ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

Optimal Control Theory

1 Linear Quadratic Regulator

Reasons of applying an optimal controller

e In a multiple-input or multiple-output system, there are infinite solutions by which the same closed-loop poles can be
attained by using the pole-placement technique.

e The designer may not really know the desirable closed-loop pole locations. Choosing pole locations far from the origin
may give very fast dynamic response but require control signals that are too large to be produced with the available
power source. The control signal might be saturated. In such cases the closed-loop dynamic behavior will not be as
predicted by the linear analysis, and may even be unstable.

e The process to be controlled may not be controllable. There may be some subspace of the process state-space in
which the state vector cannot be moved around by application of suitable control signals. Hence design by pole

placement will not work.
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1.1 Formulation of the Optimal Control Problem

The dynamic process
X = Ax +Bu (1.1-1)
A linear control law
u =-Gx (1.1-2)

The gain, G, that minimizes a specified performance criterion V or “cost function”

V = |[x'00@)x(t) +u'()R(t)u(t)]dt (1.1-3)

N — N

0O and R: symmetric matrices
Q: the state weighting matrix
R: the control weighting matrix

e The quadratic term x Qx represents a penalty on the deviation of the state x from the origin.

e The quadratic term u Ru represents the cost of control.

Example: Suppose that x; represents the system error, and that x,, ..., x; represent successive derivatives, i.e.,
X, =X
%= (1.1-4)
X, = x4
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If only the error and none of its derivatives are of concern.

0
0= 0 Y (1.1-5)
0 0 0
xOx =x! (1.1-6)
To limit also the velocity, the performance integral might include a velocity penalty.
xOx =x] +c’x; (1.1-7)
1 0 - 0
0-|" ci 0 (1.1-8)
0 0 0
The system output
y =Cx (1.1-9)
A system with a single output
y =ck (1.1-10)
y?i=xeck (1.1-11)
0 =cc' (1.1-12)
e The term u Ru in the performance index is included to limit the magnitude of the control signal u.
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1.2 Quadratic Integralsand Matrix Differential Equations

The closed-loop dynamic behavior

x =Ax —BGx = A4 x (1.2-1)
A =A-BG (1.2-2)
x(1) = ¢.(t,7)x(7) (1.2-3)
@.: the state-transition matrix corresponding to A,
The performance index
V= J.[x'(t)Q(t)x(t) +u'(t)R(t)u(t)]dt = jx’(r)(;ﬁc’ (t,7){Q + G'RG}¢.(t,7)x(7)dt (1.2-4)
V =x'(t)M(z,T)x(7) (1.2-5)
M(z,T) = [¢/(t,0){Q + GRG}g,(1,7)dt (1.2-6)
M: a symmetric matrix
V' 1s a function of the initial time 7.
V(r)= j[x’(z)Q(z)x(t) +u (OROu())dt = j X'(O)L(E)x(t)dt (1.2-7)
L=0 +GRG (1.2-8)
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fl—z = —X(t)Lx(1) |,_, = —x'(7)Lx(z) (1.2-9)
But, from (1.2-5)
‘;—z = X'(0)M (2,T)x(7) + X' ()M (t,T)x(t) + X'(r)M (z,T)(z) (1.2-10)
Z—Z = X'(O)[ A ()M (7,T) + M (z,T) + M(z,T) A,()]x(z) (1.2-11)
—L=A'M+M +MA, (1.2-12)
~M =MA +AM+L (1.2-13)

e Equation (1.2-13) is an important differential equation. It appears in many forms in control theory and estimation.

M(z,T) = [¢(t,0)L(0)g. (¢, )t (1.2-14)

e Equation (1.2-13) is a first-order matrix differential equation and requires a boundary condition.

MT.,T)=0 (1.2-15)
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1.3 The Optimum Gain Matrix

When any gain matrix G is chosen, the corresponding closed-loop performance
V = x'(r)M(z,T)x(z) (1.3-1)
—M=MA +AM+L=M(A-BG)+(4' -GB)M +Q+GRG (1.3-2)
e The task now is to find the matrix G which makes the solution to (1.3-2) as small as possible.

The optimum matrix & for any arbitrary initial state x(7) and any matrix M = M ,

Vo=xMx <xMx (1.3-3)
—M:M(A—BG)+(A'—GB’)M+Q +GRG (1.3-4)
M=M+N (1.3-5)
G=G+Z (1.3-6)
—(ﬁ +N)=(M+N)A-BG +Z)]+[A4' —=(G'+Z"B' (M +N)+0 +(G'+Z")R(G +Z) (1.3-7)
~N =NA, +A'N +(GR —~MB)Z +Z'(RG —BM + ZRZ (1.3-8)
A =A-BG=4-B(G +2)
Compare with —M = MA + AM + L,
L=(G'R-MB)Z+Z'(RG—-BM)+ZRZ (1.3-9)
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N(z,T) = [(t,0)L(D)g. (1,7)dt

xMx <x'(M +N)x =x M +x Nx

e The quadratic form x Nx must be positive definite, or at least positive semidefinite.

e x Nx is positive definite when the two linear terms in (1.3-9) absent.
RG -BM =0
For nonsingular control weighting matrix R
G=R'BM

~M =MA+A'M —MBR'BM +Q

(1.3-10)

(1.3-11)

(1.3-12)

(1.3-13)

(1.3-14)

e A scalar first-order differential equation with a linear term and a quadratic term (as well as a constant term) is known

as a Riccati equation.
With boundary condition,

M(T,T)=0

(1.3-15)
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1.4 The Steady State Solution

v, = T(x'Qx+u'Ru)dt (1.4-1)

e In this case the terminal time, 7, is infinite, the integration will either converge to a constant value or grow without
limit.
e [fit converges to a limit, the derivative ¥ tends to zero.
V. - iix (14-2)
e M satisfies the algebraic quadratic equation (sometimes called the algebraic Riccati equation or ARE).
0=MA+A'M ~MBR'BM +Q (1.4-3)
The optimum gain in the steady state
G =R'BM (1.4-4)
For most design applications the following facts about the solution of (1.4-3) are sufficient.
(a) If the system is asymptotically stable, or
(b) If the system defined by the matrices (4, B) is controllable, and the system defined by (4, C) where C'C = Q, is
observable,
Then the algebraic Riccati equation (ARE) has a unique, positive definite solution M which minimizes V., when the

control law u = -R ~'B Mx is used.
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In the inverted pendulum problem, the state variables are x, =6 (angular position) and x, =6 (angular velocity). The

matrices defining the dynamics are

0 1 0
SRRATEH
Q° -« B
where
o=y Ky P and =ML 8 (2)
JR JR J o+ml® 1+J, /ml
A control law 1s sought to minimize the performance index
0 2
v=[6*+% | 3
flos @
The weighting matrices are seen to be
1 0 1
= 5 R = _— 4
o=y o=l @
Let the performance matrix M be given by
M= [’” ’"} (5)
m, m;
The gain matrix is
G —r B 2] ﬁ{ml mz}[czﬂmz o2, ©)
m, ms;
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The terms needed for the matrix quadratic are

