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Optimal Control Theory 

 
1 Linear Quadratic Regulator 

 
Reasons of applying an optimal controller 

• In a multiple-input or multiple-output system, there are infinite solutions by which the same closed-loop poles can be 

attained by using the pole-placement technique. 

• The designer may not really know the desirable closed-loop pole locations. Choosing pole locations far from the origin 

may give very fast dynamic response but require control signals that are too large to be produced with the available 

power source. The control signal might be saturated. In such cases the closed-loop dynamic behavior will not be as 

predicted by the linear analysis, and may even be unstable.  

• The process to be controlled may not be controllable. There may be some subspace of the process state-space in 

which the state vector cannot be moved around by application of suitable control signals. Hence design by pole 

placement will not work.  

 
 
 
 
 
 
 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                              CONTROL THEORY 

  Manukid Parnichkun 2 

 
1.1 Formulation of the Optimal Control Problem 

 
The dynamic process  

BuAxx +=&                               (1.1-1) 

A linear control law  

Gxu −=                                      (1.1-2) 

The gain, G, that minimizes a specified performance criterion V or “cost function”  

∫ ′+′=
T

dttutRtutxtQtxV
τ

)]()()()()()([                                          (1.1-3) 

Q and R: symmetric matrices 

Q: the state weighting matrix  

R: the control weighting matrix  

• The quadratic term Qxx ′  represents a penalty on the deviation of the state x from the origin. 

• The quadratic term Ruu ′  represents the cost of control.  

Example: Suppose that x1 represents the system error, and that x2, …, xk represent successive derivatives, i.e., 
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If only the error and none of its derivatives are of concern. 
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2
1xQxx =′                             (1.1-6) 

To limit also the velocity, the performance integral might include a velocity penalty. 
2
2
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1 xcxQxx +=′                                  (1.1-7) 
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The system output 

Cxy =                                       (1.1-9) 

A system with a single output 

xcy ′=                             (1.1-10) 

xccxy ′′=2                                       (1.1-11) 

ccQ ′=                                     (1.1-12) 

• The term Ruu ′  in the performance index is included to limit the magnitude of the control signal u.  
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1.2 Quadratic Integrals and Matrix Differential Equations 

 
The closed-loop dynamic behavior  

xABGxAxx c=−=&                       (1.2-1) 

BGAAc −=                              (1.2-2) 

)(),()( ττφ xttx c=                                 (1.2-3) 

φc: the state-transition matrix corresponding to Ac  

The performance index  

∫∫ ′+′′=′+′=
T

cc

T

dtxtRGGQtxdttutRtutxtQtxV
ττ

ττφτφτ )(),(}){,()()]()()()()()([           (1.2-4) 

)(),()( τττ xTMxV ′=                                   (1.2-5) 

∫ ′+′=
T

cc dttRGGQtTM
τ

τφτφτ ),(}){,(),(                                   (1.2-6) 

M: a symmetric matrix 

V is a function of the initial time τ.  

∫∫ ′=′+′=
TT

dttxtLtxdttutRtutxtQtxV
ττ

τ )()()()]()()()()()([)(                      (1.2-7) 

RGGQL ′+=                                         (1.2-8) 
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)()(|)()( ττ

τ τ LxxtLxtx
d
dV

t ′−=′−= =                                        (1.2-9) 

But, from (1.2-5) 

)(),()()(),()()(),()( τττττττττ
τ

xTMxxTMxxTMx
d
dV

&&& ′+′+′=                                 (1.2-10) 

)()](),(),(),()()[( τττττττ
τ

xATMTMTMAx
d
dV

cc ++′′= &                                             (1.2-11) 

cc MAMMAL ++′=− &                                  (1.2-12) 

LMAMAM cc +′+=− &                                   (1.2-13) 

• Equation (1.2-13) is an important differential equation. It appears in many forms in control theory and estimation.  

∫ ′=
T

cc dttLtTM
τ

τφττφτ ),()(),(),(                                         (1.2-14) 

• Equation (1.2-13) is a first-order matrix differential equation and requires a boundary condition.  

0),( =TTM                                        (1.2-15) 
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1.3 The Optimum Gain Matrix 

 
When any gain matrix G is chosen, the corresponding closed-loop performance  

)(),()( τττ xTMxV ′=                                (1.3-1) 

RGGQMBGABGAMLMAMAM cc ′++′′−′+−=+′+=− )()(&             (1.3-2) 

• The task now is to find the matrix G which makes the solution to (1.3-2) as small as possible.  

The optimum matrix M̂  for any arbitrary initial state x(τ) and any matrix MM ˆ≠ , 

MxxxMxV ′<′= ˆˆ                               (1.3-3) 

GRGQMBGAGBAMM ˆˆˆ)ˆ()ˆ(ˆˆ ′++′′−′+−=−
&                            (1.3-4) 

NMM += ˆ                             (1.3-5) 

ZGG += ˆ                             (1.3-6) 

)ˆ()ˆ()ˆ]()ˆ([)]ˆ()[ˆ()ˆ( ZGRZGQNMBZGAZGBANMNM +′+′+++′′+′−′++−+=+− &&                (1.3-7) 

RZZMBGRZZBMRGNANAN cc ′+′−′+−′+′+=− ˆˆ()ˆˆ(&                              (1.3-8) 

)ˆ( ZGBABGAAc +−=−=  

Compare with LMAMAM cc +′+=− & ,   

RZZMBGRZZBMRGL ′+′−′+−′= )ˆˆ()ˆˆ(                                        (1.3-9) 
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∫ ′=
T

cc dttLtTN
τ

τφττφτ ),()(),(),(                                                 (1.3-10) 

NxxxMxxNMxMxx ′+′=+′≤′ ˆ)ˆ(                            (1.3-11) 

• The quadratic form Nxx ′  must be positive definite, or at least positive semidefinite.  

• Nxx ′ is positive definite when the two linear terms in (1.3-9) absent.  

0ˆˆ =′− MBGR                                       (1.3-12) 

For nonsingular control weighting matrix R  

MBRG ˆˆ 1 ′= −                                      (1.3-13) 

QMBBRMMAAMM +′−′+=− − ˆˆˆˆˆ 1&                             (1.3-14) 

• A scalar first-order differential equation with a linear term and a quadratic term (as well as a constant term) is known 

as a Riccati equation.  

With boundary condition, 

0),(ˆ =TTM                                   (1.3-15) 
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1.4 The Steady State Solution 

 

∫
∞

∞ ′+′=
τ

dtRuuQxxV )(                       (1.4-1) 

• In this case the terminal time, T, is infinite, the integration will either converge to a constant value or grow without 

limit.  

• If it converges to a limit, the derivative M&̂  tends to zero.  

xMxV ′=∞                               (1.4-2) 

• M  satisfies the algebraic quadratic equation (sometimes called the algebraic Riccati equation or ARE). 

QMBBRMMAAM +′−′+= −10                               (1.4-3) 

The optimum gain in the steady state  

MBRG ′= −1                                            (1.4-4) 

For most design applications the following facts about the solution of (1.4-3) are sufficient. 

