ASIAN INSTITUTE OF TECHNOLOGY MECHATRONICS

Neural Network

1 Introduction

1.1 History

e Early Period: Hermann von Helmholtz, Ernst Mach, Ivan Pavlov
e Modern Period: Warren McCulloch, Walter Pitts, Donald Hebb, Frank Rosenblatt, Bernard Widrow and Ted Hoff,
Teuvo Kohonen, James Anderson, Stephen Grossberg, John Hopfield, David Rumelhart, James McClelland

1.2 Applications

e Aecrospace, Automotive, Banking, Defense, Electronics, Entertainment, Financial, Insurance, Manufacturing, Medical,
Oil and Gas, Robotics, Speech, Securities, Telecommunications, Transportation
e Groups of Applications
e Pattern Recognition; Image, Optical Character Recognition (OCR), Speech, Sensors Pattern, etc.
e Pattern Recall
e (lassification; Unsupervised Learning

e Function Estimation
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1.3 Biological Inspiration

Figure 1.3-1 Schematic Drawing of Biological Neurons

e Dendrites, Cell Body, Axon
e Synapse; Constant, Learning
e Human Brain: 10" Neurons, 10* Connections/Neuron

e Simple Function -> Parallel Computation
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2 Neuron Model and Networ k Architectures
2.1 Neuron Modédl

2.1.1 Single-Input Neuron

Inputs

r N
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General Neuron

"

N
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a=f(wp+b)

J

Figure 2.1.1-1 Single-Input Neuron

a= f(wptb)

(2.1.1-1)
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p scalar input

w weight (corresponding to the strength of a synapse)
b bias, offset

)y summer (corresponding to a part of the cell body)

n summer output, net input

f transfer function, activation function (corresponding to a part of the cell body)

a : scalar neuron output (corresponding to signal on the axon)
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2.1.2 Transfer Functions

) MATLAB
Name Input/Output Relation Icon Function
L. a=0 n<0 3
Hard Limit e s hardlim
’ a= -1 n<Q :
. - 1
Symmetrical Hard Limit a=41 n20 eRrlink
Linear a =.;n purelin
=0 n<0
Saturating Linear =n 0s<n<l satlin
a=1 n>1
’ = -1 <-1
Symmetric Saturating Z = n _,: <n<1 satlins
Linear a=1 n>1
'l .
L . a= . logsi.
Log-Sigmoid — gs1g
Hyperbolic Tangent _e-e" tansi
Sigmoid e £
a=0 n<0 :
" P oslin
Posntwe Linear a=n 0%<n P
Competitive @=L neuron with max n e

a = 0 all other neurons

Table 2.1.2-1 Transfer Functions
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2.1.3 Multiple-Input Neuron

Inputs Multiple-Input Neuron
r N/ A\

—/ J
a=f(Wp+b)

Figure 2.1.3-1 Multiple-Input Neuron

e Number of inputs (R) depends on amount of information.
e W : Weight linking between output (neuron) no i with input no |
N= Wi 1P;+W opot... +W; gPrHbD (2.1.3-1)
a=f(n) (2.1.3-2)
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Input

Muiltiple-Input Neuron
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a=f(Wp+b)

Figure 2.1.3-2 Neuron with R Inputs, Abbreviated Notation
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2.2 Network Architectures

2.2.1 A Layer of Neurons

Inputs Layer of § Neurons

Uk o ol A

P lbl
2} 1
n, 12}
2Pt P
P o :
: 1 :
Pr R as
e 12— P L ¥
b
1
Nt % F
a=f(Wp+b)

Figure 2.2.1-1 Layer of SNeurons
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e Number of outputs (S) depends on amount of desired outputs.

Ni = Wi 1Pt WioPot...+ Wi gPrTb; (2.2.1-1)
n=Wp+b (2.2.1-2)
a=f(Wp+b) (2.2.1-3)
Py
_| B
p=| (2.1.3-4)
Pr
n 3 b |
n="a=" b= (2.1.3-5)
Ns as b |
Wi W, Wir
W, W,, W, r
W= : S (2.2.1-6)
(W, Ws, Wsr |
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Input Layer of S Neurons
C N0 A
P W a
Rx1 Sx1I
> SXR \ i f
Sx1
19 b
R Sx1 S
—/ J

a=f(Wp+b)

Figure 2.2.1-2 Layer of SNeurons, Abbreviated Notation
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2.2.2 M ultiple Layers of Neurons

Inputs First Layer Second Layer Third Layer
N7 N r N\ 4 e
y nzl azl w 1.1' n31 a."!
P f2 2, [}
n*, a
— 2 3>
n2 2 a3 3
IR i
o
J

al =f1(Wip+b!) a2 = f2(Wa! +b?) a3 = £ 3 (W3a2+b?)
; as=1f3 (W’sfz(sz 1 (Wlp+bl)+b2)+b3)

Figure 2.2.2-1 Three-Layer Network
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e Number of neurons in the hidden layer (S") depends on complexity of the problem.

a"=f"(Wma™'+b™) (2.2.2-1)
a’ =f3 W3 (W*f'(W'ptb')+b*)+b?) (2.2.2-2)
Input First Layer Second Layer Third Layer
N\ N\ 7 A A\
P al az W a’
wi Tx w2 52x ’ $8x1
Rx1 —— nl rn Stx1 s2x5*—\ n? £2 1 5‘3;(52-\ n? £3
S'x1 52x1 _} Bxi
19 bt L 1P b2 1-9{ b3
) stxi S $2x1 S2 5$x1 3
AN RN J y
ai =f1(Wip+b) a2 = f2(W2a! +b?) a3 = £3(W3a2+b?)

a3 = £3(W3 12 (W2 1 (Wip+b)+b2) +b?)