A

Ko™ o 0 1 _ m,Q* m, -m,a 7)
m, m,|Q° -« m,Q m,-m,a
~ ~ m ,Q’ m Q7
AN =y =] " 3 (8)
m, —m,a& m,—m,x
NBRBW =BG =| ™ ™2 0 [czﬂm 2 pm ]= c*pim;  cpm,m, )
m, m;|f ’ ’ c2ﬂ2m2m3 czﬂzm}z
By substitution into
0=MA+A'M -MBR"'BM +Q (10)
Thus, the individual terms are
0=2m,0" —c’f’m; +1 (11)
0=m, —m,a+m,Q° —c’B’m,m, (12)
0=2m, -2m,a—c’fB’m: (13)
Solving for m,, m,, and ms,
Q2 +,JQ" +¢2 5
m, = ) (14)
c’p
—ai\/az +2(Q* £4Q +c2 )
3 2 n2
c'p
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~ oQ)’ +\/(Q4 +cl e’ +2(QF £Q +c?BY))

CZﬂZ

(16)

m

Solving for the gains g, and g,

in Q4+ 2 2
g =N ep (17)

B

—ai\/az +2(Q* £Q* +c?B%)
p
The correct signs in (14), (15), (16), (17) and (18) are the ones which make real solutions.

(18)

8, =

If o 1s very small and negligible and A1s unity. The only solutions will be

Q> +/Q* +¢? V2 +VQ" ¢ ?) J©Q +e)2Q VO +¢2))
= }’n3 = > ) }’n1 = 2 N
C C

2 2 >
C

g, =02 +4Q" 1¢2,and g, = 2(Q° + Q" +¢?) (19)

The closed-loop matrix is

0 1
AT ot e WJ 20

And the characteristic equation is

s2+\/2(§22+\/Q4+cz)s+ Q' +¢c’ =0 (21)
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The roots of which are

0?2 2 02 _ 02 o
s],szz\/Q ;Q i\/Q 29 where 07 = JQ* +¢° (22)
The locus of closed-loop poles as the weighting factor c is varied from oo to 0 is shown in the figure below.
4 jo
—4
1000"
Asymptote
-3
-2
—1
0 12

-1
~+-2
-3
J-4
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0 2
The following characteristics of the locus are noteworthy, V = j(@z + u—zjdt .
C

(a) As c increases, the closed-loop roots tend to asymptotes at 45° to the real axis, and move out to c along these
asymptotes. This implies that the response time tends to zero and the damping factor tends to ¢'= 1/2"2=0.707.

(b) As c tends to zero, the cost of control tends to become very large. If the open-loop system were stable, and it would
turn out that the gains g, and g, would tend to zero and the open-loop system would “coast” to rest, without incurring any
control cost. In the present case, however, the open-loop system is unstable, and cannot coast to rest without control. A
certain amount of control is necessary to stabilize the system. The second closed-loop pole also tends to s = -Q is a
consequence of a general result that as the control weighting becomes very large, the closed loop poles corresponding to
unstable open loop poles tend to their mirror images with respect to the imaginary axis. In other words, if s, = +a + jB
(a2 0) in the open-loop system, then the corresponding pole in the closed-loop system tends to s, = -« + jB. This is a

general property of optimal control laws.

13 Manukid Parnichkun




ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

1.5 Distur bances and Reference I nputs. Exogenous Variables

X = Ax + Bu + Ex, (1.5-1)
¥y = Ao, (1.5-2)
X = AX +Bu (1.5-3)
e 4| E B
X=|-],A=|- - —|,andB=|- (1.5-4)
X, 0 | 4, 0

Obviously, the exogenous state x is not controllable; hence an appropriate performance integral would be

V= j.(x'Qx +u'Ru)dt (1.5-5)
o | 0

Q=|- - - (1.5-6)
0| 0

e The upper limit on the integral is intentionally not made infinite. It may not be possible to achieve a steady state error
of zero with a control u that also goes to zero. The cost function will become infinite as 7' — oo.

e One way of approaching this problem is to find a control «~ which satisfies the requirements of zero steady state error.

For x =x =0, the required steady state control «~ must satisfy

Bi +Ex, =0 (1.5-7)
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e The total control u is the sum of the steady state control and a “corrective” control v.

u=u +v (1.5-8)
X = Ax+ Bu+ Ex, = Ax+ Bv (1.5-9)
V= J(x’Qx+v'Rv)dt (1.5-10)
The performance matrix M for the metasystem
M, | M,
M= - - - (1.5-11)
My | M,
The gain matrix G for the metasystem
M, | M,
G=r'[B" | 0] - - - :k*‘BMl | R7'BM, (1.5-12)
M; | M,
From —M = MA + ANl —MBRB'M +Q,
—M, =M, A+ A'M, —M,BR'BM, +Q (1.5-13)
~M, =M,E +M,A, +(A'—M,BR'B"M, (1.5-14)
~M, =M, A, + AAM, + M)E +EM, —-MBR"'BM, (1.5-15)
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Owing to the special structure of A, B, and Q, the following facts about the submatrices of M emerge:

(a) The solution for M, , and hence the corresponding gain R 'B M, , is the same as it would have been with x, absent
from the problem.

(b) The differential equation for A7, , from which the gain R B M, is determined, does not depend on M, , and in fact is

a linear equation.

