5) 
1

11112111121 )(; −−=+−= CALCAgFLALCAG                 (11.2-6) 

112 BLCBH −=                                    (11.2-7) 

The control law 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−=−=

2

1
21 ˆ

ˆ
ˆ

x
x

GGxGu                                (11.2-8) 
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Figure 11.2-1 Block Diagram of Compensator Using Reduced-Order Observer 
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⎥
⎦

⎤
⎢
⎣

⎡
−
−

=−=
22

11

ˆ
ˆ

ˆ
xx
xx

xxe                                (11.2-9) 

The dynamics of the plant  

222211 )()()()( eBGxBGAeGeGBxBGAexBGAxx +−=++−=−−=&          (11.2-10) 

11ˆ xx =                               (11.2-11) 

01 =e                               (11.2-12) 

22 Fee =&                               (11.2-13) 

 

 
Figure 11.2-2 Block Diagram Representation of State and Error in System with Compensator Using Reduced-Order 

Observer 
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⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
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⎡
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⎦

⎤
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⎡

22 0 e
x

F
BGA

e
x c

&
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                                      (11.2-14) 

The combined plant characteristic equation 

0
0

=−−=
−

−−
FsIAsI

FsI
BGAsI

c
c                       (11.2-15) 

)0()()( 2
1

2 eFsIse −−=                          (11.2-16) 

)0()()()()( 1
22

1 xAsIseBGAsIsx cc
−− −+−=                                 (11.2-17) 

)0()()0()()()( 1
2

1
2

1 xAsIeFsIBGAsIsx cc
−−− −+−−=             (11.2-18) 

||||
)(adj)(adj

)()( 21
2

1

FsIAsI
FsIBGAsI

FsIBGAsI
c

c
c −−

−−
=−− −−                      (11.2-19) 


