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Neural Network 

 
1 Introduction 

 
1.1 History 

 
• Early Period: Hermann von Helmholtz, Ernst Mach, Ivan Pavlov 

• Modern Period:  Warren McCulloch, Walter Pitts, Donald Hebb, Frank Rosenblatt, Bernard Widrow and Ted Hoff, 

Teuvo Kohonen, James Anderson, Stephen Grossberg, John Hopfield, David Rumelhart, James McClelland 

 
1.2 Applications 

 
• Aerospace, Automotive, Banking, Defense, Electronics, Entertainment, Financial, Insurance, Manufacturing, Medical, 

Oil and Gas, Robotics, Speech, Securities, Telecommunications, Transportation 

• Groups of Applications 

• Pattern Recognition; Image, Optical Character Recognition (OCR), Speech, Sensors Pattern, etc. 

• Pattern Recall 

• Classification; Unsupervised Learning 

• Function Estimation 
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1.3 Biological Inspiration 

 

 
Figure 1.3-1 Schematic Drawing of Biological Neurons 

 
• Dendrites, Cell Body, Axon 

• Synapse; Constant, Learning 

• Human Brain: 1011 Neurons, 104 Connections/Neuron 

• Simple Function -> Parallel Computation 
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2 Neuron Model and Network Architectures 

 
2.1 Neuron Model 

 
2.1.1 Single-Input Neuron 

 
 

 
Figure 2.1.1-1 Single-Input Neuron 

 
a = f(wp+b)                                                                               (2.1.1-1) 
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p : scalar input   

w : weight     (corresponding to the strength of a synapse) 

b : bias, offset 

Σ : summer    (corresponding to a part of the cell body) 

n : summer output, net input 

f : transfer function, activation function (corresponding to a part of the cell body) 

a : scalar neuron output   (corresponding to signal on the axon) 
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2.1.2 Transfer Functions 

 

 
Table 2.1.2-1 Transfer Functions 
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2.1.3 Multiple-Input Neuron 

 

 
Figure 2.1.3-1 Multiple-Input Neuron 

 
• Number of inputs (R) depends on amount of information. 

• wi,j : Weight linking between output (neuron) no i with input no j 

n = w1,1p1+w1,2p2+…+w1,RpR+b                            (2.1.3-1) 

a = f(n)                                                         (2.1.3-2) 
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Figure 2.1.3-2 Neuron with R Inputs, Abbreviated Notation 
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2.2 Network Architectures 

 
2.2.1 A Layer of Neurons 

 

 
Figure 2.2.1-1 Layer of S Neurons 

 

 

 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

                                                                                                                                                                                                                        9 Manukid Parnichkun

 
• Number of outputs (S) depends on amount of desired outputs. 

ni = wi,1p1+ wi,2p2+…+ wi,RpR+bi                            (2.2.1-1) 

n = Wp+b                                    (2.2.1-2) 

a = f(Wp+b)                                                (2.2.1-3) 

p =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Rp

p
p

M
2

1

                                                (2.1.3-4) 

n =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Sn

n
n

M
2

1

, a =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Sa

a
a

M
2

1

, b =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Sb

b
b

M
2

1

                                       (2.1.3-5) 

W = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

RSSS

R

R

www

www
www

,2,1,

,22,21,2

,12,11,1

L

MOMM

L

L

                         (2.2.1-6) 

 
 
 
 
 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

                                                                                                                                                                                                                        10 Manukid Parnichkun

 

 
Figure 2.2.1-2 Layer of S Neurons, Abbreviated Notation 
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2.2.2 Multiple Layers of Neurons 

 

 
Figure 2.2.2-1 Three-Layer Network 
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• Number of neurons in the hidden layer (Sm) depends on complexity of the problem. 

am = fm(Wmam-1+bm)                                                (2.2.2-1) 

a3 = f 3(W3 f 2(W2 f 1(W1p+b1)+b2)+b3)                            (2.2.2-2) 

 