N, = NLE + VA, + AN, (1.5-16)
A =A-BR'BM, (1.5-17)
A steady state solution
0=ME +M,A, +A'M, (1.5-18)
The necessary gains to realize the control law
u=-R'BMx -R'BM,x, (1.5-19)

(¢c) The differential equation for M, is also linear. Whether it has a steady state solution depends on A,. If 49= 0, (1.5-

15) does not have a steady state solution. But this doesn’t matter because M, is not used in the determination of the gain

matrix.
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For 4,=0,
N, = VLE + AN, (1.5-20)
—A% =ME +EM, —M}BR'BM, (1.5-21)
T

M, () = My(T) + [ (M3E + E'M, - M3BR™B'M,)dt (1.5-22)

Steady state solution,
M, =—(A)"'ME (1.5-23)
G,=-R'B'M,=-R"'B'(4)'ME=BE (1.5-24)
B" =-R'B'(4')"'M, (1.5-25)
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“Proof™
roo mass Case Of

a -~
m e " accelerometer

—

The differential equations governing the displacement of the proof mass in an accelerometer, shown above, is given by

X, =x, (1)
X2:—£x1—£x2+a (2)
m m

Suppose that the spring and damping forces are both absent. To keep the proof mass from striking the wall, capture force,

u, is used to capture the proof mass. The differential equations for the proof mass, with the acceleration due to the capture
force are

X, =x, (3)

X,=u+a (4)

First, consider the control problem of returning the proof mass to the origin (x; = x, = 0) in the absence of an input

acceleration (a = 0). The matrices for the dynamics are

0 1 0
el

We use a performance criterion of the form

18 Manukid Parnichkun




ASIAN INSTITUTE OF TECHNOLOGY

CONTROL THEORY

© 2
V={f+ Z—2)dt (6)
The gain matrix for this control design is
G -8y -] l{ml '"z}[czmz - ™
m, ms;
and the components of M is determined from 0 = MA + A'M — MBR 'BM +Q .
0=—’m; +1 (8)
0=m, —c’m,m, 9)
0=2m,—c’m; (10)
The solutions are
mlz\/g,mzzL,andm3= % (11)
c & c
Thus, the gain matrix becomes
Gz[czm2 c2m3]=L \/Z] (12)
The dynamic matrix of the closed-loop system is given by
0 1 0 0 1
A =A-BG = - 2c |= 13
L [0 0} ML Ve Lc —\/Z} (13)
19 Manukid Parnichkun




ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

Hence the closed-loop poles are the roots of

|sI -4 |= N _\}2— =52 +2cs +¢c =0 (14)
s +4/2¢
or
A2 \N2¢c .
S12 =7~ 2C x 2C J (15)

The locus of the closed-loop poles are thus straight lines at 45 degrees to the coordinate axes and moving away from the
origin as ¢ — .
The case we really want to consider, of course, is a nonzero external acceleration. Any model for a can be used (e.g., a
step, a ramp, etc.). Suppose that it is modeled as a step
a=0 (16)
Adjoining this to (3) and (4) gives

- o (17)
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In particular, let

Then, as already found,

The gain due to the forcing acceleration is

GaRlBﬁ@kzk)l{

Thus the control law

]1

u=-gx,-g,x,-G,a=-x, —v2cx, —a

(18)

(19)

(20)

1)

(22)

21

Manukid Parnichkun




ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

Note that we never needed to determine the remaining term mg of M. The differential equation for ms is determined from
~M, =MJE +EM, —M,BR'BM,.

—m'ﬁ=2ms—czm§=CL2 (23)

T -7
ms(f)zmﬁ(T)Jrc—2 (24)
A steady state solution for mgs does not exist. This is not surprising, in view of the fact that a constant value of external

acceleration demands a constant, nonzero control, and this cannot result in a finite value of the performance integral V'

over an infinite time interval.
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1.6 General Performance Integral

When the performance integral includes also a cross term, 2x S % =x S u +u Sx , the optimum gain

G=R'BM~+S) (1.6-1)
_ NI = N + ANl — NIBR BN +0 (1.6-2)
A=A-BR'S (1.6-3)
0 =0-SR'S (1.6-4)
Pr oof:

u=v —R'Sx (1.6-5)
X =Ax +Bu =(A—-BR7'S)x +Bv = Ax +Bv (1.6-6)

T
V= j(x'Qx + x'S'u +u'Sx + u'Ru)dt (1.6-7)
xOx +x8'v -R'Sx)+ (' —=xSR™")Sx +@'=xSR™HR® —R'Sx)=x'(Q -SRS)x +vRv (1.6-8)
V= I(x’@x +V'Rv)dt (1.6-9)
v = —Gx (1.6-10)
G =R™'BM (1.6-11)
u=—R'BM+R'S)x =—Gx (1.6-13)
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1.7 Weighting of Performance at Terminal Time

e In control processes of finite time duration, the terminal state x(7) is often as important as, or more important than, the

manner in which the state is reached.

V=

N — N

[x'(1)Ox(t) + u'(t)Ru(t)]dt + x'(T) Zx(T) (1.7-1)

x (T )Zx (T) : a terminal penalty, the cost of not getting to the origin at the terminal time

MT ., T)=Z (1.7-2)
*(T') = (T, 0)x(z) (1.7-3)
xX'(T)Zx(T) = x'(7)g.(T,7)Z$.(T,7)x(7) (1.7-4)
V=V(,T)=x(t)M(z,T)x(r) (1.7-5)
M(z,T) = ~T[x'(t)Qx(t) +u'(t)Ru(t)ldt + ¢ (T,7)Z¢.(T,7) (1.7-6)
MT,T)=Z (1.7-7)

since ¢, (T ,T) =1 for any transition matrix,
Z—V = X' (0)M (7,T)x(t) + X' (2)M (7,T)x(z) + x'(r )M (z,T)x(z) (1.7-8)

T
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From V = j[x'(z)Qx(z) +u'(t)Ru(t)]dt + ' (T)Zx(T) and u = —Gx ,

V. @) Lx(o) + L @O (T 024 (T 0)x(0)] (1.7-9)
or or
where L =0 +GRG .
From x(T)=¢.(T,7)x(z),
a’é(T) 0. (T D (e )+ ¢.(T,0)i(z) (1.7-10)
T
For any transition matrix
b.(e.T)4.(T,7) = 1 (1.7-11)
D) g 1.0+ LD (1.7-12)
From x=4x,
DD g o) (1.7-13)
WDy (10440 T)a¢ DD 4@ T>a¢ o) (1.7-14)
M - 4 (T,0)A(7) (1.7-15)
or
x(r) = 4,(7)x(7) (1.7-16)
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D) _ 00.07) 1y 4 4 (7)) = 0 (1.7-17)
or or

e Hence the second term in z—V:x'(r)Lx(r)+ai[x’(r)qﬁc'(T,r)Zgéc(T,z')x(z')] vanishes and M(¢, T) satisfies the same
T T
differential equation as before, namely
~M =MA +A'M +L (1.7-18)

but subject to the condition M(T,T) =27 .