(a) If the system is asymptotically stable, or 

(b) If the system defined by the matrices (A, B) is controllable, and the system defined by (A, C) where C'C = Q, is 

observable, 

Then the algebraic Riccati equation (ARE) has a unique, positive definite solution M  which minimizes V∞ when the 

control law xMBRu ′−= −1 is used. 
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In the inverted pendulum problem, the state variables are θ=1x  (angular position) and θ&=2x  (angular velocity). The 

matrices defining the dynamics are 

⎥
⎦

⎤
⎢
⎣

⎡
−Ω

=
α2

10
A , ⎥

⎦

⎤
⎢
⎣

⎡
=

β
0

B                        (1) 

where  

JR
KK 21−=α , 

JR
K 1=β , 2mlJJ m += , and 

mlJl
g

mlJ
mgl

mm /2
2

+
=

+
=Ω                           (2) 

A control law is sought to minimize the performance index 

∫
∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

τ

θ dt
c
uV 2

2
2                            (3) 

The weighting matrices are seen to be 

⎥⎦
⎤

⎢⎣
⎡=⎥

⎦

⎤
⎢
⎣

⎡
= 2

1 ,
00
01

c
RQ                                 (4) 

Let the performance matrix M̂  be given by 

⎥
⎦

⎤
⎢
⎣

⎡
=

32

21ˆ
mm
mm

M                          (5) 

The gain matrix is 

[ ][ ] [ ]3
2

2
2

32

2121 0ˆˆ mcmc
mm
mm

cMBRG βββ =⎥
⎦

⎤
⎢
⎣

⎡
=′= −                                 (6) 
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The terms needed for the matrix quadratic are 

⎥
⎦

⎤
⎢
⎣

⎡

−Ω
−Ω

=⎥
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⎤
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⎡
⎥
⎦
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⎢
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⎡
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3

22
32

22
32

222
2

22

3
2

2
2

32

211 0ˆˆˆˆ
mcmmc

mmcmc
mcmc

mm
mm

GBMMBBRM
ββ

ββ
ββ

β
                                (9) 

By substitution into 

QMBBRMMAAM +′−′+= −10                                 (10) 

Thus, the individual terms are 

120 2
2

222
2 +−Ω= mcm β                           (11) 

32
222

3210 mmcmmm βα −Ω+−=                                (12) 
2
3

22
32 220 mcmm βα −−=                           (13) 

Solving for m1, m2, and m3, 

22

2242

2 β
β

c
c

m
+Ω±Ω

=                         (14) 

22

22422

3

)(2
β

βαα
c

c
m

+Ω±Ω+±−
=                                              (15) 
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22

224222242

1

))(2)((
β

βαβα
c

cc
m

+Ω±Ω++Ω+Ω
=                                                      (16) 

Solving for the gains g1 and g2, 

β
β 2242

1

c
g

+Ω±Ω
=                             (17) 

β
βαα )(2 22422

2

c
g

+Ω±Ω+±−
=                                                                (18) 

The correct signs in (14), (15), (16), (17) and (18) are the ones which make real solutions. 

     If α is very small and negligible and β is unity. The only solutions will be 

2

242

2 c
cm +Ω+Ω

= , 2

242

3
)(2

c
c

m
+Ω+Ω

= , 2

24224

1
))(2)((

c
cc

m
+Ω+Ω+Ω

= , 

242
1 cg +Ω+Ω= , and )(2 242

2 cg +Ω+Ω=                (19) 

The closed-loop matrix is 

⎥
⎦

⎤
⎢
⎣

⎡
+Ω+Ω−+Ω−

=−=
)(2

10
24224 cc

BGAAc                           (20) 

And the characteristic equation is 

0)(2 242422 =+Ω++Ω+Ω+ cscs                             (21) 
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The roots of which are 

22
,

2222

21
Ω−Ω

±
Ω+Ω

=ss  where 242 c+Ω=Ω                                               (22) 

The locus of closed-loop poles as the weighting factor c is varied from ∞ to 0 is shown in the figure below. 
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The following characteristics of the locus are noteworthy, ∫
∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

τ

θ dt
c
uV 2

2
2 . 

     (a) As c increases, the closed-loop roots tend to asymptotes at 45° to the real axis, and move out to ∞ along these 

asymptotes. This implies that the response time tends to zero and the damping factor tends to ζ = 1/21/2 = 0.707. 

     (b) As c tends to zero, the cost of control tends to become very large. If the open-loop system were stable, and it would 

turn out that the gains g1 and g2 would tend to zero and the open-loop system would “coast” to rest, without incurring any 

control cost. In the present case, however, the open-loop system is unstable, and cannot coast to rest without control. A 

certain amount of control is necessary to stabilize the system. The second closed-loop pole also tends to s = -Ω is a 

consequence of a general result that as the control weighting becomes very large, the closed loop poles corresponding to 

unstable open loop poles tend to their mirror images with respect to the imaginary axis. In other words, if βα js i ++=  

( 0≥α ) in the open-loop system, then the corresponding pole in the closed-loop system tends to βα js i +−= . This is a 

general property of optimal control laws. 
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1.5 Disturbances and Reference Inputs: Exogenous Variables 

 
0ExBuAxx ++=&                                  (1.5-1) 

000 xAx =&                         (1.5-2) 

uBAxx +=&                            (1.5-3) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

0x

e
x , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−=

0|0

|

A

EA
A , and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=
0

B
B                            (1.5-4) 

Obviously, the exogenous state x0 is not controllable; hence an appropriate performance integral would be  

∫ ′+′=
T

dtRuuQxxV
τ

)(                        (1.5-5) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−=
0|0

0|Q
Q                                 (1.5-6) 

• The upper limit on the integral is intentionally not made infinite. It may not be possible to achieve a steady state error 

of zero with a control u that also goes to zero. The cost function will become infinite as T → ∞. 

• One way of approaching this problem is to find a control u  which satisfies the requirements of zero steady state error.  

For 0== xx & , the required steady state control u  must satisfy 

00 =+ ExuB                                        (1.5-7) 
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• The total control u is the sum of the steady state control and a “corrective” control v. 

vuu +=                           (1.5-8) 

BvAxExBuAxx +=++= 0&                           (1.5-9) 

∫
∞

′+′=
τ

dtRvvQxxV )(                               (1.5-10) 

The performance matrix M̂ for the metasystem  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′
−−−=

32

21

ˆ|ˆ

ˆ|ˆ
ˆ

MM

MM
M                              (1.5-11) 

The gain matrix Ĝ  for the metasystem  

[ ] [ ]2
1

1
1

32

21
1 ˆ|ˆ

ˆ|ˆ

ˆ|ˆ

0|ˆ MBRMBR
MM

MM
BR ′′=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′
−−−′= −−−G                                (1.5-12) 

From QMBBRMMAAMM 1 +′−′+=− − ˆˆˆˆ&̂ , 

QMBBRMMAAMM +′−′+=− −
1

1
1111

ˆˆˆˆ&̂                             (1.5-13) 

2
1

10212
ˆ)ˆ(ˆˆˆ MBBRMAAMEMM ′−′++=− −&                             (1.5-14) 

2
1

22230033
ˆˆˆˆˆˆˆ MBBRMMEEMMAAMM ′′−′+′+′+=− −&                                    (1.5-15) 
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Owing to the special structure of A, B, and Q, the following facts about the submatrices of M̂ emerge: 

     (a) The solution for 1M̂ , and hence the corresponding gain 1
1 M̂BR ′− , is the same as it would have been with x0 absent 

from the problem. 

     (b) The differential equation for 2M̂ , from which the gain 2
1 M̂BR ′−  is determined, does not depend on 3M̂ , and in fact is 

a linear equation. 

20212
ˆˆˆˆ MAAMEMM c′++=−

&                                                 (1.5-16) 

1
1 M̂BBRAAc ′−= −                                                       (1.5-17) 

A steady state solution  

20210 MAAMEM c′++=                                              (1.5-18) 

The necessary gains to realize the control law 

02
1

1
1 xMBRxMBRu ′−′−= −−                               (1.5-19)  

     (c) The differential equation for 3M̂  is also linear. Whether it has a steady state solution depends on A0. If A0 = 0, (1.5-

15) does not have a steady state solution. But this doesn’t matter because 3M̂  is not used in the determination of the gain 

matrix. 
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For A0 = 0, 

212
ˆˆˆ MAEMM c′+=−

&                                (1.5-20) 

2
1

2223
ˆˆˆˆˆ MBBRMMEEMM ′′−′+′=− −&                                           (1.5-21) 

∫ ′′−′+′+= −
T

dtMBBRMMEEMTMtM
τ

)ˆˆˆˆ()()( 2
1

22233                                             (1.5-22) 

Steady state solution, 

EMAM c 1
1

2 )( −′−=                           (1.5-23) 

EBEMABRMBRG c
*

1
11

2
1

0 )( =′′−=′−= −−−                     (1.5-24) 

1
11* )( MABRB c
−− ′′−=                               (1.5-25) 
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The differential equations governing the displacement of the proof mass in an accelerometer, shown above, is given by 

21 xx =&                                   (1) 

ax
m
Bx

m
Kx +−−= 212

&                                  (2) 

Suppose that the spring and damping forces are both absent. To keep the proof mass from striking the wall, capture force, 

u, is used to capture the proof mass. The differential equations for the proof mass, with the acceleration due to the capture 

force are 

21 xx =&                                  (3) 

aux +=2
&                                    (4) 

First, consider the control problem of returning the proof mass to the origin (x1 = x2 = 0) in the absence of an input 

acceleration (a = 0). The matrices for the dynamics are 

⎥
⎦

⎤
⎢
⎣

⎡
=

00
10

A , ⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

B                                           (5) 

We use a performance criterion of the form 
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∫
∞

+=
τ

dt
c
uxV )( 2

2
2
1                         (6) 

The gain matrix for this control design is 

[ ][ ] [ ]3
2

2
2

32

2121 10 mcmc
mm
mm

cMBRG =⎥
⎦

⎤
⎢
⎣

⎡
=′= −                          (7) 

and the components of M is determined from QMBBRMMAAM +′−′+= −10 . 