 
Figure 2.2.2-2 Three-Layer Network, Abbreviated Notation 

 
 

 

 

 

 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

                                                                                                                                                                                                                        13 Manukid Parnichkun

 
2.2.3 Recurrent Networks 

 

 
Figure 2.2.3-1 Delay Block 

 
a(t) = u(t-1)                          (2.2.3-1) 

a(t) = a(0); t = 0                  (2.2.3-2) 

 
 
 
 
 
 
 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

                                                                                                                                                                                                                        14 Manukid Parnichkun

 

 
Figure 2.2.3-2 Integrator Block 

 

a(t) = ∫
t

0

u(τ)dτ+a(0)                               (2.2.3-3) 

a(t) = a(0); t = 0                  (2.2.3-4) 
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Figure 2.2.3-3 Recurrent Network 

 

a(t+1) = satlins(Wa(t)+b)                                   (2.2.3-5) 

a(0) = p                     (2.2.3-6) 
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3 An Illustrative Example 

 
Fruits  : Apple, Orange 

Sensor Inputs : Shape (1-Round, -1-Elleptical) 

Texture (1-Smooth, -1-Rough)  

Weight (1-More Than One Pound, -1-Less Than One Pound) 

 

 
Figure 3-1 Neural Network Controlled Fruits Sorter 
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3.1 Perceptron 

 

 
Figure 3.1-1 Single-Layer Perceptron 
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Figure 3.1-2 Prototype Vectors 

 
p2 = 0                          (3.1-2) 
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W = [ ]010 , b = 0                             (3.1-4) 

For orange (round, rough, less than 1 pound), 
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3.2 Hamming Network 

 

 
Figure 3.2-1 Hamming Networks 

 

• R : No of Inputs, S : No of Prototypes = No of Neurons in Layer 1 = No of Neurons in Layer 2 

W1 ⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=⎥
⎦

⎤
⎢
⎣

⎡
=

111
111

2

1
T

T

p
p

                         (3.2-1) 

b1 ⎥
⎦

⎤
⎢
⎣

⎡
=

3
3                                          (3.2-2) 

 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

                                                                                                                                                                                                                        22 Manukid Parnichkun

 

a1 = W1p+b1 ⎥
⎦

⎤
⎢
⎣

⎡

+
+

=⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=

3
3

3
3

2

1

2

1

pp
pp

p
p
p

T

T

T

T

                        (3.2-3) 

a2(0) = a1 (initial condition)                         (3.2-4) 

a2(t+1) = poslin(W2a2(t))                       (3.2-5) 
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Where ε is some number less than 1/(S-1), and S is the number of neurons in the recurrent layer.  
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For apple (round, smooth, less than 1 pound), 
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For unidentified fruit (elliptical, rough, less than 1 pound) 
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3.3 Hopfield Network 

 

 
Figure 3.3-1 Hopfield Network 

 
• S : No of Inputs = No of Neurons in Layer 1 = No of Outputs 

a(0) = p                           (3.3-1) 

a(t+1) = satlins(Wa(t)+b)                                      (3.3-2) 
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3.4 Examples of Neural Network Application 

 

 
Figure 3.4-1 An Example of the decision boundaries formed by the perceptron convergence procedure with two classes. 

Samples from class A are represented by circles and samples from class B by crosses. Lines represent decision boundaries 

after trials where errors occurred and weights were adapted. 
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Figure 3.4-2 Types of decision regions that can be formed by single- and multi-layer perceptrons with one and two layers 

of hidden units and two inputs. Shading denotes decision regions for class A. Smooth closed contours bound input 

distributions for classes A and B. Nodes in all nets use hard limiting nonlinearities. 
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Figure 3.4-3 Decision regions after 50, 100, 150, and 200 trials generated by a two layer perceptron using the back-

propagation training algorithm. Inputs from classes A and B were presented on alternate trials. Samples from class A were 

distributed uniformly over a circle of radius 1 centered at the origin. Samples from class B were distributed uniformly 