26 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY CONTROL THEORY

The approximate dynamic model of a missile which is controlled by the use of a control acceleration normal to the
velocity vector is represented by
z=(T-7)u (1)
where z is the projected miss distance between the missile and the target, u is the normal acceleration, and 7 - 7 is the
time-to-go, assumed to be a known quantity.
If z is brought to zero at any time, the missile will, in the absence of any further normal acceleration (z = 0), continue
on a straight-line trajectory to intercept the target. Thus the control objective is to reduce z to zero. There are of course

countlessly many ways that this can be accomplished. The only requirement is that
T
2(T) = z(r) + j(T —Hu(t)dt =0 2)

In order to formulate a suitable optimization problem we suppose that the control objective is to minimize
T
v = [ @e)dt+ 2 (T) (3)

The integral term in (3) is a quadratic form in the normal acceleration; it penalizes large accelerations and hence is a way
of limiting the acceleration requirement. The second term penalizes the terminal miss distance. The larger the value of k&
the greater the cost attached to missing the target; as k — oo the target must be hit at all costs.

The matrices that define the problem are all scalars

A=0,B(t)=T-7,0=0,R=1I,and Z = k* (4)
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Thus the “optimum” guidance law is

u(r) = —Gz(r) = —R"'B(t)M (,T)z(r) = «(T — t)M (7,T)z(7) (5)
where M(z, T) is a scalar satisfying the Riccati equation
~M =—(T-1)’M* (6)
subject to the terminal condition
MT,T)=k’ (7)
To solve (7) let
W(r)=1/M,T) (8)
Then
W =(T-r1) 9)
which is integrated directly to give
T 3
W(T) =W (c)+ (T —1)dt =W (2) +@ (10)
But, by (7) and (8), W (T') =1/k*. Thus
1 (T-1)
W(r)=—— 11
=2 (a1
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The desired solution to the Riccati equation is

3
M@, T)=—Fr—"—— 12
D= e oy (12)
If we truly want the terminal miss to be zero, we must let &> be infinite, in this limiting case (12) becomes
3
M(,T)=—"—— 13
D= (13)
The guidance law in (5) becomes u(7) = T 3 % z(7).
-7
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2 Random Processes

e The disturbances to a real system in many cases are random processes.
e The sensors used in the measurement of the system output, y, in many cases are not perfect, and subject to errors,
which are also random processes.
e Since the disturbances and sensor errors are random processes, the response of the system, either open-loop, or with
the feedback control present, is also a random process.
X = Ax+ Bu+ Fv (2-1)
y=Cx+w (2-2)

v and w: random processes.
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2.1 Conceptual Modelsfor Random Processes

Let x«(¢) denote the ith member of an ensemble of N members.

N

Mean: X(1) = %in(t) (2.1-1)
i=1

Mean Square: x*(t) = %Z x} (t) (2.1-2)

i=1

Variance: v(t) = %Z[xi ) -x@T (2.1-3)
i=1

Correlation Function: r(t,7) = % D x.(0)x,(7) (2.1-4)
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2.2 Statistical Char acteristics of Random Processes

First- and Second- Order Statistics: In theory, a random process is characterized by an infinite series of joint probability
density functions
pdf{x;t]
Paf[x,,x,5t,,1,]

pdf[xlaxz 9x3;t1>t2 ’t3]

(2.2-1)
e Each density function describes the probability of finding x somewhere at some time.
Example: pafx,,x,,x;5t,,t,,t,JAx, Ax, Ax; = prob[x, < x(t,) < x, + Ax,,x, <x(t,) <X, + Ax,,x; < x(t;) < x; + Ax, ]
Mean: ut)=E{x () = J(x \pdf [x ,t Jdx (2.2-2)
Mean Square: E{x*@t)} = J.(x pdf [x ,t ldx (2.2-3)
Variance: or(t)=E{[x(t)—u®)]*} = J.[x — u()]? pdf [x ,t Jdx (2.2-4)
Correlation Function: plt, ) =E{x (O)x (D)} = [ [Geyx,)pdf [x x5, oldx dx (2.2-5)

—00—00

E{ }: mathematical expectation

32 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY

CONTROL THEORY

When 7= ¢ the correlation function

plt) = [ [ Groxo)pdf [x,,x 5500 0dx dx y = [ (xPpdf [x 50 Jdx, = E {x ()} (2.2-6)
For vector processes,
x, (1)
x(t)=| (2.2-7)
xn (t)
E{x, (D)}
u(t) = E{x(1)} = : (2.2-8)
Eix, ()}
Efx,(@)x (o)) - Efx,(@)x,(0)}
R(t,7)=E{x(t)x'(r)} = : . : (2.2-9)
E{x,(®)x,(0)} - E{x,(t)x,(0)}
e The diagonal entries in the correlation matrix are the autocorrelation functions.
e The off-diagonal terms in the correlation matrix are cross-correlation.
R(t,7)=R'(7,1) (2.2-10)
R(t,t) = E{x(t)x'(t)} = R'(t,t) = P(1) (2.2-11)
R(t, t), P(?): the covariance matrix for the vector process x(¢)
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e If the covariance matrix, P(¢), is diagonal, the components of the vector x are said to be uncorrelated.

n(te) - 0
P(t)=R(t,t)=| : (2.2-12)
0 n)
E{x,(t)x,(t)} =0 fori=j (2.2-13)

Stationary and Ergodic Processes: The set of probability density functions are general functions of the time variables 7,
t, t;, ... for a general random process. If the functions are invariant to a translation of time, the process is called
stationary.

pdf[x;t + 7] = pdf[x;t] forall

pdf[xlax2;t1 +Tat2 + T] :pdf[xlaxz;tlatz] for all T

(2.2-14)
If a process is ergodic, it is stationary and a single sample function is representative of the ensemble.
For ergodic processes,
1 T/2
Mean: w(0) = lim— j x(t)dt (2.2-15)
Too & 112
1 T/2
Variance: (1) = lim= j[x — u()] dt (2.2-16)
T—eo Tfm
1 T/2
Correlation Function: (1) =lim= J.x(t)x(t +7)dt (2.2-17)
Toe & 112
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2.3 Power Spectral Density Function

e One of the most useful descriptions of a random process is its power spectral density function, S(w), also called the

power spectrum, which is defined as the Fourier transform of the correlation function.