10 2
2

2 +−= mc                                  (8) 

32
2

10 mmcm −=                      (9) 
2
3

2
220 mcm −=                               (10) 

The solutions are 

c
m 2

1 = , 
c

m 1
2 = , and 33

2
c

m =                         (11) 

Thus, the gain matrix becomes 

[ ] [ ]ccmcmcG 23
2

2
2 ==                                 (12) 

The dynamic matrix of the closed-loop system is given by 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−−

=⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
=−=

cc
ccBGAAc 2

10
2

1
0

00
10                       (13) 
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Hence the closed-loop poles are the roots of 

02
2

1 2 =++=
+
−

=− cscs
csc

s
AsI c                                     (14) 

or 

 jccs
2
2

2
2

2,1 ±−=                                           (15) 

The locus of the closed-loop poles are thus straight lines at 45 degrees to the coordinate axes and moving away from the 

origin as c → ∞. 

     The case we really want to consider, of course, is a nonzero external acceleration. Any model for a can be used (e.g., a 

step, a ramp, etc.). Suppose that it is modeled as a step 

0=a&                               (16) 

Adjoining this to (3) and (4) gives 

u

a

x
x

a

x
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
0

1
0

0|00

1|00
0|10

2

1

2

1

&

&

&

                                (17) 
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In particular, let 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′
−−−=

654

532

421

32

21

|

|
|

ˆ|ˆ

ˆ|ˆ
ˆ

mmm

mmm
mmm

MM

MM
M                                       (18) 

Then, as already found, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

3

1 21

12
ˆˆ

cc

ccMM                             (19) 

The submatrix 2M  is found using (1.5-23). ln this application (1.5-20) is 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−
−

−=⎥
⎦

⎤
⎢
⎣

⎡
=′−=

−
−

2
3

1

5

4
1

1
2 1

0

1
0

21

12

21
0

)(
c

cc

cc
c

c
m
m

EMAM c                     (20) 

The gain due to the forcing acceleration is 

[ ][ ] 11
0

10
2

2
2

1 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=′= −

c
cMBRGa                        (21) 

Thus the control law 

axccxaGxgxgu a −−−=−−−= 212211 2                              (22) 
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Note that we never needed to determine the remaining term m6 of M . The differential equation for m6 is determined from 

2
1

2223
ˆˆˆˆˆ MBBRMMEEMM ′′−′+′=− −& . 

2
2
5

2
56

12
c

mcmm =−=− &                           (23) 

266 )()(
c

TTmm ττ −
+=                                    (24) 

 

A steady state solution for m6 does not exist. This is not surprising, in view of the fact that a constant value of external 

acceleration demands a constant, nonzero control, and this cannot result in a finite value of the performance integral V 

over an infinite time interval.  
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1.6 General Performance Integral 

 
When the performance integral includes also a cross term, SxuuSxuSx ′+′′=′′2 , the optimum gain  

)ˆ(ˆ 1 SMBRG +′= −                                 (1.6-1) 

QMBBRMMAAMM +′−′+=− − ˆˆˆˆˆ 1&                                (1.6-2) 

SBRAA 1−−=                               (1.6-3) 

SRSQQ 1−′−=                                (1.6-4) 

Proof: 

SxRvu 1−−=                             (1.6-5) 

BvxABvxSBRABuAxx +=+−=+= − )( 1&                             (1.6-6) 

∫ ′+′+′′+′=
T

dtRuuSxuuSxQxxV
τ

)(                               (1.6-7) 

RvvxRSSQxSxRvRRSxvSxRSxvSxRvSxQxx ′+′−′=−′′−′+′′−′+−′′+′ −−−− )()()()()( 1111               (1.6-8) 

∫ ′+′=
T

dtRvvxQxV
τ

)(                         (1.6-9) 

xGv −=                                    (1.6-10) 

MBRG ˆ1 ′= −                            (1.6-11) 

xGxSRMBRu ˆ)ˆ( 11 −=+′−= −−                        (1.6-13) 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                              CONTROL THEORY 

  Manukid Parnichkun 24 

 
1.7 Weighting of Performance at Terminal Time 

 
• In control processes of finite time duration, the terminal state x(T) is often as important as, or more important than, the 

manner in which the state is reached.  

)()()]()()()([ TZxTxdttRututQxtxV
T

′+′+′= ∫
τ

                                         (1.7-1) 

)()( TZxTx ′ : a terminal penalty, the cost of not getting to the origin at the terminal time 

ZTTM =),(ˆ                                 (1.7-2) 

)(),()( ττφ xTTx c=                                     (1.7-3) 

)(),(),()()()( ττφτφτ xTZTxTZxTx cc′′=′                                              (1.7-4) 

)(),()(),( ττττ xTMxTVV ′==                              (1.7-5) 

),(),()]()()()([),( τφτφτ
τ

TZTdttRututQxtxTM cc

T

′+′+′= ∫                                      (1.7-6) 

ZTTM =),(                                (1.7-7) 

since ITTc =),(φ  for any transition matrix,  

)(),()()(),()()(),()( τττττττττ
τ

xTMxxTMxxTMxV
&&& ′+′+′=

∂
∂                              (1.7-8) 
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From )()()]()()()([ TZxTxdttRututQxtxV
T

′+′+′= ∫
τ

 and Gxu −= , 

)](),(),()([)()( ττφτφτ
τ

ττ
τ

xTZTxLxxV
cc′′

∂
∂

+′=
∂
∂                                       (1.7-9) 

where RGGQL ′+= . 

From )(),()( ττφ xTTx c= , 

)(),()(),()( ττφτ
τ
τφ

τ
xTxTTx

c
c &+
∂

∂
=

∂
∂                             (1.7-10) 

For any transition matrix 

ITT cc =),(),( τφτφ                              (1.7-11) 

0),(),(),(),(
=

∂
∂

+
∂

∂
τ
τφτφτφ

τ
τφ TTTT c

cc
c                                       (1.7-12) 

From xAx c=& , 

),()(),( TAT
cc

c τφτ
τ
τφ

=
∂

∂                                             (1.7-13) 

0),(),()(),(),(),(),(
=

∂
∂

+=
∂

∂
+

∂
∂

τ
τφτφτ

τ
τφτφτφ

τ
τφ TTATTTT c

cc
c

cc
c                    (1.7-14) 

)(),(),( ττφ
τ
τφ

cc
c ATT

−=
∂

∂                                     (1.7-15) 

)()()( τττ xAx c=&                                       (1.7-16) 
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0)(),()(),()(
=+

∂
∂

=
∂

∂ ττφτ
τ
τφ

τ
xTxTTx

c
c &                    (1.7-17) 

• Hence the second term in )](),(),()([)()( ττφτφτ
τ

ττ
τ

xTZTxLxxV
cc′′

∂
∂

+′=
∂
∂  vanishes and M(t, T) satisfies the same 

differential equation as before, namely 

LMAMAM cc +′+=− &                                  (1.7-18) 

     but subject to the condition ZTTM =),( .  
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The approximate dynamic model of a missile which is controlled by the use of a control acceleration normal to the 

velocity vector is represented by 

uTz )( τ−=&                                        (1) 

where z is the projected miss distance between the missile and the target, u is the normal acceleration, and T - τ is the 

time-to-go, assumed to be a known quantity. 