Figure 2.2.2-2 Three-Layer Network, Abbreviated Notation
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2.2.3 Recurrent Networks

Delay

N

u(?)

>

a(?)
>

D
T

a(0)

-/
a®=u(z-1)

Figure 2.2.3-1 Delay Block

a(t) =u(t-1)
a(t)y=a(0);t=0

(2.2.3-1)
(2.2.3-2)
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Integrator

u(r) a()
ﬂ ’
a(0)

—
a(n) = _6[:' u(t) dt + a(0)

Figure 2.2.3-2 Integrator Block

t

a(t)=[ u(v)dr+a(0)

0

ait)=a(0);t=0

(2.2.3-3)

(2.2.3-4)
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Initial
Condition

Sx1

S
—/

"

Recurrent Layer

Sx§

N

%

n(t+1)

Sx1

7£

a(r+1)

Sx1

D

J

19 b
Sx1 < T
.
a(0)=p a(t+1) = satlins(Wa(t)+b)

Figure 2.2.3-3 Recurrent Network

a(r)

Sx1

a(t+1) = satlins(Wa(t)+b)

a0)=p

(2.2.3-5)
(2.2.3-6)
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3 An lllustrative Example

Fruits

Sensor Inputs :

Apple, Orange

Shape (1-Round, -1-Elleptical)

Texture (1-Smooth, -1-Rough)

Weight (1-More Than One Pound, -1-Less Than One Pound)

Neural

l_\_ Network

5 ) ( ) ( ! Sensors

Figure 3-1 Neural Network Controlled Fruits Sorter

16

Manukid Parnichkun




ASIAN INSTITUTE OF TECHNOLOGY

MECHATRONICS

A prototype orange (round, rough, less than 1 pound)

A prototype apple (round, smooth, less than 1 pound)

shape
p = | texture
weight

P1=

(3-1)

(3-2)

(3-3)

17
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3.1 Perceptron

Inputs  Sym. Hard Limit Layer

r N7 A\
P a
Rx1 W\ Sx1|

n F
SXR—) Sx1
1-9 b

R N Sx1 S )
a = hardlims (Wp+Db)

Figure 3.1-1 Single-Layer Perceptron

B
a= hardlims [Wl,l W, Ws|p,|+b (3.1-1)
Ps
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TG e

P
p; (orange) P> (apple)
Figure 3.1-2 Prototype Vectors

p,=0 (3.1-2)

P
[0 1 0]p,|+0=0 (3.1-3)

P;
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W=1[o 1 0],b=0 (3.1-4)
For orange (round, rough, less than 1 pound),
1
a=hardlims|[0 1 0]-1|+0|=-1 (orange) (3.1-5)
-1
For apple (round, smooth, less than 1 pound),
1
a=hardlims|[0 1 0] 1 |[+0|=1 (apple) (3.1-6)

-1
For unidentified fruit (elliptical, rough, less than 1 pound)

-1
p=|-1 (3.1-7)
-1

-1
a=hardlims|[0 1 0]-1[+0|=-1 (orange) (3.1-8)
-1
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3.2 Hamming Networ k

Feedforward Layer

Recurrent Layer

4 N
P
Rx1 W n! al n2(¢t+1) a2(t+1)
SR Sx1 7£ Sx1 W2 Sx1 I —é Sx1
1-9{ b! % sxs
N\ J
a! = purelin(Wip +b?) a2(0)=al  a2(r+1) = poslin(W2a2(t))

Figure 3.2-1 Hamming Networks

a%(1)

$x1

e R: No of Inputs, S: No of Prototypes = No of Neurons in Layer 1 = No of Neurons in Layer 2

o] [1 -1 -1
1 = =
Wl 1 -1 (3.2-1)
1|3 ]
b —M (3.2-2)
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pr|. (3] _|PiP+3
1 _ ! 1= + = )
a=Wpb {pl}p M {p§p+3 (323)
a’(0) = a' (initial condition) (3.2-4)
a’(t+1) = poslin(W?a’(t)) (3.2-5)
wW? { : “1 (3.2-6)
-& 1
Where € 1s some number less than 1/(S-1), and Sis the number of neurons in the recurrent layer.
2 To—e] [lai -z
a‘(t+1) = podlin( e 1 a’(t)) = podlin azz(t)—eaf(t) (3.2-7)
For orange (round, rough, less than 1 pound),
AU L _11 3 (B+3)| [6
o )T e )T la (3.2-8)
a%(1) = poslin(W2a(0)) = poslinﬂ_ (1)'5 ‘(1)52} _ poslin[ﬁD _ m (3.2-9)
2mn o 1 —05]4]) . ([3.5]) [35 )
a’(2) =podin(W-a(1)) = posllnq_o.5 | }LD = poslln[[_lD _{ 0 } (3.2-10)
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a

a

For apple (round, smooth, less than 1 pound),

1

1

|

|

1
1

1
1

-1
1

-1
1

-1
-1

For unidentified fruit (elliptical, rough, less than 1 pound)

-1
-1

| 1

a’(2) = podin(W?a’(1)) = poslin

|

a’(1) = podin(W?a(0)) = pogin(

a’(2) = podin(W?a(1)) = poslin(

}:

1
1+{
1

a’(1) = podin(W?a(0)) = poslin(

3
3

3
3

|

|

!
-0.5
(1
-0.5

(1
0.5

(_

-0.5

|

(1+3)]
(3+3)]

-0.5]4
1 -
-0.5]
1 -
| d+3)
| (-1+3)
—05]
1 -
1 —-0.5]3
1 | .