outside the circle. The shaded area denotes the decision region for class A. 
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Figure 3.4-4 Node outputs for a Hamming net with 1,000 binary inputs and 100 output nodes or classes. Output values of 

all 100 nodes are presented at time zero and after 3, 6, and 9 iterations. The input was the exemplar pattern corresponding 

to output node 50 
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Figure 3.4-5 Weights to 100 output nodes from two input nodes as a feature map is being formed. The horizontal axis 

represents the value of the weight from input x0 and the vertical axis represents the value of the weight from input x1. Line 

intersections specify the two weights for each node. Lines connect weights for nodes that are nearest neighbors. An 

orderly grid indicates that topologically close nodes code inputs that are physically similar. Inputs were random, 

independent, and uniformly distributed over the area shown. 
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Figure 3.4-6 An example of the behavior of the Carpenter Grossberg net for letter patterns. Binary input patterns on the 

left were applied sequentially starting with the upper “C” pattern. Exemplars formed by top-down connection weights 

after each input was presented are shown at the right. 
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Figure 3.4-7 An example of the behavior of a Hopfield net when used as a content-addressable memory. A 120 node net 

was trained using the eight exemplars shown in (A). The pattern for the digit “3” was corrupted by randomly reversing 

each bit with a probability of 0.25, and then applied to the net at time zero. Outputs at time zero and after the first seven 

iterations are shown in (B). 
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4 Perceptron Learning Rule 

 
• Supervised Learning: Perceptron, Back-Propagation, Supervised Hebb, {p1, t1}, {p2, t2}, …, {pQ, tQ}, where pQ is an 

input and tQ is the corresponding correct (target) output.  

• Unsupervised Learning: Grossberg, Unsupervised Hebb 

• Reinforcement Learning: Q, Bayesian  

 
4.1 Perceptron Architecture 

 

 
Figure 4.1-1 Perceptron Network 
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a = hardlim(Wp+b)                         (4.1-1) 
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ai = hardlim(ni) = hardlim( i
T

i b+pw )                               (4.1-5) 

a = hardlim(n) = 
⎩
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⎧
0
1  

otherwise
nif )0( ≥                             (4.1-6) 
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4.1.1 Single-Neuron Perceptron 

 

 
Figure 4.1.1-1 Two-Input/Single-Output Perceptron 

 
a = hardlim(n) = hardlim(Wp+b) = hardlim(1wTp+b) = hardlim(w1,1p1+ w1,2p2+b)         (4.1.1-1) 

The decision boundary is determined by the input vectors for which the net input n is zero 

n = 1wTp+b = w1,1p1+ w1,2p2+b = 0                             (4.1.1-2) 

Example: 

w1,1 = 1, w1,2 = 1, b = -1                                (4.1.1-3) 

n = 1wTp+b = w1,1p1+ w1,2p2+b = p1+ p2-1 = 0                                  (4.1.1-4) 
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Intersection points on the axis, 

1
1
1

2,1
2 =

−
−=−=

w
bp    if p1 = 0                                 (4.1.1-5) 

1
1
1

1,1
1 =

−
−=−=

w
bp    if p2 = 0                                   (4.1.1-6) 

 
Figure 4.1.1-2 Decision Boundary for Two-Input Perceptron 

 
For the input p = [2  0]T  

a =  hardlim(1wTp+b) = hardlim [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡ 1
0
2

11  = 1                     (4.1.1-7) 

The weight vector 1w is always orthogonal to decision boundary and points toward the region where the neuron output is 

1.   
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For a simple logic function AND gate, the input/target pairs for the AND gate  
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Figure 4.1.1-3 AND Gate Problem 

 
Select a weight vector which points 45°, 
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⎡
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1wTp+b = 0                       (4.1.1-10) 

Select p =[1.5  0]T , a point on the decision boundary, 

1wTp+b = [ ] 303
0
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4.2 Perceptron Learning Rule 