     If z is brought to zero at any time, the missile will, in the absence of any further normal acceleration (u = 0), continue 

on a straight-line trajectory to intercept the target. Thus the control objective is to reduce z to zero. There are of course 

countlessly many ways that this can be accomplished. The only requirement is that 

∫ =−+=
T

dttutTzTz
τ

τ 0)()()()(                                                  (2) 

In order to formulate a suitable optimization problem we suppose that the control objective is to minimize 

∫ +=
T

TzkdttuV
τ

)()( 222                                             (3) 

The integral term in (3) is a quadratic form in the normal acceleration; it penalizes large accelerations and hence is a way 

of limiting the acceleration requirement. The second term penalizes the terminal miss distance. The larger the value of k 

the greater the cost attached to missing the target; as k → ∞ the target must be hit at all costs. 

     The matrices that define the problem are all scalars 
2 and , ,0 ,)( ,0 kZIRQTBA ===−== ττ                                               (4) 
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Thus the “optimum” guidance law is 

)(),()()(),()()()( 1 ττττττττ zTMTzTMBRGzu −−=−=−= −                                   (5) 

where M(τ, T) is a scalar satisfying the Riccati equation 
22)( MTM τ−−=− &                                     (6) 

subject to the terminal condition 
2),( kTTM =                                (7) 

To solve (7) let 

),(/1)( TMW ττ =                       (8) 

Then  
2)( τ−= TW&                               (9) 

which is integrated directly to give 

3
)()()()()(

3
2 τττ

τ

−
+=−+= ∫

TWdttTWTW
T

                     (10) 

But, by (7) and (8), 2/1)( kTW = . Thus 

3
)(1)(

3

2

ττ −
−=

T
k

W                       (11) 
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The desired solution to the Riccati equation is 

32 )(/3
3),(

τ
τ

−−
=

Tk
TM                             (12) 

If we truly want the terminal miss to be zero, we must let k2 be infinite, in this limiting case (12) becomes 

3)(
3),(
τ

τ
−−

=
T

TM                                     (13) 

The guidance law in (5) becomes )(
)(

3)( 2 τ
τ

τ z
T

u
−

= . 
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2 Random Processes 

 
• The disturbances to a real system in many cases are random processes.  

• The sensors used in the measurement of the system output, y, in many cases are not perfect, and subject to errors, 

which are also random processes.  

• Since the disturbances and sensor errors are random processes, the response of the system, either open-loop, or with 

the feedback control present, is also a random process.  

&x Ax Bu Fv= + +                                  (2-1) 

y Cx w= +                                          (2-2) 

v and w: random processes.  
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2.1 Conceptual Models for Random Processes 

 
Let xi(t) denote the ith member of an ensemble of N members.  

Mean:       x t
N

x ti
i

N

( ) ( )=
=
∑1

1

              (2.1-1) 

Mean Square:      x t
N

x ti
i

N
2 2

1

1( ) ( )=
=
∑               (2.1-2) 

Variance:               v t
N

x t x ti
i

N

( ) [ ( ) ( )]= −
=
∑1 2

1

             (2.1-3) 

Correlation Function:                r t
N

x t xi i
i

N

( , ) ( ) ( )τ τ=
=
∑1

1

              (2.1-4) 
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2.2 Statistical Characteristics of Random Processes 

 
First- and Second- Order Statistics: In theory, a random process is characterized by an infinite series of joint probability 

density functions 
pdf x t[ ; ]  

pdf x x t t[ , ; , ]1 2 1 2  

pdf x x x t t t[ , , ; , , ]1 2 3 1 2 3  

M                                          (2.2-1) 

• Each density function describes the probability of finding x somewhere at some time.  

Example: pdf x x x t t t x x x[ , , ; , , ]1 2 3 1 2 3 1 2 3Δ Δ Δ = < < + < < + < < +prob x x t x x x x t x x x x t x x[ ( ) , ( ) , ( ) ]1 1 1 1 2 2 2 2 3 3 3 3Δ Δ Δ  

Mean:      ∫
∞

∞−

== dxtxpdfxtxEt ],[)()}({)(μ             (2.2-2) 

Mean Square:          ∫
∞

∞−

= dxtxpdfxtxE ],[)()}({ 22              (2.2-3) 

Variance:         ∫
∞

∞−

−=−= dxtxpdftxttxEt ],[)]([})]()({[)( 222 μμσ
          

(2.2-4) 

Correlation Function:                ∫ ∫
∞

∞−

∞

∞−

== 212121 ],;,[)()}()({),( dxdxtxxpdfxxxtxEt τττρ           (2.2-5) 

E{ }: mathematical expectation 
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When τ = t the correlation function  

∫∫ ∫
∞

∞−

∞

∞−

∞

∞−

=== )}({];[)(],;,[)(),( 2
11

2
1212121 txEdxtxpdfxdxdxttxxpdfxxttρ                 (2.2-6) 

For vector processes, 

x t
x t

x tn

( )
( )

( )
=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

M

             

    (2.2-7) 

μ( ) { ( )}
{ ( )}

{ ( )}
t E x t

E x t

E x tn

= =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

M

                                      

 (2.2-8) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=′=

)}()({)}()({

)}()({)}()({
)}()({),(

1

111

ττ

ττ
ττ

nnn

n

xtxExtxE

xtxExtxE
xtxEtR

L

MOM

L

                                      (2.2-9) 

• The diagonal entries in the correlation matrix are the autocorrelation functions.  

• The off-diagonal terms in the correlation matrix are cross-correlation.  

),(),( tRtR ττ ′=                                     (2.2-10) 

)(),()}()({),( tPttRtxtxEttR =′=′=                                       (2.2-11) 

R(t, t), P(t): the covariance matrix for the vector process x(t) 
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• If the covariance matrix, P(t), is diagonal, the components of the vector x are said to be uncorrelated. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

),(0

0),(
),()(

11

ttr

ttr
ttRtP

nnL

MOM

L

                                                             (2.2-12) 

0)}()({ =txtxE ji  for i ≠ j                                                                    (2.2-13) 

Stationary and Ergodic Processes: The set of probability density functions are general functions of the time variables t1, 

t2, t3, ... for a general random process. If the functions are invariant to a translation of time, the process is called 

stationary. 

                                                                              pdf x t pdf x t[ ; ] [ ; ]+ =τ  for all τ 

                                                                    pdf x x t t pdf x x t t[ , ; , ] [ , ; , ]1 2 1 2 1 2 1 2+ + =τ τ    for all τ 

M                  (2.2-14) 

If a process is ergodic, it is stationary and a single sample function is representative of the ensemble.  

For ergodic processes, 

Mean:                μ( ) ( )lim
/

/

t
T

x t dt
T T

T

=
→∞ −

∫
1

2

2

      
  (2.2-15) 

Variance:                σ μ2 2

2

21( ) [ ( )]lim
/

/

t
T

x t dt
T T

T

= −
→∞ −

∫
                  

(2.2-16) 

Correlation Function:             ρ τ τ( ) ( ) ( )lim
/

/

= +
→∞ −

∫
T T

T

T
x t x t dt1

2

2

     
    (2.2-17) 
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2.3 Power Spectral Density Function 

 
• One of the most useful descriptions of a random process is its power spectral density function, S(ω), also called the 

power spectrum, which is defined as the Fourier transform of the correlation function. 

S e dj( ) ( )ω ρ τ τωτ= −

−∞

∞

∫
                                

 (2.3-1) 

Methods to determine power spectral density function 

1. Computing a correlation function by multiplying x(t) by x(t+τ) and integration.  

2. Measuring S(ω) by connecting the output of the process to a device known as a spectrum analyzer and then measuring 

the power contained in the random signal in different frequency bands. A spectrum analyzer is actually a sharply tuned 

filter with an adjustable center frequency.  