S(@) = | prye " dr 2.3-1)

Methods to determine power spectral density function

1. Computing a correlation function by multiplying x(#) by x(#+7) and integration.

2. Measuring S(w) by connecting the output of the process to a device known as a spectrum analyzer and then measuring
the power contained in the random signal in different frequency bands. A spectrum analyzer is actually a sharply tuned
filter with an adjustable center frequency.

Consider a function of frequency approximated by

72 2
X, (o) =| [x()e ™ dt (2.3-2)
-T/2
e The spectrum analyzer produces an approximation to the Fourier transform of the signal.
T/2 T2 T2 T/2
X, (o) = X, (jo) X (—jo) = [x(e™dt- [x(v)e’dr= [ [x(t)x(r)e”™dtdr (2.3-3)
-T/2 -T/2 -T/2-T/2
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Define A =t-7,

If the process is ergodic,

1 . 5 —-7+T/2 1 T/2 o
SIXrGo)f = TIT/z{T}[/jc(T+ﬂv)x(r)dr}e YA (2.3-4)
o7 () =% Ix(r+ﬂ,)x(r)dr - p(A) as T —>x (2.3-5)
-T/2
1 —+T/2
lim—| X, (joo) F= lim [ pr(D)e”"d = S(@) (2.3-6)

—-r-T/2

e The power spectral density function varies with the limit of the magnitude square of the ordinary Fourier transform of

the signal.

e The Fourier transform of a signal describes how its energy is distributed in frequency; division by 7 converts energy to

power.

e The correlation function is the inverse Fourier transform of the power spectral density.

For 7=0

o(7) = L TS(a))ef“”da) (2.3-7)
2r

|
p0) = L S(w)de (2.3-8)
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T/2

p(0) = lim % [ERGL (2.3-9)

-T/2
e The area under the spectral density function is 27 times the mean square value of the random process.

e The spectral density can be expressed as a function of frequency, /= @/(27).
p0) = [S(Hdf =2[S () (2.3-10)
—0 0

S (f) : the spectral density in (units)*/Hz.
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2.4 White Noise and Linear System Response

e White noise is a random process with an expected value (mean) of zero with an absolutely flat power spectrum.
S(w) = W = constant for all @ (2.4-1)
The correlation function of white noise
p(7) =Ws(7) (2.4-2)
X 7): a unit impulse
e A vector random process is white noise if its correlation matrix is of the from
R(7) = Wo(z) = E{x(t)x'(t + 7))} (2.4-3)
W: a square matrix.

Consider a linear system, the input to which is the signal u(¢) and the output from which is y(¥).
y(0) = [ H(t, Ayu()dA (2.4-4)
0
The correlation matrix for the output y()

R, (1,7) = E{p(0),y'(7)} = E{ [ H(t Ayu(2)dz- | u’(f)H'(r,é)dé}

- E{IJ H(t,/l)u(/l)u'(f)H'(r,g)dﬂdg} (2.4-5)
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For white noise input, u(¢),

E{u(Au' (&)} = 05(4 - &) and Q = const. (2.4-6)
R, (t,7) = ﬁH(z,z)Qém ~ & H'(7,8)dAdé (2.4-7)
From a relation,
jf (HS(A-EdE= f(A) (2.4-8)
R (t,7) = jH(t,ﬂ)QH'(r,l)d/I (2.4-9)
For the process in time-invariant,
H(t,7)= H(1—7) forallt, 7 (2.4-10)
R (t,7) = jH(t—/l)QH'(r—;t)d/l (2.4-11)
Replacing 7 by t+7,
R, (t,t+7)= jH(t ~ A)QH'(t — A+ 1)dA = jH(g)QH'(§+ 0)dé (2.4-12)
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Define §=1¢ -4,
im R, (1, +7) = R, () = TH(g)QH'(g +7)déE (2.4-13)

e The output correlation in (2.4-13) is valid only if the dynamic system has a steady state response. If the system is not
asymptotically stable (2.4-13) is not meaningful.

The expected value (mean) of the output

E{(t) = E{I H(t,/l)u(/l)dl} = j.H(t,/i)E{u(/l)}d/i (2.4-14)

For white noise input, u(?),
E{u()} =0 (2.4-15)
E{y(®)}=0 (2.4-16)

e The response of a linear system to white noise in the steady state has a zero mean and has a correlation function given
by [H(&OH'(£+1)dé .
0

The power spectrum of the output y

0

— 00|

S(@) = j[j H(EQH' (& + T)dff}"’”df (2.4-17)
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S(e) = H(@Q{ [H(&+ r)e‘j‘”dr}df
0 —o0
[H'(E+)e ™ dr = [ H'(A)e " dA =" H'(jo)
H(jo)= J' H(t)e '”dt : the transfer function of the linear system

S(@) = [ H(&)e™ dé- OH'(jo)

S, (@) = H(-jo)QH'(jw)

(2.4-18)

(2.4-19)

(2.4-20)

(2.4-21)

e The spectrum of the output y of a linear system excited by white noise is the product of the transfer function matrix at

negative frequency with the spectral density matrix of the white noise, with the transfer function matrix transposed.
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- Linear system.

_u...._._.’.H

Y ,

Input

H(t) = impulse response

Output

H(s) = transfer function = £[H(r)]

Domain Deterministic inputs White noise inputs
et y0) =[, HG-2ua)da | Ry =] HE)QH (¢ + 1) dr
BacdUEnCY | y(s) = H(s)u(s) 5y(@) = H(-jw)QH' )

Figure 2.4-1 Input-Output Relation for Linear System Excited by White Noise
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The most common random process after white noise is the output of a first-order low pass filter having the transfer

function
1
H(s) = (1)
s + o,
The impulse response corresponding to H(s) is
e ™ 20
h(t) = 2
{ 0 <0 @
The correlation function of this process, often known as a first-order Markov process, is
r(r) =0 fe e ™ dg = ge ™ [e P idE = L o for 7> 0 (3)
0 0 2w,

Since /(7) is zero for 7< 0, this expression is not valid for 7< 0. To obtain »(7) for negative 7 we use the general relation

R(t,7) =R'(r,t), which in this case is

r(r) =r(-7) 4)
by which (3) becomes
r(7) =Le_w°‘r‘ &)
2w,

as shown in the figure below.
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White First-order
noise Markov process

Spectral
density
Q
@y
(a)
2wy
20 pir) = emeur
1.0
| 1 | >
2 -1 0 1 2 gt

(b}

The power spectrum is obtained either as the Fourier transform of (5) or using (2.4-21). The latter is easier.