 
Perceptron Learning Rule: Supervised Learning Rule 

{p1, t1}, {p2, t2}, …, {pQ, tQ}                                        (4.2-1) 

 
4.2.1 Test Problem 
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Figure 4.2.1-1 The Input/Target Pairs 
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Figure 4.2.1-2 Test Problem Network 
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4.2.2 Constructing Learning Rules 

 
Select an arbitrary initial weight vector, 

1wT = [1.0  -0.8]                              (4.2.2-1) 

 

 
Figure 4.2.2-1 Decision Boundary by Random Weight Vector 

 

With p1: 
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If t = 1 and a = 0, then 1wnew = 1wold + p                            (4.2.2-3) 

 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

                                                                                                                                                                                                                        41 Manukid Parnichkun
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Figure 4.2.2-2 Altering of Weight Vector 

 
With p2 
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If t = 0 and a = 1, then 1wnew = 1wold - p                           (4.2.2-6) 
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Figure 4.2.2-3 Modified Weight Vector 

 
With p3 
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Figure 4.2.2-4 Weight Vector and Decision Boundary after 3 Input/Target Pairs 

 
If t = a, then 1wnew = 1wold                                      (4.2.2-10) 

 
4.2.3 Unified Learning Rule 

 
e = t-a.                                  (4.2.3-1) 

If e = 1, then 1wnew = 1wold + p.                                   (4.2.3-2) 

If e = -1, then 1wnew = 1wold - p.                                   (4.2.3-3) 

If e = 0, then 1wnew = 1wold.                                               (4.2.3-4) 

1wnew = 1wold + ep = 1wold + (t-a)p                                     (4.2.3-5) 

bnew = bold+e                                               (4.2.3-6) 
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4.2.4 Training Multiple-Neuron Perceptrons 

 
iwnew = iwold + eip                              (4.2.4-1) 

bi
new = bi

old+ei                                                   (4.2.4-2) 

Wnew = Wold + epT                               (4.2.4-3) 

bnew = bold+e                                                  (4.2.4-4) 

 
4.2.5 Limitations 

 

 
Figure 4.2.5-1 Linearly Inseparable Problems 
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5 Signal and Weight Vector Spaces 

 
5.1 Linear Vector Spaces 

 
Definition: A linear vector space, X, is a set of elements (vectors) defined over a scalar field, F, that satisfies the 

following conditions:  

1. An operation called vector addition is defined such that if x ∈ X (x is an element of X) and y ∈ X , then x+y ∈ X. 

2.  x+y = y+x. 

3. (x+y)+z = x+(y+z). 

4. There is a unique vector 0 ∈ X, called the zero vector, such that x+0=x for all x ∈ X. 

5. For each vector x ∈ X there is a unique vector in X, to be called -x, such that x + (-x) = 0. 

6. An operation, called multiplication, is defined such that for all scalars a ∈ F, and all vectors x ∈ X, ax ∈ X. 

7. For any x ∈ X, lx = x (for scalar 1). 

8. For any two scalars a ∈ F and b ∈ F, and any x ∈ X, a(bx) = (ab)x. 

9. (a+b)x = ax+bx. 

10. a(x+y) = ax+ay. 
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Figure 4.1-1 Linear Vector Spaces  

 

 
Figure 4.1-2 Non-Linear Vector Space  

 

• Examples of the vector spaces are two-dimensional Euclidean space, polynomials of degree less than or equal to 2, 

continuous functions defined on the interval [0, 1].  

• For subset of two-dimensional Euclidean space, some are vector spaces, e.g., straight line. Some are not vector spaces, 

e.g., box area at the origin. 
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5.2 Linear Independence 

 

Definition: Consider n vectors {x1, x2, ..., xn}. If there exist n scalars a1, a2, ..., an, at least one of which is nonzero, such 

that 

a1x1+a2x2+…+anxn = 0,                           (5.2-1) 

then the {xi} are linearly dependent. 