Consider a function of frequency approximated by 

| ( )| ( )
/

/

X j x t e dtT
j t

T

T

ω ω2

2

2 2

= −

−
∫                                     (2.3-2) 

• The spectrum analyzer produces an approximation to the Fourier transform of the signal.  

| ( )| ( ) ( ) ( ) ( ) ( ) ( )
/

/

/

/

/

/
( )

/

/

X j X j X j x t e dt x e d x t x e dtdT T T
j t

T

T
j

T

T

T

T
j t

T

T

ω ω ω τ τ τ τω ωτ ω τ2

2

2

2

2

2

2

2

2

= − = ⋅ =−

− − −

− −

−
∫ ∫ ∫∫

  
                 (2.3-3) 
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Define λ = t-τ, 

1 12

2

2

2

2

T
X j

T
x x d e dT

T

T
j

T

T

| ( )| ( ) ( )
/

/

/

/

ω τ λ τ τ λωλ

τ

τ

= +
⎧
⎨
⎩

⎫
⎬
⎭−

−

− −

− +

∫∫
       

                              (2.3-4) 

If the process is ergodic, 

ρ λ τ λ τ τ ρ λT
T

T

T
x x d( ) ( ) ( ) ( )

/

/

= + →
−
∫

1

2

2

 as T → ∞                                      (2.3-5) 

)()(lim|)(|1lim
2/

2/

2 ωλλρω
τ

τ

ωλ SdejX
T

T

T

j
TTTT

== ∫
+−

−−

−

∞→∞→                                   
 (2.3-6) 

• The power spectral density function varies with the limit of the magnitude square of the ordinary Fourier transform of 

the signal.  

• The Fourier transform of a signal describes how its energy is distributed in frequency; division by T converts energy to 

power. 

• The correlation function is the inverse Fourier transform of the power spectral density. 

ρ τ
π

ω ωωτ( ) ( )=
−∞

∞

∫
1

2
S e dj

                                   
 (2.3-7) 

For τ = 0 

ρ
π

ω ω( ) ( )0 1
2

=
−∞

∞

∫ S d                                  (2.3-8) 
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∫
−

∞→
=

2/

2/

2 )(1lim)0(
T

T
T

dttx
T

ρ
                                

 (2.3-9) 

• The area under the spectral density function is 2π times the mean square value of the random process. 

• The spectral density can be expressed as a function of frequency, f = ω/(2π).  

∫∫
∞∞

∞−

==
0

)(2)()0( dffSdffSρ                                  (2.3-10) 

)(fS : the spectral density in (units)2/Hz. 
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2.4 White Noise and Linear System Response 

 
• White noise is a random process with an expected value (mean) of zero with an absolutely flat power spectrum. 

 S(ω) = W = constant for all ω                                (2.4-1)  

The correlation function of white noise  

ρ τ δ τ( ) ( )= W                            (2.4-2) 

δ(τ): a unit impulse 

• A vector random process is white noise if its correlation matrix is of the from 

R W E x t x t( ) ( ) { ( ) ( )}τ δ τ τ= = ′ +                               (2.4-3) 

W: a square matrix. 

Consider a linear system, the input to which is the signal u(t) and the output from which is y(t).  

y t H t u d
t

( ) ( , ) ( )= ∫ λ λ λ
0                                     

 (2.4-4) 

The correlation matrix for the output y(t)  

R t E y t y E H t u d u H dy

t

( , ) { ( ), ( )} ( , ) ( ) ( ) ( , )τ τ λ λ λ ξ τ ξ ξ
τ

= ′ = ⋅ ′ ′
⎧
⎨
⎩

⎫
⎬
⎭

∫∫
00

 

= ′ ′
⎧
⎨
⎩

⎫
⎬
⎭

∫∫E H t u u H d d
t

00

τ

λ λ ξ τ ξ λ ξ( , ) ( ) ( ) ( , )                                                      (2.4-5) 
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For white noise input, u(t), 

E u u Q{ ( ) ( )} ( )λ ξ δ λ ξ′ = −  and Q = const.                                    (2.4-6) 

R t H t Q H d dy

t

( , ) ( , ) ( ) ( , )τ λ δ λ ξ τ ξ λ ξ
τ

= − ′∫∫
00                                   

         (2.4-7) 

From a relation, 

f d f
a

b

( ) ( ) ( )ξ δ λ ξ ξ λ− =∫                                              (2.4-8) 

R t H t QH dy

t

( , ) ( , ) ( , )τ λ τ λ λ= ′∫
0

                                         (2.4-9) 

For the process in time-invariant,  

H t H t( , ) ( )τ τ= −  for all t, τ                                               (2.4-10) 

R t H t QH dy

t

( , ) ( ) ( )τ λ τ λ λ= − ′ −∫
0

                                       (2.4-11) 

Replacing τ by t+τ, 

R t t H t QH t d H QH dy

t t

( , ) ( ) ( ) ( ) ( )+ = − ′ − + = ′ +∫ ∫τ λ λ τ λ ξ ξ τ ξ
0 0   

                       (2.4-12) 
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Define ξ = t -λ, 

∫
∞

∞→
+′==+

0

)()()(),(lim ξτξξττ dHQHRttR yyt                       
 (2.4-13) 

• The output correlation in (2.4-13) is valid only if the dynamic system has a steady state response. If the system is not 

asymptotically stable (2.4-13) is not meaningful.  

The expected value (mean) of the output 

E y t E H t u d H t E u d
t t

{ ( )} ( , ) ( ) ( , ) { ( )}=
⎧
⎨
⎩

⎫
⎬
⎭
=∫ ∫λ λ λ λ λ λ

0 0                         
 (2.4-14) 

For white noise input, u(t), 

E u t{ ( )} = 0                                   (2.4-15) 

E y t{ ( )} = 0                                   (2.4-16) 

• The response of a linear system to white noise in the steady state has a zero mean and has a correlation function given 

by ∫
∞

+′
0

)()( ξτξξ dHQH . 

The power spectrum of the output y  

S H QH d e dj( ) ( ) ( )ω ξ ξ τ ξ τωτ= ′ +
⎡

⎣
⎢

⎤

⎦
⎥

∞

−∞

∞
−∫∫

0

                               (2.4-17) 
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S H Q H e d dj( ) ( ) ( )ω ξ ξ τ τ ξωτ= ′ +
⎡

⎣
⎢

⎤

⎦
⎥

−

−∞

∞∞

∫∫
0

                               (2.4-18) 

′ + = ′ = ′−

−∞

∞
− −

−∞

∞

∫ ∫H e d H e d e H jj j j( ) ( ) ( )( )ξ τ τ λ λ ωωτ ω λ ξ ωξ                           (2.4-19) 

H j H t e dtj t( ) ( )ω ω= −

−∞

∞

∫ : the transfer function of the linear system 

S H e d QH jj( ) ( ) ( )ω ξ ξ ωωξ= ⋅ ′
∞

∫
0     

                  (2.4-20) 

       S H j QH jy ( ) ( ) ( )ω ω ω= − ′                       (2.4-21)  

• The spectrum of the output y of a linear system excited by white noise is the product of the transfer function matrix at 

negative frequency with the spectral density matrix of the white noise, with the transfer function matrix transposed.  
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Figure 2.4-1 Input-Output Relation for Linear System Excited by White Noise 
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The most common random process after white noise is the output of a first-order low pass filter having the transfer 

function 

0

1)(
ω+

=
s

sH                                                                                 (1)

The impulse response corresponding to H(s) is 

⎩
⎨
⎧

<
≥

=
−

00
0)(

0

t
teth

tω

                                                                             (2)

The correlation function of this process, often known as a first-order Markov process, is  

0for  
2

)( 00000

00

2

0

)( >=== −
∞

−−
∞

+−− ∫∫ τ
ω

ξξτ τωξωτωτξωξω eQdeQedeeQr                                            (3)

Since h(τ) is zero for τ < 0, this expression is not valid for τ < 0. To obtain r(τ) for negative τ we use the general relation 

),(),( tRtR ττ ′= , which in this case is 

)()( ττ −= rr                                                                                  (4)

by which (3) becomes 

τω

ω
τ 0

02
)( −= eQr                                                                              (5)

as shown in the figure below. 
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The power spectrum is obtained either as the Fourier transform of (5) or using (2.4-21). The latter is easier. 