S@=—>1——9. L -2 6)

. T 2 2
- jo + o, jo+o, o +o,

The mean square value of the output is given by

_ 9
r =2 ()
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Thus the spectral density of the white noise is Q = 2m0x(mean square value of signal). The units of the white noise
spectral density Q are thus (units of the signal)2 x sec.
Figures below show (a) white noise; (b) white noise through filter with T = 0.1 s; (c) white noise through filter with t

=1 s; (d) white noise through filter with T =10 s.

| | |
0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
Time, s Time, s

(a) (c)

| I | l | |

0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00
Time, s Time, s

(b) (d)
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2.5 Systems with State-Space Representation

The general linear system
X=Ax+Bu+Fv (2.5-1)
y=Cx+w (2.5-2)
v and w: white-noise processes.

If the observation noise w and the control « are ignored.

Xx=Ax+Fv (2.5-3)
y=Cx (2.5-4)
X = 1) (1) + [ 9, DF (A (D (2.5-5)

fy : a fixed starting time

A

X ()x (1) = P, )x (to)x (t)@'(7,,) +x (to)[f ot , DF (Ay (ﬂ)di}

+ [ g, HF (AW (DdA-x () + [ [ 9t , DF (A (AW (OF (E)¢'(z, £)dgdA (2.5-6)

Loty
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Because white noise has zero mean,

E{j #(t , DF (A (/I)d/l} = ]¢(z S AF(ADE v (A)ydA =0 (2.5-7)
R (t,7) = ¢t ,1)E {x (t)x (¢ )} 4'(z,0,) + [ [ (¢, DF (DE v (AW (E}F (O)'(z, £)dEd A (2.5-8)
E{x(2,)x'(t))} = P(¢,) (25'9)
P(ty) : the covariance matrix of x(z)
If v is white noise,
Ev(A)' (&)} = 0,(D)d(A-2) (2.5-10)
j ¢, VF(1)Q, (/1){]. S(A-OF'(¢' @, ?f)df}dﬂ (2.5-11)
[50-oF @@, - {F”)f“’” o< h <t (2.5-12)
. otherwise
R, (t,7) =¢(t,1,)P(t,)p'(z,1,) + j¢(f  DF (D)0, (WF (D) ¢'(z, A)dA (2.5-13)
where ¢ = min(z,7).
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R (t,7) =P(t)4'(z,t) for t>¢ (2.5-14)

P@t) =R, (t,1) =g, )P(t,)P'(t.t,) + f¢(f AF (DO, (DF ' (A)'(t, A)dA (2.5-15)

P(?): the covariance matrix of the state x(¢) at time z.

The correlation matrix R.(z, 7), for 7 not necessarily equal to ¢, is simply the product of covariance matrix, P(¢), with
the transpose of the transition matrix from zto ¢, when P(¢) = R (¢, ?).
The matrix P(?) is the solution of the matrix Riccati equation.

P=AP+ PA' +FQF' (2.5-16)

P(t)],., =P, (2.5-17)

P= AP+ PA'+ FQ F', the variance equation, is very useful in the analysis of random processes excited by white noise,
since it permits one to determine how the covariance propagates with the elapse of time, without the necessity of
having to find the state-transition matrix.
If 4 1s a constant matrix corresponding to a stable dynamic system, and /" and Q, are constant

P(t) — P = const (2.5-18)

P : the steady state covariance matrix

0=AP +PA' +FQF' (2.5-19)
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y(t) = C()x() (2.5-20)
y(0)y'(7) = C()x(1)x'(r)C'(7) (2.5-21)
R, (1,7) = E{y(1)y'(7)} = C(DE{x(0)x'(7)}C'(r) = C(D)R,(t,7)C'(7) (2.5-22)
The covariance matrix of the output
P () =R, (t,t) = C(t)P(1)C'(2) (2.5-23)
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The differential equations for the wind-turbulence process having a Dryden spectrum are

X, =x,
. 1
xz——T—le X, +Vv
and the output is given by
1 V3
Y= +T—xz

The matrices representing the process are thus

1
a=| ° , JF = O,C=[1/T2 \/§/T]
~1/T? -2/T 1

Let the steady state covariance matrix be
p = {P] p z}
P> P;

Then by 0 = AP + PA' + FQ,F', the elements of P are given by the solutions of

0=2p,
0=-PL_2P2
T®> T
0=2[-22 ELER T
7> T

(1)
(2)

3)

4)

)

(6)
(7)

(8)
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By solving (6)-(8), thus

— o T*|T* 0
p=2 9
4 { 0 1} ©)
The steady state covariance 13y of the output is obtained using P,(r) = C(t)P(t)C'(t)
— — T*|T* 0o1/T?
P =cPc'=|1/T> 3/1|% =0’ 10
’ [ ] 4 [ 0 1}{\/5 /T} : (10)
To obtain the correlation of the output we need the state-transition matrix e’” for 4 given in (4)
1+7/T T
At — 11
¢ |:—T/T2 l—r/T} (h
Thus, by the steady state form of R_(¢,7) = P(¢)¢'(z,t),
_ 29 2 2 _ 2 2 2 2 _
Rx(z'):P(e“)’:GZT T* 0ft+7/T —7/T*|_olT*|T*(1+7/T) N (12)
4 0 1 T 1-7/T 4 T 1-7/T

Finally, the output correlation function is obtained by use of R, (z,7) = C(t)R, (t,7)C'(z)

o |1*(+7/T) -7 |1/7° T
= "= 2 —_z — 21_ 13
R, (v) =CR, (2)C [1/T \/3/T] 1 { ] I_T/T}{ _3/T} az( —ZT}T>O (13)
And by symmetry
Ry(T):Ozz[l_z;J (14)
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3 Kalman Filters: Optimal Observers

3.1 Kalman Filter Problem

A dynamic process

X =Ax +Bu + Fv (3.1-1)
y =Cx +w (31_2)
v and w : white noise processes, The optimal state estimator
£ =A% +Bu +K(y —CF) (3.1-3)
Control B
T’Q—,‘ S :
Obscrvation - - gf‘:mum
gain estimate
matrix
= A [—¢
9
Estimated <
observation

Figure 3.1-1 Kalman Filter is an Optimum Observer
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The random processes of disturbance input and measurement noise in Kalman filter are assumed white and gaussian.