Definition: If a1x1+a2x2+…+anxn = 0 implies that each ai = 0, then {xi} is a set of linearly independent vectors. 

Examples: 
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a1x1+a2x2+a3x3= 0, only when a1= a2 = a3 = 0, thus {x1, x2, x3} are linearly independent.                          
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a1x1+a2x2+a3x3= 0, not only when a1= a2 = a3 = 0, but also when a1= 1, a2 = -1, a3 = 1, thus {x1, x2, x3} are linearly 

dependent. 
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5.3 Spanning a Space 

 
Definition: Let X be a linear vector space and let {x1, x2, ..., xm} be a subset of general vectors in X. This subset spans X if 

and only if for every vector x ∈ X there exist scalars a1, a2, ..., am such that  

x = a1x1+a2x2+…+amxm             (5.3-1) 

Definition: The dimension of a vector space is determined by the minimum number of vectors it takes to span the space.  

Definition: A basis set for X is a set of linearly independent vectors that spans X. Any basis set contains the minimum 

number of vectors required to span the space.  

• The dimension of X is therefore equal to the number of elements in the basis set.  

• Any vector space can have many basis sets, but each one must contain the same number of elements. 

Examples: Let X be polynomial degree less than 2 

{ }2
321 ,,1 txtxx ===  is a basis set of X                                          (5.3-2) 

{ }2
321 2,2,2 txtxx ===  is a basis set of X                                          (5.3-3) 

{ }2,,,1 4
2

321 ==== xtxtxx  spans X but not a basis set of X                  (5.3-4) 
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5.4 Inner Product 

 

Definition: Any scalar function of x and y can be defined as an inner product, (x,y), provided that the following 

properties are satisfied: 

1. (x,y) = (y,x). 

2. (x,ay1+by2) = a(x,y1)+b(x,y2). 

3. (x,x) ≥ 0 , where equality holds if and only if x is the zero vector. 

The standard inner product for vectors in Rn  

(x,y) = xTy = x1y1+ x2y2+…+ xnyn,                     (5.4-1) 

Example: 
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5.5 Norm 

 
Definition: A scalar function ||x|| is called a norm if it satisfies the following properties: 

1. ||x|| ≥ 0.  

2. ||x||= 0 if and only x = 0. 

3. ||ax|| = |a| ||x|| for scalar a. 

4. ||x+y|| ≤  ||x||+||y||. 

There are many functions that would satisfy these conditions. One common norm based on the inner product 

||x|| = (x,x)1/2                                         (5.5-1) 

For Euclidean spaces, Rn,  
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For vector spaces of dimension greater than two, the angle θ between two vectors x and y  
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5.6 Orthogonality 

 
Definition: Two vectors x,y ∈ X are said to be orthogonal if (x,y) = 0.  

Definition: A vector x ∈ X is orthogonal to a subspace X1 if x is orthogonal to every vector in X1. This is typically 

represented as x ⊥ X1.  

Definition: A subspace X1 is orthogonal to a subspace X2 if every vector in X1 is orthogonal to every vector in X2. This is 

represented by X1⊥ X2. 

 

 
Figure 5.6-1 p1, p3 plane is a subspace of R3, which is orthogonal to the p2 axis 
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5.6.1 Gram-Schmidt Orthogonalization 

 
• Gram-Schmidt orthogonalization is used to convert non-orthogonal basis set to orthogonal basis set. 

Procedure: From non-orthogonal n independent vectors y1, y2, ... , yn to n orthogonal vectors v1, v2, ... , vn, 

The first orthogonal vector is chosen to be the first independent vector: 

v1 = y1                                         (5.6.1-1) 

To obtain the second orthogonal vector we use y2, but subtract off the portion of y2 that is in the direction of y1.  

v2 = y2-av1                                           (5.6.1-2) 

av1 is the projection of y2 on the vector v1. 