2
0

2
00

11)(
ωωωωωω

ω
+

=
+

⋅⋅
+−

=
Q

j
Q

j
S                                                            (6)

The mean square value of the output is given by 

02
)0(

ω
Qr =                                                                                     (7)
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Thus the spectral density of the white noise is Q = 2ω0×(mean square value of signal). The units of the white noise 

spectral density Q are thus (units of the signal)2 × sec. 

     Figures below show (a) white noise; (b) white noise through filter with τ = 0.1 s; (c) white noise through filter with τ 

= 1 s; (d) white noise through filter with τ = 10 s.      
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2.5 Systems with State-Space Representation 

 
The general linear system  

&x Ax Bu Fv= + +                               (2.5-1) 

y Cx w= +                                       (2.5-2) 

v and w: white-noise processes.  

If the observation noise w and the control u are ignored.  

&x Ax Fv= +                                     (2.5-3) 

y Cx=                                 (2.5-4) 

∫+=
t

t

dvFttxtttx
0

)()(),()(),()( 00 λλλλφφ
                         

 (2.5-5) 

t0 : a fixed starting time 
′

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+′′=′ ∫

t

t

dvFttxttxtxttxtx
0

)()(),()(),()()(),()()( 00000 λλλλφτφφτ  

      
∫ ∫∫ ′′′+′⋅+
t

t t

t

t

ddFvvFttxdvFt
0 00

),()()()()(),()()()(),( 0

τ

λξξτφξξλλλφλλλλφ
          

(2.5-6) 
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Because white noise has zero mean, 

0)}({)(),()()(),(
00

==
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∫∫
t

t

t

t

dvEFtdvFtE λλλλφλλλλφ
                             

 (2.5-7) 

∫ ∫ ′′′+′′=
t

t t
x ddFvvEFtttxtxEtttR

0 0

),()()}()({)(),(),()}()({),(),( 0000

τ

λξξτφξξλλλφτφφτ
                          

(2.5-8) 

E x t x t P t{ ( ) ( )} ( )0 0 0′ =                                   (2.5-9) 

P(t0) : the covariance matrix of x(t0) 

If v is white noise, 

E v v Qv{ ( ) ( )} ( ) ( )λ ξ λ δ λ ξ′ = −                                   (2.5-10) 

λξξφξξλδλλλφ
τ

ddtFQFt
t

t t
v∫ ∫ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

′′−
0 0

),()()()()(),(
   

                                (2.5-11) 

⎩
⎨
⎧ <<′′

=′′−∫ otherwise0
),()(

),()()( 0

0

tttF
dtF

t

λλφλ
ξξφξξλδ

τ

                                        (2.5-12) 

∫ ′′+′=
t

t
vx dFQFtttPtttR

0

),()()()(),(),()(),(),( 000 λλτφλλλλφτφφτ
  
                                  (2.5-13) 

where t t= min( , )τ . 
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),()(),( ttPtR x τφτ ′=  for τ ≥ t                                        (2.5-14) 

∫ ′′+′==
t

t
vx dtFQFttttPttttRtP

0

),()()()(),(),()(),(),()( 000 λλφλλλλφφφ                      (2.5-15) 

P(t): the covariance matrix of the state x(t) at time t.  

• The correlation matrix Rx(t, τ), for τ not necessarily equal to t, is simply the product of covariance matrix, P(t), with 

the transpose of the transition matrix from τ to t, when P(t) = Rx(t, t).  

• The matrix P(t) is the solution of the matrix Riccati equation. 

FFQAPAPP v ′+′+=&                                  (2.5-16) 

)(|)( 00
tPtP tt ==                                                                        (2.5-17) 

• FFQAPAPP v ′+′+=& , the variance equation, is very useful in the analysis of random processes excited by white noise, 

since it permits one to determine how the covariance propagates with the elapse of time, without the necessity of 

having to find the state-transition matrix.  

• If A is a constant matrix corresponding to a stable dynamic system, and F and Qv are constant 

PtP →)( = const                                         (2.5-18) 

P : the steady state covariance matrix  

FFQAPPA v ′+′+=0                                 (2.5-19) 
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)()()( txtCty =                                      (2.5-20) 

)()()()()()( τττ CxtxtCyty ′′=′                                    (2.5-21) 

)(),()()()}()({)()}()({),( ττττττ CtRtCCxtxEtCytyEtR xy ′=′′=′=                                       (2.5-22) 

The covariance matrix of the output 

)()()(),()( tCtPtCttRtP yy ′==                                               (2.5-23) 
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The differential equations for the wind-turbulence process having a Dryden spectrum are 

21 xx =&                                                                                         (1) 

vx
T

x
T

x +−−= 2122
21&                                                                               (2) 

and the output is given by 

212

31 x
T

x
T

y +=                                                                                (3) 

The matrices representing the process are thus 

[ ]TTCF
TT

A /3/1 ,
1
0

 ,
/2/1

10 2
2 =⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−−

=                                                          (4) 

Let the steady state covariance matrix be 

⎥
⎦

⎤
⎢
⎣

⎡
=

32

21

pp
pp

P                                                                                     (5) 

Then by FFQAPPA v ′+′+=0 , the elements of P  are given by the solutions of 

220 p=                                                                                       (6) 

3
2

2
1 2

0 p
T
p

T
p

+−−=                                                                           (7) 

T
T
p

T
p

z
23

2
2 2

20 σ+⎟
⎠

⎞
⎜
⎝

⎛
−−=                                                                        (8) 
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By solving (6)-(8), thus 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
0

4

222 TT
P zσ                                                                            (9) 

The steady state covariance yP  of the output is obtained using )()()()( tCtPtCtPy ′= : 

[ ] 2
2222

2

/3
/1

10
0

4
/3/1 z

z
y T

TTT
TTCPCP σ

σ
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=′=                                         (10) 

To obtain the correlation of the output we need the state-transition matrix eAτ for A given in (4) 

⎥
⎦

⎤
⎢
⎣

⎡
−−

+
=

TT
T

e A

/1/
/1

2 ττ
τττ                                                                        (11) 

Thus, by the steady state form of ),()(),( ttPtR x τφτ ′= , 

( )
⎥
⎦

⎤
⎢
⎣

⎡

−
−+

=⎥
⎦

⎤
⎢
⎣

⎡

−
−+

⎥
⎦

⎤
⎢
⎣

⎡
=′=

T
TTT

T
TTTT

ePR zzA
x /1

/1
4/1

//1
10
0

4
)()(

2222222

ττ
ττσ

ττ
ττσ

τ τ , 0>τ                      (12) 

Finally, the output correlation function is obtained by use of )(),()(),( τττ CtRtCtR xy ′= : 

[ ] ( ) 0 ,
2

1
/3

/1
/1

/1
4

/3/1)()( 2
2222

2 >⎟
⎠
⎞

⎜
⎝
⎛ −=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−
−+

=′= ττσ
ττ
ττσ

ττ
TT

T
T

TTTTTCCRR z
z

xy                  (13) 

And by symmetry 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

T
R zy 2

1)( 2 τ
στ                                                                            (14) 
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3 Kalman Filters: Optimal Observers 

 
3.1 Kalman Filter Problem 

 
A dynamic process 

FvBuAxx ++=&                              (3.1-1) 

wCxy +=                                   (3.1-2) 

v and w : white noise processes, The optimal state estimator  

)ˆ(ˆˆˆ xCyKBuxAx −++=&                                            (3.1-3) 

 
Figure 3.1-1 Kalman Filter is an Optimum Observer 
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• The random processes of disturbance input and measurement noise in Kalman filter are assumed white and gaussian. 

• The gaussian requirement is a condition on the first-order probability density functions of w and v. 

⎭
⎬
⎫

⎩
⎨
⎧ ′−= − wWw

w
wpdf

n

1
2/12/ 2

1exp
)2(

1)(
π

                                                         (3.1-4) 

• If v and w are white and Gaussian random processes, then as proved by Kalman and Bucy, the Kalman filter is the 

best of all possible filters. There is no other filter, linear or nonlinear, better than the linear Kalman filter.  