(3.2-11)

(3.2-12)

(3.2-13)

(3.2-14)

(3.2-15)

(3.2-16)
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3.3 Hopfield Networ k

Initial
Condition

P
Sx1

s
—/

Recurrent Layer

Ri A\
L’ w g ~n+D| |a+1)
s Sx1 7£ 5x1 D
19 b
Sx1 <
. J
a(0)=p a(t+1) =satlins(Wa(r)+b)

Figure 3.3-1 Hopfield Network

a(r)

Sx1

S: No of Inputs = No of Neurons in Layer 1 = No of Outputs

a0)=p

a(t+1) = satling Wa(t)+b)

(3.3-1)
(3.3-2)

24
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02 0 0 0.9
W=0 12 0/|,b=] 0 (3.3-3)
0 0 02 -0.9
a,(t+1) 0.2a,(t)+0.9
a,(t+1) |=satlin 1.2a,(t) (3.3-4)
a,(t+1) 0.2a,(t)-0.9

For orange (round, rough, less than 1 pound),

1 1.1 1 1.1 1 1.1 1
a(0) =|-1],a(l) =satling -1.2|=|-1|, &2) satling -1.2|=|-1|, a3) =satling -1.2 |=| -1 (3.3-5)
-1 11| |-1 1.1 |-1 -11| |-1

For apple (round, smooth, less than 1 pound),

1 1.1 1 1.1 1 1.1 1
a0)=| 1 |,a(l) =satling 1.2 |=| 1 [,a&2) =satling 1.2 |=| 1 |,a&3) =satling 1.2 |=| 1 (3.3-6)
-1 —-1.1] |-1 -1.1] |-1 -1.1] |-1

For unidentified fruit (elliptical, rough, less than 1 pound)
-1 0.7 0.7 1.04 1 1.1 1
a(0) =|-1|,a(l) =satling -1.2|=| -1 |, &2) =satling -1.2|=|-1|, a3) =satling -1.2 |=|-1| (3.3-7)
-1 -1.1 -1 -1.1 -1 -1.1 -1
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3.4 Examples of Neural Network Application

! ' ! ! ' 1
80 0 50 100

Figure 3.4-1 An Example of the decision boundaries formed by the perceptron convergence procedure with two classes.
Samples from class A are represented by circles and samples from class B by crosses. Lines represent decision boundaries

after trials where errors occurred and weights were adapted.
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STRUCTURE

TYPES OF
DECISION REQGIONS

SINGLE-LAYER

"HALF PLANE
-+ BOUNDED
By
- HYPERPLANE

I TWO-LAYER

COMNVEX
OPEN - -
orn
CLOSED
" REGIONS

THREE-LAYER

ARBITRARY

[Complaxity

Liwited By
Number of Modes)

Figure 3.4-2 Types of decision regions that can be formed by single- and multi-layer perceptrons with one and two layers

of hidden units and two inputs. Shading denotes decision regions for class A. Smooth closed contours bound input

distributions for classes A and B. Nodes in all nets use hard limiting nonlinearities.

27
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Figure 3.4-3 Decision regions after 50, 100, 150, and 200 trials generated by a two layer perceptron using the back-

propagation training algorithm. Inputs from classes A and B were presented on alternate trials. Samples from class A were
distributed uniformly over a circle of radius 1 centered at the origin. Samples from class B were distributed uniformly

outside the circle. The shaded area denotes the decision region for class A.

28 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY MECHATRONICS

NODE OQUTPUT

NODE NUMBER

Figure 3.4-4 Node outputs for a Hamming net with 1,000 binary inputs and 100 output nodes or classes. Output values of
all 100 nodes are presented at time zero and after 3, 6, and 9 iterations. The input was the exemplar pattern corresponding

to output node 50
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1226 t= 100

Figure 3.4-5 Weights to 100 output nodes from two input nodes as a feature map is being formed. The horizontal axis
represents the value of the weight from input x, and the vertical axis represents the value of the weight from input x;. Line
intersections specify the two weights for each node. Lines connect weights for nodes that are nearest neighbors. An
orderly grid indicates that topologically close nodes code inputs that are physically similar. Inputs were random,

independent, and uniformly distributed over the area shown.
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AT T T A e T

INPUT ]

EXEMPI.ARS AFTER EAdH INPUT g

£ E E

Figure 3.4-6 An example of the behavior of the Carpenter Grossberg net for letter patterns. Binary input patterns on the

L, e

left were applied sequentially starting with the upper “C” pattern. Exemplars formed by top-down connection weights

after each input was presented are shown at the right.
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A) EIGHT EXEMPLAR PATT
AR -