 (v1,v2) = (v1, y2-av1) = (v1, y2)-a(v1,v1) = 0                       (5.6.1-3) 
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For the kth step, 
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Example: y1 = ⎥
⎦
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• v1 and v2 can be converted to a set of orthonormal (orthogonal and normalized) vectors by dividing each vector by its 

norm. 
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Example: y1 = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
1
1

, y2 = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3
2
1

, y3 = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2
3
1

, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

1
1
1

11 yv                                                                         (5.6.1-10) 

[ ]

[ ] ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=−=

1
0
1

1
1
1

1
1
1

111

3
2
1

111

3
2
1

),(
),(

1
1,1

21
22 v

vv
yvyv                                               (5.6.1-11) 

[ ]

[ ]

[ ]

[ ] ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=−−=

5.0
1

5.0

1
0
1

1
0
1

101

2
3
1

101

1
1
1

1
1
1

111

2
3
1

111

2
3
1

),(
),(

),(
),(

2
2,2

32
1

1,1

31
33 v

vv
yv

v
vv
yv

yv              (5.6.1-12) 

 

 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

                                                                                                                                                                                                                        55 Manukid Parnichkun

 
5.7 Vector Expansions 

 
Definition: If a vector space X has a basis set {v1, v2, ... , vn}, then any x ∈ X  has a unique vector expansion 
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i
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[ ]Tnxxx L21=x                     (5.7-2) 

For orthogonal basis set ((vi,vj) = 0, i≠j), 
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Example: For 
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5.7.1 Reciprocal Basis Vectors 

 
For non-orthogonal basis vectors {v1, v2, ... , vn}, a vector expansion requires the reciprocal basis vectors {r1, r2, ... , rn}. 

(ri,vj) = 0, i ≠ j  and (ri,vj) = 1, i = j                                     (5.7.1-1) 

RTB = I                                  (5.7.1-2) 

B = [v1  v2  …  vn]                                          (5.7.1-3) 

R = [r1  r2  …  rn]                                         (5.7.1-4) 

RT = B-1                               (5.7.1-5) 

For a vector expansion, 

nnvxvxvxx +++= L2211                                   (5.7.1-6) 

ininiii xvrxvrxvrxxr =+++= ),(),(),(),( 2211 L                                            (5.7.1-7) 
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6 Linear Transformations for Neural Networks 

 
A transformation consists of three parts: 

1. a set of elements X = {xi}, called the domain, 

2. a set of elements Y = {yi}, called the range, and 

3. a rule relating each xi ∈ X to an element yi ∈ Y. 

Definition: A transformation A is linear if: 

1. for all x1, x2 ∈ X, A(x1+ x2) = A(x1)+A(x2), 

2. for all x ∈ X, a ∈ R, A(ax) = aA(x). 
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6.1 Matrix Representations 

 
{v1, v2, ... , vn}: basis for vector space X  

{u1, u2, ... , um}: basis for vector space Y 

x ∈ X and y ∈ Y 
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A: linear transformation with domain X and range Y (A:X→Y) 

A(x) = y                         (6.1-2) 
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Ax = y                  (6.1-11) 
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6.2 Change of Basis 

 
A:X→Y : linear transformation 

{v1, v2, ... , vn}: basis for vector space X 

{u1, u2, ... , um}: basis for vector space Y 

For x ∈ X  
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For y ∈ Y  
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A(x) = y                        (6.2-3) 
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Ax = y                         (6.2-5) 
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A:X→Y : linear transformation 

{t1, t2, ... , tn}: new basis for vector space X 

{w1, w2, ... , wm}: new basis for vector space Y 

For x ∈ X  
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                 (6.2-8) 

A'x' = y'                          (6.2-9) 
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∑
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=
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j
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                (6.2-11) 
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w
                 (6.2-12) 

Bt = [t1  t2  ...   tn]                         (6.2-13) 

xBtttx ′=′++′+′= tnnxxx L2211                          (6.2-14) 

Bw = [w1  w2  ...   wm]                            (6.2-15) 

yBy ′= w                                                      (6.2-16) 

yBxAB ′=′ wt                                             (6.2-17) 

[ ] yxABB ′=′−
tw

1                                               (6.2-18) 

tw ABBA 1−=′                                                        (6.2-19) 
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6.3 Eigenvalues and Eigenvectors 

 
Definition: Consider a linear transformation A:X → X. Those vectors z ∈ X that are not equal to zero and those scalars λ 

that satisfy. 