• Kalman defined the state estimate )(ˆ tx  as the conditional mean of x(t), given the observation data y(τ) for τ ≤ t.  

}),(|)({)(ˆ tytxEtx ≤= ττ                              (3.1-5) 

)()()( txtxte −=                                                                          (3.1-6) 

)(tx : any estimate of x(t) 

)()()()()()()()()]()()][()([)()( txtxtxtxtxtxtxtxtxtxtxtxtete ′+′−′−′=′−′−=′                         (3.1-7) 

)()()()(ˆ)(ˆ)()}()({}),(|)()({ txtxtxtxtxtxtxtxEtyteteE ′+′−′−′=≤′ ττ                              (3.1-8) 

)()(ˆ)( ttxtx ζ+=                                                                          (3.1-9) 

)()()(ˆ)(ˆ)}()({}),(|)()({ tttxtxtxtxEtyteteE ζζττ ′+′−′=≤′                                     (3.1-10) 

• Since )()( tt ζζ ′  is a nonnegative quantity, the conditional covariance matrix is minimized by setting ζ(t) = 0. 

)(ˆ)( txtx =                                                                           (3.1-11) 

• The conditional mean, )(ˆ tx , is the estimate that minimizes the covariance matrix of the error.  
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3.2 Kalman Filter Gain and Variance Equations 

 
The error  

xxe ˆ−=                                                                                   (3.2-1) 

The differential equation for the error  

KwFveKCAxCwCxKxAFvAxxxe −+−=−+−−+=−= )()ˆ(ˆ&̂&&                                    (3.2-2) 

v and w: white noise processes 

KwFv −=ξ                                                                                (3.2-3) 

• KwFv −=ξ is also white noise, with a covariance matrix Qξ.  

)()}()({)()()}()({)()()}()({)()()}()({)()}()({ τττττττττξξ KwtwEtKKwtvEtFFvtwEtKFvtvEtFtE ′′+′′−′′−′′=′      (3.2-4) 

)()()}()({ τδτ −=′ ttVvtvE                                                                  (3.2-5) 

)()()}()({ τδτ −=′ ttXwtvE                                                                  (3.2-6) 

)()()}()({ τδτ −=′ ttWwtwE                                                                 (3.2-7) 

)()()}()({ τδτξξ ξ −=′ ttQtE                                                                   (3.2-8) 

)()()()()()()()()()()()()( tKtWtKtKtXtFtFtXtKtFtVtFtQ ′+′−′′−′=ξ                                    (3.2-9) 

The differential equation of a linear system excited by white noise ξ 

ξ+−= eKCAe )(&                                                                        (3.2-10) 
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The variance equation 

KKWKFXFXKFFVKCAPPKCAQKCAPPKCAP ′+′−′′−′+′′−′+−=+′′−′+−= )()()()( ξ
&             (3.2-11) 

P: the covariance matrix of the error 

• If the cross-covariance X between the excitation noise v and the observation noise w were absent (X = 0), (3.2-11) 

would have the same form as the optimal control equation and we would be able to write the solution for the optimum 

gain matrix.  
1ˆˆ −′= WCPK                                                                          (3.2-12) 

• The optimizing covariance matrix is given by the matrix Riccati equation. 

FFVPCWCPAPPAP ′+′−′+= − ˆˆˆˆˆ 1&                                                           (3.2-13) 

For non-zero cross-correlation matrix (X ≠ 0), 

UPP += ˆ                                                                            (3.2-14) 

Γ+= KK ˆ                                                                            (3.2-15) 

P̂  and K̂ : the optimum covariance matrix and observer gain matrix 

)ˆ()ˆ()ˆ()ˆ())(ˆ()ˆ)(ˆ(ˆ Γ′+′Γ++Γ′+′−′′Γ+−′+Γ′′−′′−′+++Γ−−=+ KWKKFXFXKFFVCKCAUPUPCCKAUP &&     (3.2-16) 

KWKKFXFXKFFVKCAPPCKAP ′+′−′′−′+′′−′+−= ˆˆˆˆ)(ˆˆ)ˆ(&̂                                      (3.2-17) 

Γ′−′−+′′−−′Γ+Γ′Γ++Γ′′−′′−′+Γ−−= )ˆˆ()ˆˆ()()ˆ( FXCPWKFXPCKWWCKCAUUCCKAU&                   (3.2-18) 
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• If P̂  is the minimum covariance matrix P must be greater than P̂  for any choice of Γ.  

• U must be positive semidefinite.  

• U can be made negative definite by suitable choice of Γ unless the coefficient of Γ vanishes entirely, in which case U 

will be positive semidefinite.  

FXCPWK +′= ˆˆ                                                                          (3.2-19) 

For nonsingular observation noise spectral density matrix, W,  
1)ˆ(ˆ −+′= WFXCPK                                                                      (3.2-20) 

The matrix Riccati equation 

FVFPCWCPAPPAP ′+′−′+= − ~ˆˆ~ˆˆ~ˆ 1&                                                              (3.2-21) 

CFXWAA 1~ −−=  and XXWVV ′−= −1~                                                          (3.2-22) 
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3.3 Steady-State Kalman Filter 

 
• The matrix Riccati equation is valid for any finite time interval.  

• If time is infinite, the solutions may tend to infinity or they may remain finite.  

• If all the matrices on the right-hand side of the matrix Riccati equation are constant, then a constant, steady state 

solution may exist, the solution of the matrix quadratic equation, the algebraic Riccati equation (ARE). 

FVFPCWCPAPPA ′+′−′+= − ~ˆˆ~ˆˆ~
0 1                                                             (3.3-1) 

The ARE has a unique positive definite solution if either 

(a) The system is asymptotically stable, or 

(b) The system defined by the pair [A, C] is observable and the system defined by the pair   [A, FV1/2] is controllable. 
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If it were possible to balance an inverted pendulum, it would not remain balanced without control owing to the inevitable 

presence of various types of disturbances, such as random air currents. Thus, if the accelerations due to the disturbances 

are represented by v, the differential equations for the pendulum are 

ωθ =&                                                                                        (1) 

vu ++Ω= θω 2&                                                                                 (2) 

where u is the control acceleration and v is the disturbance acceleration. Assume the DC motor’s back emf is small and 

negligible. The matrices corresponding to (1) and (2) are 

⎥
⎦

⎤
⎢
⎣

⎡
Ω

=
0
10

2A , ⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

B , ⎥
⎦

⎤
⎢
⎣

⎡
=

1
0

F                            (3) 

If the quantity observed is the position θ=1x  

[ ] w
x
x

y +⎥
⎦

⎤
⎢
⎣

⎡
=

2

101                                                                                (4) 

Hence 

[ ]01=C                                                                                        (5) 

Let the optimum covariance matrix be 

⎥
⎦

⎤
⎢
⎣

⎡
=

32

21ˆ
pp
pp

P                                                                                      (6) 
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Then, by FFVPCWCPAPPA ′+′−′+= − ˆˆˆˆ0 1 , the elements of P̂  satisfy 

W
pp

2
1

220 −=                                                                                (7) 

W
pppp 21

1
2

30 −Ω+=                                                                         (8) 

V
W
pp +−Ω=

2
2

2
220                                                                        (9) 

where V and W are the spectral density (1×1) matrices of the excitation noise and observation noise, respectively. The 

solutions are 

γ21 Wp Ω=                                                                              (10) 

γWp 2
2 Ω=                                                                               (11) 

)1(23
3 −Ω= γγWp                                                                       (12) 

where 

W
V
411

Ω
++=γ                                                                             (13) 

The Kalman filter gain is determined. 