5l
Wk

St
S INPUT,

Figure 3.4-7 An example of the behavior of a Hopfield net when used as a content-addressable memory. A 120 node net
was trained using the eight exemplars shown in (A). The pattern for the digit “3” was corrupted by randomly reversing
each bit with a probability of 0.25, and then applied to the net at time zero. Outputs at time zero and after the first seven

iterations are shown in (B).
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4 Per ceptron Learning Rule

e Supervised Learning: Perceptron, Back-Propagation, Supervised Hebb, {pi, t1}, {p2, t2}, ..., {Pq, to}, Where pg is an
input and tq is the corresponding correct (target) output.
e Unsupervised Learning: Grossberg, Unsupervised Hebb

e Reinforcement Learning: Q, Bayesian

4.1 Per ceptron Architecture

Input Hard Limit Layer
r N A\
a
Rf‘l W Sx1
SXR n _E
sx1%
1-§{ b
R Sx1 S
/ \ J

a = hardlim (Wp+b)

Figure 4.1-1 Perceptron Network
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a= hardlim(Wp-+b) (4.1-1)
_W1,1 Wi, - WI,R_
W2,1 Wz,z W2,R
w=| & (4.1-2)
_WS,l Ws, - WS,R_
Wi,
Wi,
W= .
(4.1-3)
| Wik
S
W
2WT
W=| (4.1-4)
T
[ sW ]
a = hardlim(n;) = hardlim(,w'p + b)) (4.1-5)
_ . _ 1 if (n>0) i
a= hardlim(n) {0 otherviise (4.1-6)
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4.1.1 Single-Neuron Perceptron

Inputs Two-Input Neuron
r N A\

/1 J
a = hardlim(Wp+Db)

Figure 4.1.1-1 Two-Input/Single-Output Perceptron

a = hardlim(n) = hardlim(Wp-+b) = hardlim(,w p+b) = hardlim(w, ;p,+ W, ,p,+b)
The decision boundary is determined by the input vectors for which the net input n is zero
n=w'p+b=w; p;+ W p,+b =0
Example:
w =1, w,=1b=-1

n= w'p+b=w; pi+ Wi op,+b = pi+ p-1 =0

(4.1.1-1)

(4.1.1-2)

(4.1.1-3)
(4.1.1-4)
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Intersection points on the axis,

b -1 .
= —__"—1 ifp, =0 4.1.1-5
P, Wl,z 1 1 pl ( )
b -1 . _
plz——:——zl 1fp2—0 (4.1.1'6)
W, 1

Wip+b=0 1)—:?:55:\'.:_'_

Figure 4.1.1-2 Decision Boundary for Two-Input Perceptron

For the input p=[2 0]"

a= hardlin(leerb):hardIim([l H_IJ =1 (4.1.1-7)

The weight vector ;W is always orthogonal to decision boundary and points toward the region where the neuron output is

l.
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For a simple logic function AND gate, the input/target pairs for the AND gate

0 0 1 1
{pl = |:O:|,t1 = 0} {pz = L}tz = 0} {p3 = {O:|,t3 = 0} {p4 = |:Jat4 = 1} (411'8)
L]
Figure 4.1.1-3 AND Gate Problem
Select a weight vector which points 45°,
2
= 4. 1 . 1'
w3 (4.1.1-9)
W'ptb =0 (4.1.1-10)
Select p=[1.5 0]", a point on the decision boundary,
Wiptb= 2 2]{1(')5}+b=3+b=0:>b=—3 4.1.1-11)
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4.2 Perceptron Learning Rule

Perceptron Learning Rule: Supervised Learning Rule

{pla tl}’ {pZ’ tZ}a cees {pQ9 tQ} (42—1)

4.2.1 Test Problem

o] | 2

20 | @

Figure 4.2.1-1 The Input/Target Pairs
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Inputs  No-Bias Neuron

r N7 A\
P Wi
ST
 27) Wia
St N J

a = hardlim(Wp)

Figure 4.2.1-2 Test Problem Network

39
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4.2.2 Constructing L earning Rules

Select an arbitrary initial weight vector,

W' =T[1.0 -0.8] (4.2.2-1)
Figure 4.2.2-1 Decision Boundary by Random Weight Vector
With P1:
a = hardlim(w'p,) = hardnrr([m —o.gﬁD = hardlim(—0.6) = 0 (4.2.2-2)
Ift=1and a=0, then W™ = W%+ p (4.2.2-3)
40 Manukid Parnichkun
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W= w4+ p, = { 1o }H = F‘O} (4.2.2-4)

Figure 4.2.2-2 Altering of Weight Vector

With p,
a = hardlim(w'p,) = hardlirr{[z.o 1.2{_21D = hardlim(0.4) = 1 (4.2.2-5)
Ift=0and a= 1, then ;W™= ,w"-p (4.2.2-6)
new_ ood - _[20] [-1]_[3.0 ]
W W P2 L-Z} { 5 }—{_ 0.8} (4.2.2-7)
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Figure 4.2.2-3 Modified Weight Vector

With p;

a=hardim(,w'p,) = hardlirr{[S.O —O.S{PID = hardlim(0.8) =1 (4.2.2-8)

new_ od o _ 3.0 B 0 B 3.0 ]
W= W P3 {—0.8} {_1}—[0‘2} (4.2.2-9)
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Figure 4.2.2-4 Weight Vector and Decision Boundary after 3 Input/Target Pairs

old

Ift= a, then 1Wnew =W (422—10)
4.2.3 Unified Learning Rule
e=t-a (4.2.3-1)
Ife= 1, then W™ = W+ p. (4.2.3-2)
Ife=-1, then W™ = ,w"-p. (4.2.3-3)
If e= 0, then W™ = ;W (4.2.3-4)
W= W+ ep = W+ (t-a)p (4.2.3-5)
b™ = p%%+e (4.2.3-6)
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4.2.4 Training Multiple-Neuron Per ceptrons