The gaussian requirement is a condition on the first-order probability density functions of w and v.

pdf (w) = —lww-lw} (3.1-4)

1
(27T)’1/2|\/V |1/2 exp{ 2

If v and w are white and Gaussian random processes, then as proved by Kalman and Bucy, the Kalman filter is the

best of all possible filters. There is no other filter, linear or nonlinear, better than the linear Kalman filter.

Kalman defined the state estimate X (#) as the conditional mean of x(¢), given the observation data y(7) for 7< 1.

fE)=E{x(@)|y(2), <t} (3.1-5)
e(t)=x(t)—x(t) (3.1-6)

x (t): any estimate of x(¢)
e()e'(t) =[x @) —x@]Ix"()—x"@)] =x@)x'(t) —x()x'() —x@)x'(t) +x(t)x'(t) (3.1-7)
Efe@)e't)|y(@),t<t}=E{x@)x't)} —x@)x'(¢)-x@)x't)+x@)x'(t) (3.1-8)
x(t)=X@)+<(@) (3.1-9)
Efe()e'(t)|y(2),r<t}=Ef{x()x'(t)} —X(@)X'@)+J)S'() (3.1-10)

e Since ¢(t){'(r) 1s a nonnegative quantity, the conditional covariance matrix is minimized by setting £(#) = 0.
x(t)=x(@) (3.1-11)

e The conditional mean, % (z), is the estimate that minimizes the covariance matrix of the error.
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3.2 Kalman Filter Gain and Variance Equations

The error
e=x —% (3.2-1)
The differential equation for the error
€ =X —% =Ax +Fv — 4% —K(Cx +w —C%) = (4 —KC)e +Fv —Kw (3.2-2)
v and w: white noise processes
E=Fv —Kw (3.2-3)

e ¢ =Fv —Kw is also white noise, with a covariance matrix Q.

E{EDE ()} =FOE Y (W' (D)} F' (1) —KEE w (¢ W (D} F (1) —F(OE o (¢ w (D)}K (1) +K(OE w (tw'(0)}K'(r)  (3.2-4)

Ep@w'(0) =V(e)ot —7) (3.2-5)

Ev(@w' (D)} =X()5(t —1) (3.2-6)

Edw(@w'(n)y =W (1)t —7) (3.2-7)

E{E@)E(0)} =0:(1)o( — 1) (3.2-8)

0.t) =FQ@W@)F'(t)-K@)X'()F'(t) -F@)X@K'(t) + KW ({)K'(t) (3.2-9)

The differential equation of a linear system excited by white noise &

¢ =(A-KCe +¢& (3.2-10)
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The variance equation
P = (A-KC)P +P(A'-CK") +0, =(4-KCO)P +P(A'-CK")+FVF'—KXF'—FXK'+ KWK’ (3.2-11)
P: the covariance matrix of the error
e If the cross-covariance X between the excitation noise v and the observation noise w were absent (X = 0), (3.2-11)
would have the same form as the optimal control equation and we would be able to write the solution for the optimum
gain matrix.
K =PCW™ (3.2-12)

e The optimizing covariance matrix is given by the matrix Riccati equation.

P = AP +PA'—PCW CP + FVF' (3.2-13)

For non-zero cross-correlation matrix (X # 0),
P=P+U (3.2-14)
K=K+T (3.2-15)

P and K : the optimum covariance matrix and observer gain matrix
P+U=(4-KC -TCYP +U)+ (P +U)A' -CK'=CI"Y+FVF'—(K + DXF' -FX(K'+T)+(K +TW (K'+T") (3.2-16)
P =(4-KC)P +P(A' -CK")+FVF' —KXF' —FXK' + KWK’ (3.2-17)

U=(4-KC-TC)U +U(4' -CK' =CTI") + +TWT' + TWR' —CP — XF") + (KW —PC' — FX)I"' (3.2-18)
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e If P is the minimum covariance matrix P must be greater than P for any choice of T.
e U must be positive semidefinite.
e U can be made negative definite by suitable choice of I" unless the coefficient of I' vanishes entirely, in which case U
will be positive semidefinite.
KW =PC'+FX (3.2-19)

For nonsingular observation noise spectral density matrix, W,

K =(PC'+FxXW ™ (3.2-20)

The matrix Riccati equation
P =AP +PA'—PCW "CP + FVF" (3.2-21)
A=A-FXw'C andV =V - XWX’ (3.2-22)
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3.3 Steady-State Kalman Filter

e The matrix Riccati equation is valid for any finite time interval.
e [ftime is infinite, the solutions may tend to infinity or they may remain finite.
e If all the matrices on the right-hand side of the matrix Riccati equation are constant, then a constant, steady state
solution may exist, the solution of the matrix quadratic equation, the algebraic Riccati equation (ARE).
0=AP +PA'—PCW ~'CP +FVF' (3.3-1)
The ARE has a unique positive definite solution if either
(a) The system is asymptotically stable, or
(b) The system defined by the pair [4, C] is observable and the system defined by the pair [4, FV'"*] is controllable.
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If it were possible to balance an inverted pendulum, it would not remain balanced without control owing to the inevitable

presence of various types of disturbances, such as random air currents. Thus, if the accelerations due to the disturbances
are represented by v, the differential equations for the pendulum are

0=0w (1)

@ =00 +u +v (2)

where u 1s the control acceleration and v is the disturbance acceleration. Assume the DC motor’s back emf is small and

negligible. The matrices corresponding to (1) and (2) are

el Joflo-l

vl o{x‘}w 4

X2
Hence
c=[t o] Q)
Let the optimum covariance matrix be
p= [p v } (6)
Py, P;
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Then, by 0= 4P+ PA'—- PC'W™'CP+ FVF', the elements of P satisfy