A(z) = λz                            (6.3-1) 

are called eigenvectors (z) and eigenvalues (λ), respectively.  

• An eigenvector of a given transformation represents a direction, such that any vector in that direction, when 

transformed, will continue to point in the same direction, but will be scaled by the eigenvalue.  

Az = λz                         (6.3-2) 

 [A-λI]z = 0                              (6.3-3) 

This means that the columns of [A-λI] are dependent, and therefore the determinant of this matrix must be zero: 

|A-λI| = 0                           (6.3-4) 
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6.3.1 Diagonalization 

 
A:X → X: linear transformation  

{z1, z2, …, zn}: independent eigenvectors of a matrix A  

{λ1, λ2, …, λn}: eigenvalues of the matrix A 

B = [z1   z2   … zn]                                      (6.3.1-1) 

AB = A[z1   z2   … zn] = [λ1z1   λ2z2   … λnzn] 
⎥
⎥
⎥
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       (6.3.1-2) 

⎥
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⎢
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λ
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2

1

1ABB                                     (6.3.1-3) 

From 

tw ABBA 1−=′                                                           (6.3.1-4) 

• For A:X → X, if both domain and range are changed into independent eigenvectors basis set, the matrix representation 

is diagonal. 
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Example:  

A = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
31
22                                                                        (6.3.1-5) 

|A-λI| = )4)(1(45
31

22 2 −−=+−=
−−
−−

λλλλ
λ

λ
= 0             (6.3.1-6) 

[A-λI]z = ⎥
⎦

⎤
⎢
⎣

⎡
−−
−−
λ

λ
31

22 z = 0             (6.3.1-7) 

For λ = λ1 = 1, 
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         (6.3.1-8) 

2111 2zz =                                                                        (6.3.1-9) 

Select  

z1 = ⎥
⎦

⎤
⎢
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⎡
1
2                                                                               (6.3.1-10) 

For λ = λ2 = 4, 
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                (6.3.1-11) 

2212 zz −=                                                                        (6.3.1-12) 
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Select  

z2 = ⎥
⎦

⎤
⎢
⎣

⎡
−1
1                                                                            (6.3.1-13) 

ABBA 1−=′                                                           (6.3.1-14) 

B = [z1   z2] = ⎥
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                                                        (6.3.1-15) 
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7 Supervised Hebbian Learning 

 
"When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some 

growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is 

increased." 

 
7.1 Linear Associator 

 

 
Figure 7.1-1 Linear Associator 
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a =Wp                        (7.1-1) 

∑
=

=
R

j
jiji pwa

1
                           (7.1-2) 

• The linear associator is an example of a type of neural network called an associative memory.  

• If the network receives an input p = pq  then it should produce an output a = tq, for q = 1, 2, ... , Q.  

• If the input is changed slightly (i,e., p = pq+δ) then the output should only be changed slightly (i,e., a = tq+ε). 
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7.2 The Hebb Rule 

 
• If two neurons on either side of a synapse are activated simultaneously, the strength of the synapse will increase.  

• The connection (synapse) between input pj and output ai is the weight wij.  

• If a positive pj produces a positive ai then wij should increase.  

For Hebb’s unsupervised learning rule, 

)()( jqjiqi
old
ij

new
ij pgafww α+=                      (7.2-1) 

pjq: the jth element of the qth input vector pq;  

aiq: the ith element of tie network output when the qth input vector is presented to the network 

α: a positive constant, called the learning rate.  