W = iWOld +ep (4.2.4-1)
b = b%%4e (4.2.4-2)

W =W+ ep’ (4.2.4-3)
b — poldy o (4.2.4-4)

4.2.5 Limitations
A A
O —— O -1 @

O o O

Q ® O O
O O ‘ l

Figure 4.2.5-1 Linearly Inseparable Problems
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5 Signal and Weight Vector Spaces
5.1 Linear Vector Spaces

Definition: A linear vector space, X, is a set of elements (vectors) defined over a scalar field, F, that satisfies the
following conditions:
1. An operation called vector addition is defined such that if X € X (X is an element of X) andy € X, then x+y € X
X+y =YX,
. (Xty)tz= xHy+2).
. There is a unique vector 0 € X, called the zero vector, such that x+0=x for all X € X.

. For each vector X € X there is a unique vector in X, to be called -X, such that X + (-X) = 0.

. For any X € X, Ix= X (for scalar 1).

2
3
4
5
6. An operation, called multiplication, is defined such that for all scalars a € F, and all vectors X € X, ax € X.
7
8. For any two scalars a € F and b € F, and any x € X, a(bx) = (ab)x.

9

. (atb)x=ax+bx.

10.a(xty) = axt+ay.
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ERE

X2

)

f(t)

1

Figure 4.1-1 Linear Vector Spaces

.

|

Ay

P
y\m

X

Figure 4.1-2 Non-Linear Vector Space

Examples of the vector spaces are two-dimensional Euclidean space, polynomials of degree less than or equal to 2,

continuous functions defined on the interval [0, 1].

For subset of two-dimensional Euclidean space, some are vector spaces, €.g., straight line. Some are not vector spaces,

e.g., box area at the origin.
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5.2 Linear Independence

Definition: Consider n vectors {X;, X, ..., Xn}. If there exist n scalars ay, &, ..., &,, at least one of which is nonzero, such
that

a X tapXt. .. Fax, =0, (5.2-1)
then the {X} are linearly dependent.

Definition: If a;x;tay%+...+anX, = 0 implies that each a = 0, then {X;} is a set of linearly independent vectors.

Examples:
1 0 0
X=i=|0],x,=j=1 %=k=[0 (5.2-2)
0 0 1
aXjtaXtazx;= 0, only when a,;= a, = a3 = 0, thus {X;, X, X3} are linearly independent.
1 2 1
X =1l+t+t? =[1|,x, =2+2t+t* =| 2|, x, =1+t =1 (5.2-3)

1 1 0

a;X;tapXotazX;= 0, not Ol’lly when a=a,=a3= 0, but also when a;= I, p=-1,a3=1, thus {Xl, X2, X3} are linearly

dependent.
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5.3 Spanning a Space

Definition: Let X be a linear vector space and let {X;, X,, ..., Xn} be a subset of general vectors in X. This subset spans X if
and only if for every vector X € X there exist scalars @y, @, ..., 8y such that

X = aiX;+apXt... FamXnm (5.3-1)
Definition: The dimension of a vector space is determined by the minimum number of vectors it takes to span the space.
Definition: A basis set for X is a set of linearly independent vectors that spans X. Any basis set contains the minimum
number of vectors required to span the space.
e The dimension of X is therefore equal to the number of elements in the basis set.
e Any vector space can have many basis sets, but each one must contain the same number of elements.

Examples: Let X be polynomial degree less than 2

{X1 =Lx =t,%X = tz} is a basis set of X (5.3-2)
{X1 =2,% =2t,% = 2'[2} is a basis set of X (5.3-3)
{Xl =1,x =t,x = t?, Xy = 2} spans X but not a basis set of X (5.3-4)
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5.4 Inner Product

Definition: Any scalar function of X and y can be defined as an inner product, (X,y), provided that the following
properties are satisfied:
L (%) = (YX).
2. (xayrtbyz) = a(xy1)+b(x.y2).
3. (X,X) > 0, where equality holds if and only if X is the zero vector.
The standard inner product for vectors in R’
(%Y) = XY = XYi+ XoYot...+ XoY, (5.4-1)
Example:

1 3 3
X = {2} y= L}(x, y) =]l 2{4} =(1x3)+(2x4) =11 (5.4-2)
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55Norm

Definition: A scalar function |[X|| is called a norm if it satisfies the following properties:
1. |X|=0.
2. |IX|I= 0 if and only x= 0.

3. ||lax|| = |a| ||x|| for scalar a.
4. |yl < (X Il-
There are many functions that would satisfy these conditions. One common norm based on the inner product
il = (xx)"* (5.5-1)
For Euclidean spaces, R,
X[ = (x"x)""2 N T R (5.5-2)
For vector spaces of dimension greater than two, the angle 0 between two vectors X and y
c0s6’=M (5.5-3)
Xl

Example: The angle between B} and {ﬂ ,

]

NI 427427 4+ 12

6 = arccos|

_ arm@ (5.5-4)
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5.6 Orthogonality

Definition: Two vectorsxy € X are said to be orthogonal if (x,y) = 0.