⎥
⎦

⎤
⎢
⎣

⎡

Ω
Ω=′= −

γ
γ

2
1 2ˆˆ WCPK                                                                         (14) 
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The closed-loop filter poles and transfer functions from the measured angle y to the estimated state θ̂ˆ 1 =x  and ω̂ˆ 2 =x  are 

of interest. Assuming that the input u is zero we have 

)(ˆ)(ˆ)ˆ()](ˆ)([ˆ)(ˆ)(ˆ syKsxCKAsxCsyKsxAsxs +−=−+=                                           (15) 

)(ˆ)()(ˆ)ˆ()(ˆ 1
0

1 syKAsIsyKCKAsIsx −− −=+−=                                                  (16) 

In this example, 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡

−Ω
Ω−=⎥

⎦

⎤
⎢
⎣

⎡

Ω
Ω−⎥

⎦

⎤
⎢
⎣

⎡
Ω

=
0)1(
12012

0
10

2220 γ
γ

γ
γA                                 (17) 

Thus 

⎥
⎦

⎤
⎢
⎣

⎡
Ω+−ΩΔ

=⎥
⎦

⎤
⎢
⎣

⎡

−Ω
−Ω+=−

−

−

γγγ
γ

2)1(
1

)(
1

)1(
12)( 2

1

2
1

0 s
s

ss
sAsI                                         (18) 

where Δ(s) is the closed-loop characteristic polynomial, given by 

)1(2)( 22 −Ω+Ω+=Δ γγ sss                                                                 (19) 

Thus, 

)(
)2(
)2(

)(
1

)(ˆ
)(ˆ

)(ˆ
2

sy
s

s
ss

ssx
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Ω+Ω
Ω+Ω

Δ
=⎥

⎦

⎤
⎢
⎣

⎡
=

γγ
γγ

ω
θ                                                      (20) 
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In particular 

)1(2
)2(

)(
)(ˆ

)(
221

−Ω+Ω+

Ω+Ω
==

γγ

γγθ
ss

s
sy
ssH                                                              (21) 

)1(2
)2(

)(
)(ˆ)(

22

2

2
−Ω+Ω+

Ω+Ω
==

γγ

γγω
ss

s
sy
ssH                                                                (22) 

The closed-loop poles of the filter are given by 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−±Ω−= 1

22
γγ js                                                                             (23) 

The zeros of the filters H1(s) and H2(s), respectively, lie at 

2
γ

Ω−=s  for angular position                                                                      (24) 

γ
2

Ω−=s  for angular velocity                                                                      (25) 

As the excitation noise covariance matrix V tends to zero, γ, as given by (13), approaches 2  

Ω+
Ω

→
s

sH 2)(1                                                                                 (26) 

Ω+
Ω

→
s

sH
2

2
2)(                                                                                (27) 
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In other words the zero of the numerator tends to one pole of the denominator, and both filters become first-order. Note 

also that the optimum estimate of the angular velocity is simply the natural frequency Ω times the angular position. As the 

excitation noise covariance matrix tends to infinity (or as the observation noise covariance matrix tends to zero) γ tends to 

infinity and the closed-loop poles of the observer 

)1(
2

js ±Ω−=
γ                                                                                (28) 

which are lines at 45° angles from the real axis. The next figure shows poles of Kalman filter for inverted pendulum 

 
 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                              CONTROL THEORY 

  Manukid Parnichkun 63 

 
The differential equations for the proof mass, with the acceleration due to the capture force are 

21 xx =&                                                                                       (1) 

aux +=2
&                                                                                       (2) 

The position of the proof mass is determined by some sort of “pick-off”; e.g., magnetic or optical. The output of the pick-

off is  

wxy += 1                                   (3) 

where w is the pick-off noise which we assume to be white. 

We assume that the acceleration a is a Wiener process 

va =&                                                                                        (4) 

where v is white noise with spectral density matrix V. If V were zero then (4) would become 0=a& , that is, a would be an 

unknown constant. But as we will soon see, it is necessary to assume V ≠ 0 in order to get a meaningful filter design. 

     Represent a by another state variable x3 and adjoin (4) to (1), (2), and (3): 

21 xx =&                                                                                     (5) 

32 xux +=&                                                                                  (6) 

vx =3
&                                                                                      (7) 
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For this system the defining matrices are 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
100
010

A , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
1
0

B , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
0

F , [ ]001=C                                                          (8) 

Let the optimum covariance matrix be 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

653

542

321

ˆ

ppp
ppp
ppp

P                                                                                  (9) 

Then the components of P̂  satisfy FFVPCWCPAPPAP ′+′−′+== − ˆˆˆˆ0ˆ 1& . 

W
ppp

2
1

21 20 −==&                                                                                (10) 

W
ppppp 21

432 0 −+==&                                                                           (11) 

W
pp

pp 31
53 0 −==&                                                                             (12) 

W
p

pp
2
2

54 20 −==&                                                                              (13) 

W
pp

pp 32
65 0 −==&                                                                             (14) 

V
W
p

p +−==
2
3

6 0&                                                                             (15) 
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These can be solved readily. The resulting solutions are 

 6/16/5
6

3/13/2
5

2/12/1
4

2/12/1
3

3/13/1
2

6/56/1
1 2 ,2 ,3 , ,2 ,2 WVpWVpWVpWVpWVpWVp ======        (16) 

We can now compute the Kalman filter gain matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=′= −

2/1

3/1

6/1

3

2

1
1

)/(
)/(2
)/(2

/
/
/

ˆˆ

WV
WV
WV

Wp
Wp
Wp

WCPK                                                                (17) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Ω−
Ω−
Ω−

=−=
00
102
012

3

2
0 KCAA                                                                          (18) 

where 
6/1

⎟
⎠
⎞

⎜
⎝
⎛=Ω
W
V                                                                                 (19) 

Thus the filter characteristic equation is 

022
0

12
012

3223

3

2
0 =Ω+Ω+Ω+=

Ω
−Ω

−Ω+
=− sss

s
s

s
AsI                                             (20) 

The characteristic roots are 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
±Ω−=Ω−=

2
3

2
1,    , 321 jsss                                                             (21) 
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4 Linear Quadratic Gaussian Control: The Separation Theorem 

 
4.1 The Separation Theorem 

              
To minimize the expected error in controlling a linear system, 

FvBuAxx ++=&                                                                    (4.1-1) 

with observations 

wCxy +=                                                                         (4.1-2) 

(a) Use the control law 

xGu ˆˆ−=                                                                           (4.1-3) 

where x̂  is the output of a linear observer 

)ˆ(ˆˆˆ xCyKBuxAx −++=&                                                            (4.1-4) 

(b) Find the control gain matrix Ĝ  as the solution of the corresponding deterministic optimal control problem. 

(c) Find the observer gain matrix K̂  as the optimum gain for the corresponding Kalman filter. 
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The differential equations for the proof mass, with the acceleration due to the capture force are 

21 xx =&                                                                                     (1) 

aux +=2
&                                                                                   (2) 

where x1 and x2 are the position and velocity of the proof mass, a is the external acceleration and u is the control input. By 

LQR, the control input is determined to minimize τd
c
uxV

t
∫
∞

+= )( 2

2
2
1 , and finally given by 

axcxcagxgxgu a ˆˆ2ˆˆˆˆ 212211 −−−=−−−=                                                         (3) 

where c is the reciprocal of the control weighting and may be regarded as one of the design parameters. 

The Kalman filter is determined and finally given by 

)ˆ()/(2ˆ)ˆ(ˆˆ 1
6/1

21121 xyWVxxykxx −+=−+=&                                                      (4) 

)ˆ()/(2ˆ)ˆ(ˆˆ 1
3/1

122 xyWVuaxykuax −++=−++=&                                                 (5) 

 )ˆ()/()ˆ(ˆ 1
2/1

13 xyWVxyka −=−=&                                                                 (6) 

where V is the spectral density of the acceleration rate to be measured, and W is the spectral density of the noise in 

measuring the pick-off position. 
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By the separation principle, the (nominal) closed-loop pole locations are the roots of the characteristic polynomial for full-

state feedback and the roots of the characteristic polynomial of the Kalman filter. The former are at 

jccs
2
2

2
2

±−=                                                                              (7) 

and the latter are at 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
±Ω−=Ω−=

2
3

2
1 and jss                                                                  (8) 

 

 

 

 

 

 

 

 

 