For Hebb’s simplified unsupervised learning rule, 

jqiq
old
ij

new
ij paww α+=                          (7.2-2) 

For Hebb’s supervised learning rule with learning rate = 1, 

jqiq
old
ij

new
ij ptww +=                                    (7.2-3)  

tiq: the ith element of the qth target vector tq 

In vector notation, 
T
qq

oldnew ptWW +=                                    (7.2-4) 
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If we assume that the weight matrix is initialized to zero and then each of the Q input/output pairs, {p1, t1}, {p2, t2}, …, 

{pQ, tQ}, are applied once, 

∑
=

=+++=
Q

q

T
qq

T
QQ

TT

1
2211 ptptptptW L                        (7.2-5) 

[ ] T
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21                                         (7.2-6) 

[ ]QtttT L21= , [ ]QpppP L21=                        (7.2-7) 
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7.2.1 Performance Analysis 

 
pq vectors are orthonormal (orthogonal and unit length),  

∑∑
==

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

Q

q
k

T
qqk

Q

q

T
qqk

11

)( pptpptWpa                            (7.2.1-1) 

1)( =k
T
q pp  when kq =  and 0)( =k

T
q pp  when kq ≠                                  (7.2.1-2) 

kk tWpa ==                     (7.2.1-3) 

pq vectors are normalized but not orthogonal, 

∑
≠

+==
kq

k
T
qqkk )( ppttWpa                             (7.2.1-4) 

pq vectors are not normalized and not orthogonal, 

∑
≠

+==
kq

k
T
qqkkk )(2 pptptWpa                                (7.2.1-5) 
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7.3 Pseudoinverse Rule 

 
WP = T                                    (7.3-1) 

[ ]QtttT L21= , [ ]QpppP L21=                                (7.3-1) 

Not all the cases, 

W=TP-1                                  (7.3-3) 

Pseudoinverse rule: 

W = TP-1 = TP-1I = TP-1(PT)-1(PT) = T(PTP)-1PT = TP+                         (7.3-4) 

P+: the Moore-Penrose pseudoinverse.  

The pseudoinverse of a real matrix P is the unique matrix that satisfies 

PP+P = P and 

                                                                                       P+PP+ = P+ and      

                                                                                       P+P = (P+P)T and 

PP+ = (PP+)T                                                    (7.3-5) 

When the number, R, of rows of P is greater than the number of columns, Q, of P, and the columns of P are independent, 

then the pseudoinverse can be computed by 

P+=(PTP)-1PT                                       (7.3-6) 
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7.4 Application in Autoassociate Memory 

 

 
Figure 7.4-1 The Patterns of 0, 1, and 2 

 

 
Figure 7.4-2 Autoassociative Network for Digit Recognition 
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p1 = [-1 1 1 1 1 –1 1 –1 –1 –1 –1 1 1 –1 … 1 –1]T                            (7.4-1) 

TTT
332211 ppppppW ++=                          (7.4-2) 

 

 
Figure 7.4-3 Recovery of 50% Occluded Patterns 

 

 
Figure 7.4-4 Recovery of 67% Occluded Patterns 

 

 
Figure 7.4-5 Recovery of Noisy Patterns 
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7.5 Variations of Hebbian Learning 

 
For Hebb’s general supervised learning rule, 

T
qq

oldnew ptWW α+=                               (7.5-1) 

For Hebb’s supervised learning rule with decay term,  
T
qq

oldoldT
qq

oldnew ptWWptWW αγγα +−=−+= )1(                      (7.5-2) 

where γ: decay rate, a positive constant less than one.  

For delta rule or Widrow-Hoff algorithm, 
T
qqq

oldnew patWW )( −+= α                                  (7.5-3) 

• The advantage of the delta rule is that it can update the weights after each new input pattern is presented, whereas the 

pseudoinverse rule computes the weights in one step, after all of the input/target pairs are known. This sequential 

updating allows the delta rule to adapt to a changing environment.  

For Hebb’s unsupervised learning rule, 
T
qq

oldnew paWW α+=                            (7.5-4) 