Definition: A vector x € X is orthogonal to a subspace X if X is orthogonal to every vector in X;. This is typically

represented as X L X;.
Definition: A subspace X is orthogonal to a subspace X, if every vector in X; is orthogonal to every vector in X,. This is

represented by X; L X,.

IV

Figure 5.6-1 p,, ps plane is a subspace of R, which is orthogonal to the p, axis
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5.6.1 Gram-Schmidt Orthogonalization

e Gram-Schmidt orthogonalization is used to convert non-orthogonal basis set to orthogonal basis set.
Procedur e: From non-orthogonal n independent vectors Y, Vs, ... , Yn to N orthogonal vectors Vi, V,, ... , V,

The first orthogonal vector is chosen to be the first independent vector:

Vi=yi (5.6.1-1)
To obtain the second orthogonal vector we use Y,, but subtract off the portion of y, that is in the direction of y;.
V= Yr-av, (5.6.1-2)
av; is the projection of y, on the vector Vv;.
(Vi,\2) = (1, Yo-avy) = (Vi, Ya)-a(Vi,vi) = 0 (5.6.1-3)
a= v, y,) (5.6.1-4)

(v, v,)

For the kth step,

k-1 Vi , y
Vi =Yk — wa (5.6.1-5)

i=1 i
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2 1
Example: y, = L}, Vo= u,

V, =Y,

V1:Y1:[2} (5.6.1-6)
1
2 1
oy H_[ A

w2 1]mmzm_[éﬂ:{_1026} G147

e Vv, and Vv, can be converted to a set of orthonormal (orthogonal and normalized) vectors by dividing each vector by its

norm.
. 2
Normalized v; = %M - E// ﬂ (5.6.1-8)
Normalized vy = 1 [‘ 0‘6} _ {‘ 06/ ‘/ﬂ (5.6.1-9)
J0.62 +(1.27 | 1.2 1.2/4/1.8
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1 1 1
Example: Yi= 1 » 2= 2 > Y3~ 30,
1 3 2

1
vi=y =1 (5.6.1-10)
1
1
1 1]2
ey NI
Vlayz
=y, - 2ly - 1{=] 0
2= Y W) 1|, (5.6.1-11)
11 1]1
1
1 1
11 1]3 [-1 0 1]3
Vv ey 1 S| S| [-1] [-05
Vl9y3 V2’y3
V; =Y; - v, - Vv, =3 |-————==1]- 0= 1
3= Ys VoV W) 1 _1 (5.6.1-12)
1oV 2,0 V2 o) 1 -0.5
11 1]1 [-1 0 1]0 '
1 1

54 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY MECHATRONICS

5.7 Vector Expansions

Definition: If a vector space X has a basis set {V;, V,, ..., V,}, then any X € X has a unique vector expansion

n
X = Z XV =XV, + XV, +-++ XV (5.7-1)
=
x=[x % - x] (5.7-2)
For orthogonal basis set ((vi,vj) = 0, i#]),
(Vja X) = (Vj,ZXiVi) = in (Vj Vi) = X; (Vj an) (5.7-3)
= =

. — (v;,x)
: ivj,vji (5.7-4)
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1 0 0
Example: For Vi = |0V, = 1|,y =10
0 0 1
6 6 6]
[ 0o 0]9 [0 1 0]9 [0 0 1]9
6 0 0 ol[0 17 [o] [o
9|= =10 [+ = 1]+ =10[=6/0[+9 1]|+9/0 =6V, +9v, +9v, (5.7-5)
1 0 1
9 0 1 0| |o| |1
[ 0 0]o [0 1 0]1 [0 0 1]o
0] 0] 0]
2 0 0
Example: For Vi =| 0 ,\V, = 2|,v; =| 0|
0 0 2
6 6] 6
[2 0 0]9 [0 2 0]9 [0 0 2]9
6 2 0 2 0 0
9 9 9
9|=——==|0|+ = 2|+ =10{=3/0|+4.52|+4.50|=3v, +4.5v, +4.5v, (5.7-6)
2 0 2
9 2 0 0 2
[2 0 o]o [0 2 0]2 [0 0 2]o0
0] 0] 0]
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1 -1 -0.5
Example: For Vi =1V, =| 0 v = 1 |
1 1 -0.5
6 6 6
11 1]9 -1 0 1]9 05 1 -05]9
6 [ ]9 1 [ ]9 -1 [ ]9 -0.5 1 -1 [-05
9|= {1+ =0 |+ os7| L |EYELs o+l 1 (5.7-7)
9 1 1 T ||-05 1 1 -0.5
1 11 [-1 0 1] 0 [-05 1 -05] 1
1 1 -0.5
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5.7.1 Reciprocal Basis Vectors

For non-orthogonal basis vectors {Vi, V, ..., Vn}, a vector expansion requires the reciprocal basis vectors {r, I, ..., I'n}.