2

p
0=2p, - BL )
p,p
0:p3+sz|_ ;Vz (8)
pz
0=20p, ~L2 1y )

where 7 and W are the spectral density (1x1) matrices of the excitation noise and observation noise, respectively. The

solutions are

P =QW 2y (10)
p, =QWy (1)
Py =QW \2y(y - 1) (12)
where
V
=1 1+ — 13
y=1+1+ o (13)
The Kalman filter gain is determined.
K:%W4=Fﬁ1 (14)
sz
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The closed-loop filter poles and transfer functions from the measured angle y to the estimated state £, =8 and £, = & are

of interest. Assuming that the input u is zero we have

sX(s) =A% (s)+K[y(s) - Ci(s)] = (A4 -KC) (s) +Ky (s) (15)
X(s)=(sI —A+KC) 'Ky (s)=(sI —A4,)"' Ky (s) (16)
In this example,
= 1“ Jﬂh 01{‘95 1} (7
Q0] | QY Q*(1-y) 0
Thus
[_A_1:s+Q\/§—1:1[ s 1 } 18
(s 0) L)Z(;/—l) i A | Q=) s +Q2r (18)
where A(s) is the closed-loop characteristic polynomial, given by
As) =52 +Qf2ys +Q*(y 1) (19)
Thus,
)?(S)=|:?(S):|=; QZ(S\/ZJrQ?/) (S) (20)
a(s) | AS)[Q(s +Qy27)
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In particular

Os) Qs 2y +Qyp)

H = = 21
) y(s) s2+Q\/§s +Q%(y -1 @
A 2
Hos)=26) Qs +02p) 22)
y(s) s +Q2ys +Q(y -1)
The closed-loop poles of the filter are given by
Yy oY
=-Q| JL /.51 23
s (\E 5 j (23)
The zeros of the filters H,(s) and H,(s), respectively, lie at
s = —Q\/g for angular position (24)
s =-Q \/z for angular velocity (25)
v
As the excitation noise covariance matrix V tends to zero, ¥, as given by (13), approaches 2
Hy(s) > 22 (26)
s +Q
2
Hy(s) — 22 27)
s +Q
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In other words the zero of the numerator tends to one pole of the denominator, and both filters become first-order. Note
also that the optimum estimate of the angular velocity is simply the natural frequency €2 times the angular position. As the
excitation noise covariance matrix tends to infinity (or as the observation noise covariance matrix tends to zero) y tends to

infinity and the closed-loop poles of the observer

s = —Q\g(l + /) (28)

which are lines at 45° angles from the real axis. The next figure shows poles of Kalman filter for inverted pendulum

=0
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The differential equations for the proof mass, with the acceleration due to the capture force are
X, =x, (1)
X, =u+a (2)
The position of the proof mass is determined by some sort of “pick-off”; e.g., magnetic or optical. The output of the pick-
offis
yo=x,+w 3)
where w 1s the pick-off noise which we assume to be white.
We assume that the acceleration a is a Wiener process
a=v (4)
where v is white noise with spectral density matrix V. If V" were zero then (4) would become a =0, that is, @ would be an
unknown constant. But as we will soon see, it is necessary to assume V' # 0 in order to get a meaningful filter design.

Represent a by another state variable x; and adjoin (4) to (1), (2), and (3):

X, =x, (5)
X, =u+x, (6)
X3 =v (7)
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For this system the defining matrices are

01 0 0 0
A=[0 0 1|,B=|1|,F=|0|,C=]1 0 0] (8)
0 0 O 0 1
Let the optimum covariance matrix be
P P2 P;
P=\p, p, ps )
Ps Ps Ps
Then the components of 7 satisfy P =0= AP+ PA' ~ PCW™'CP+ FVF'.
p2
pi=0=2p, 2" (10)
pip
p,=0=p, +p4_# (11)
p.p
p;=0=ps- ;V3 (12)
2
p4=0=2p5_72 (13)
PP
po=0=p, - (14)
p2
pﬁzoz—#+V (15)
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These can be solved readily. The resulting solutions are

pl :2V1/6W5/6,p2 :2V1/3W1/3,p3 :V1/2W1/2,p4 :3V1/2W1/2,p5 :2'[/'2/31/1/1/39176 :2V5/6W1/6 (16)

We can now compute the Kalman filter gain matrix

P IW 200 /W)
K=PCW™ =|p, /W |=|200 /W)">
ps W v Iw)'?
-2Q 1 0
A, =A-KC={[-2Q> 0 1
-Q* 0 0

where

Thus the filter characteristic equation is

s +2Q -1 0
I -4, =] 2Q° s —1=s7+2Qs7 +2Q% +Q° =0
Q’ 0 =

The characteristic roots are

(17)

(18)

(19)

(20)

o2y
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4 Linear Quadratic Gaussian Control: The Separation Theorem

4.1 The Separation Theorem

To minimize the expected error in controlling a linear system,

X = Ax +Bu +Fv (4.1-1)
with observations
y =Cx +w (4.1-2)
(a) Use the control law
u =-Gf (4.1-3)
where X is the output of a linear observer
£ =A% +Bu +R(y —C%) (4.1-4)

(b) Find the control gain matrix G as the solution of the corresponding deterministic optimal control problem.

(c) Find the observer gain matrix K as the optimum gain for the corresponding Kalman filter.
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The differential equations for the proof mass, with the acceleration due to the capture force are
X, =X,

X, =u+a

(1
2)

where x; and x, are the position and velocity of the proof mass, a is the external acceleration and u is the control input. By

© 2
LQR, the control input is determined to minimize V = j(xf + u—Z)dr , and finally given by
. C

u=-gx, —g,X,—g,a=—cx, —\J2cx, —a

where c is the reciprocal of the control weighting and may be regarded as one of the design parameters.

The Kalman filter is determined and finally given by
)él :)Ez +k1(y _)el):)ez +2(V/W)1/6(.V _321)
£,=d4 +u +k,(y =) =d+u +200 1W) (@ —%))

Q=kiy —%)=W /W)@y -£,)

3)

4)
(5
(6)

where V is the spectral density of the acceleration rate to be measured, and W is the spectral density of the noise in

measuring the pick-off position.
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By the separation principle, the (nominal) closed-loop pole locations are the roots of the characteristic polynomial for full-

state feedback and the roots of the characteristic polynomial of the Kalman filter. The former are at

¢ :_\/20 + \2c j (7)
2 2
and the latter are at
— — 1 3
=—Qands =-Q| —+/.|> 8
s and s (2 Jj 2] (8)
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