(ri,v) =0,i=jand (r,v) =1,i =] (5.7.1-1)
RB=I (5.7.1-2)
B=[vi V2 ... Vy] (5.7.1-3)
R=[r; 1y ... 1q] (5.7.1-4)
R'=B" (5.7.1-5)
For a vector expansion,

X=XV, + X,V, +---+ XV, (5.7.1-6)
(r, X) =X (r;,v,) + X, (r;,V,) + -+ X, (I,,V,) =X (5.7.1-7)

Example: For v, = {ﬂ V, = E}
AT~ {2 T _[273 —1/3}n ={2/3 },rz ={—1/3} (5.7.1-8)

1 2 |-1/3  2/3 —-1/3 2/3

{3(/)2} = [[2/3 —1/3{3(/)2Dﬁ: - [[— 1/3 2/3][3(/)2Dm = _%m + 1[;} = —%vl +1v, (5.7.1-9)
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6 Linear Transfor mationsfor Neural Networks

A transformation consists of three parts:

1. asetof elements X = {X;}, called the domain,
2. asetof elements Y = {y;}, called the range, and
3. arule relating each X; € Xto an element y; € Y.
Definition: A transformation Ais linear if:

1. forall X, X, € X, A(Xi+ %) = A(X))TA(X),

2. forall x € X, a € R, A(ax) = aA(X).
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6.1 Matrix Representations

{V1, Vs, ..., Vi}: basis for vector space X

{uy, Uy, ..., Un}: basis for vector space Y

Xe XandyeY
n m
X:ZXiVi and y:Zyiui (6.1-1)
i=1 i=1
A: linear transformation with domain X and range Y (A:X—Y)
A(X) =y (6. 1-2)
n m
XVi |= 2, il (6.1-3)
j=1 i=1
XAV )= v (6.1-4)
=1 i=1
m
Av )= au (6.1-5)
i=1
n m m
1 X leaij U = le il (6.1-6)
j= i= i=
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m
& X; :Zyiu
=l
a'I]X] _yi]:O
X, =Y,
aln__ 1
a2n X2
a'mn _Xn
Ax=y

Yi
Y,

Yn |

(6.1-7)

(6.1-8)

(6.1-9)

(6.1-10)

(6.1-11)
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6.2 Change of Basis

A:X—>Y : linear transformation

{V1, Vs, ..., Vi}: basis for vector space X
{uy, Uy, ..., Un}: basis for vector space Y
Forx e X
n
X=XV (6.2-1)
i=1
ForyeY
m
y=2 Yl (6:2-2)
i=1
AX) =y (6.2-3)
_all a, - alnTxl_ _y1
&, Ay oy | X _ Y,
. . . . . . (6.2-4)
_aml amz armJ_Xn_ _yn_
AX = y (6.2-5)
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A:X—Y : linear transformation
{t1, to, ..., tn}: new basis for vector space X

{Wy, Wy, ..., Wi} : new basis for vector space Y

Forx e X
X=Xt (6.2-6)
i=1
ForyeY
Y=Y yiw (6.2-7)
i=1
_all a1'2 ’ alln__ 1’_ _yll_
aél aéz ’ a*;n ; _ y;
: : (6.2-8)
(8 8y A | X0 ] L Yn]
AX' =Yy (6.2-9)
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n
L = jz_:,tjivj (6.2-10)
W = ;Wjiuj (6.2-11)

o W,
b= t? ,W‘ - V\?i (6.2-12)

L | Wi |
Bi=[t; t; ... ty] (6.2-13)
X=Xt +xXt,+---+xt, =BXx (6.2-14)
Bw=[W; W, ... W] (6.2-15)
y=B,Y' (6.2-16)
AB X' =B,y (6.2-17)
B.AB K =y’ (6.2-18)
A'=B,AB, (6.2-19)
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6.3 Eigenvalues and Eigenvectors

Definition: Consider a linear transformation A:X — X. Those vectors zZ € X that are not equal to zero and those scalars A
that satisfy.

A(Z)=\z (6.3-1)
are called eigenvectors(z) and eigenvalues (1), respectively.
e An eigenvector of a given transformation represents a direction, such that any vector in that direction, when

transformed, will continue to point in the same direction, but will be scaled by the eigenvalue.
Az=)\z (6.3-2)

[A-M]z=0 (6.3-3)

This means that the columns of [A-Al ] are dependent, and therefore the determinant of this matrix must be zero:

IA-Al =0 (6.3-4)
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6.3.1 Diagonalization

A: X — X: linear transformation

{Z], 2, ..

{A1, A, ..

From

., Zn}: independent eigenvectors of a matrix A

., An}: eigenvalues of the matrix A

AB = A[z,

Z

Zn] = [7\,121 M2z

B= [Z] Z

v MnZn] =[z1 22 ...zn] :

A 0

0 A

B'AB = : f

0 0
A'=B'AB,

(6.3.1-1)
0
0 (6.3.1-2)
ﬂ/n
(6.3.1-3)
(6.3.1-4)

e For A:X — X, if both domain and range are changed into independent eigenvectors basis set, the matrix representation

1s diagonal.
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Example:
[2 -2
A—__1 3} (6.3.1-5)
2-4 =2 5
A-MI=] 3_/1=ﬂ—5/1+4=(/1—1)(/1—4)=0 (6.3.1-6)
2-4 =2
[A-M]Z—[_1 3_/JZ—O (6.3.1-7)
ForA=X =1,
1 =2z, B 0
-1 2 |z, “lo (6.3.1-8)
z, =2z, (6.3.1-9)
Select
2= {ﬂ (6.3.1-10)
Forh=2x, =4,
-2 =21z, B 0
1 -1|z, 1o (6.3.1-11)
2, ==y (6.3.1-12)
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Select
bz{;} (6.3.1-13)
A'=B"AB (6.3.1-14)
2 1
B=[z z]=|1 _ (6.3.1-15)
BIZFB IB} (6.3.1-16)
1/3 -2/3
n_poiag |3 VT2 22 1] [roo] 4 o
B 3 —2/3]-1 31 -1] |0 4] |0 4, (6.3.1-17)

Ifx’:{l}
2
y:Aw:R ﬂﬁ}{ﬂ (6.3.1-18)
L T2 1] [ 4
o T 63119
, f2 1] J0] o [2 -2 4
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7 Supervised Hebbian L earning

"When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some

growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cellsfiring B, is
increased."

7.1 Linear Associator

Inputs Linear Layer

( \ A\
p n 2
IRH’W Sx1’/ Sx1.'
SXR
Koo S

a = purelin(Wp)

Figure 7.1-1 Linear Associator
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a=Wp (7.1-1)
R

8 = 2 WP, (7.1-2)
=

e The linear associator is an example of a type of neural network called an associative memory.

e If the network receives an input p = pq then it should produce an output a=tq, forq=1, 2, ..., Q.

e If the input is changed slightly (i,e., p = p4t+0) then the output should only be changed slightly (i,e., a= tqte).

70 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY MECHATRONICS

7.2 TheHebb Rule

e If two neurons on either side of a synapse are activated simultaneously, the strength of the synapse will increase.
e The connection (synapse) between input p; and output & is the weight w;;.
e Ifa positive p; produces a positive g then W;; should increase.

For Hebb’s unsupervised learning rule,
Pig: the jth element of the gth input vector pg;
ajq: the ith element of tie network output when the qth input vector is presented to the network

o a positive constant, called the learning rate.

For Hebb’s simplified unsupervised learning rule,

=W +aa,py, (7.2-2)
For Hebb’s supervised learning rule with learning rate = 1,
Id

WS = WEE Py (7.2-3)
tiq: the ith element of the qth target vector tq
In vector notation,

Id T
W™ =W +1,p, (7.2-4)
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If we assume that the weight matrix is initialized to zero and then each of the Q input/output pairs, {pi, t1}, {P2, L2}, ...,

{Po, to}, are applied once,

Q
W =t,p] +1,p; +---+1oPg = D tPq (7.2-5)
g=1
o
- pT
w=lt t, t] . |=TP (7.2-6)
[ Pe |
T:ltl t, - tQJaP:lpl P, - pQJ (7.2-7)
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7.2.1 Performance Analysis

pq vectors are orthonormal (orthogonal and unit length),

Q Q
a=Wp, =(th|0;}pk =Dt (PgPy) (7.2.1-1)

g=1 g=1
(p;pk) =1 when q=k and (pgpk) =0 when q=k (7.2.1-2)
a=Wp, =t, (7.2.1-3)

Pq vectors are normalized but not orthogonal,

a=Wp, =t, + > t,(PgPy) (7.2.1-4)

g=k

Pq vectors are not normalized and not orthogonal,

a:ka:tkakHZ+th(p;pk) (7.2.1-5)

g=k
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7.3 Pseudoinver se Rule

WP=T (7.3-1)
T:[t, t, - tQJ, P:[p1 p, - pQJ (7.3-1)
Not all the cases,
W=TP' (7.3-3)
Pseudoinverse rule:
W=TP'=TP!I =TP'(P)'(P) =T(P'P)'P'=TP" (7.3-4)

P": the Moore-Penrose pseudoinverse.
The pseudoinverse of a real matrix P is the unique matrix that satisfies

PP'P =P and

P'PP" = P" and

P'P = (P'P)" and

PP = (PP")’ (7.3-5)
When the number, R, of rows of P is greater than the number of columns, Q, of P, and the columns of P are independent,
then the pseudoinverse can be computed by

P =P'P)'P’ (7.3-6)
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7.4 Application in Autoassociate M emory

]

Pt Poty Psts

Figure 7.4-1 The Patterns of 0, 1, and 2

Inputs Sym. Hard Limit Layer
C N7 A

p n a
30x1 w 30x1 ’ :F ’
30x30

\30)\ 30)

a = hardlims (Wp)

Figure 7.4-2 Autoassociative Network for Digit Recognition

75 Manukid Parnichkun




ASIAN INSTITUTE OF TECHNOLOGY

MECHATRONICS

pp=[-11111-11-1-1-1-111-1...

W =p,p; +p,p; +P;p;

(7.4-1)

(7.4-2)

10

=11

-1

=

Figure 7.4-3 Recovery of 50% Occluded Patterns

BB

i

1

-1

s

-1

Figure 7.4-4 Recovery of 67% Occluded Patterns

w-d B-1 B-E

Figure 7.4-5 Recovery of Noisy Patterns
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7.5 Variations of Hebbian L earning

For Hebb’s general supervised learning rule,
W™ =W + ot po (7.5-1)
For Hebb’s supervised learning rule with decay term,
Wnew — W0|d + atqp; _7\N0|d — (1 —y)WOId +dtqp; (75_2)
where y: decay rate, a positive constant less than one.
For delta rule or Widrow-Hoft algorithm,
W™ =W +o(t, —a,)p;g (7.5-3)
e The advantage of the delta rule is that it can update the weights after each new input pattern is presented, whereas the
pseudoinverse rule computes the weights in one step, after all of the input/target pairs are known. This sequential

updating allows the delta rule to adapt to a changing environment.

For Hebb’s unsupervised learning rule,

W — Wold + aaqp‘cll' (7.5_4)
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