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11 Backpropagation

11.1 Multilayer Perceptrons
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Figure 11.1-1 Three-Layer Network
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11.1.1 Pattern Classification

The input/target pairs for exclusive-or (XOR) gate,

L F - B

Figure 11.1.1-1 Exclusive-Or Problem
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Figure 11.1.1-2 Decision Boundaries for XOR Network
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Figure 11.1.1-3 Two-Layer XOR Network
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Figure 11.1.1-4 Decision Boundaries for XOR Network
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Figure 11.1.1-5 Two-Layer XOR Network
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11.1.2 Function Approximation

Two-layer, 1-2-1 network,
1

f1(n) = f2(n)=n )
(N = ad T7(n) (11.1.2-1)
Input Log-Sigmoid Layer Linear Layer
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a! = logsig(Wip+b!) a2 = purelin(W2al+b2)

Figure 11.1.2-1 1-2-1 Function Approximation Network

wy, =10, wi, =10, b} =10, b} =10 and W% =1, w2, =1, b? =0 (11.1.2-2)
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Figure 11.1.2-2 Nomina Response of Network of Figure 11.1.2-1

1
N =w,p+b=0= p=-2 _ ~10_, (11.1.2-3)
Wi, 10
b 10
m=w,p+b=0=p=—">2=—=-1 11.1.2-4
2 2,1 2 W;l 10 ( )
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—l<wi <1, -1<w, <1, 0<h; <20, —1<b’ <1 (11.1.2-5)
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Figure 11.1.2-3 Effect of Parameter Changes on Network Response
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11.2 The Backpropagation Algorithm

Input First Layer Second Layer Third Layer
r N N7 N A\

p a! a2 a3
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a’'=f 1 (Wip+b1) a2 =f2(Wza!+b?) a3 = f3(W3a2+b3)
a’=f3(W3f2(Wf 1 (Wip+b!)+b2) +b3)

Figure 11.2-1 Three-Layer Network, Abbreviated Notation

a™ =f™(wm™a"+b™) form=0,1, ..., M-1 (11.2-1)
a’=p (11.2-2)
a=a" (11.2-3)
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11.2-1 Performance | ndex

e Backpropagation algorithm for multilayer networks. generalization of the LM S algorithm

e Performance index: mean square error

{putd P2 tod, - {posto} (11.2.1-1)
For single outpuit,
F(x) = E[€?] = E[(t — a)?] (11.2.1-2)
For multiple outputs,
F(x) = E[e'e] = E[(t—a)" (t—a)] (11.2.1-3)
Approximation of mean square error by
F(x) = (t(k) — a(k)) T (t(k) — a(k)) = " (k)e(k) (11.2.1-4)
By the steepest descent algorithm for the approximate mean square error,
m m oF
W (k+1):w’j(k)_amﬂ (11.2.1-5)
b™(k +1) =b™(k) - a%;m (11.2.1-6)
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11.2.2 Chain Rule

df (n(w)) _ df (n) y dn(w) (11.2.2-1)
dw dn =~ dw o
F _&F A (11.2.2-2)
Nl A A
F_& a (11.2.2-3)
A A A
gm-1
n" =Y wha™ +b" (11.2.2-4)
j=1
M _gmi My (11.2.2-5)
AN 29
Defining the sensitivity of F to changesin the ith element of the net input at layer m,
£
m 11.2.2-6
= ( )
OFFA m o M-
o =g"a"" (11.2.2-7)
Pe
A g 11.2.2-
a7~ S ( 8)
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Steepest descent algorithm,
Wi (k +2) = wj (k) —as"a]"™ (11.2.2-9)
b"(k+1) =b"(k) - as" (11.2.2-10)
In matrix form,
W™ (k+1) = W™(k) —as™ (@™ )" (11.2.2-11)
b™(k +1) =b™(K) — as" (11.2.2-12)
where
e
6n1m
~ oF
n OF
== ar:];n (11.2.2-13)
oF
_an;‘m |
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11.2.3 Backpropagating the Sensitivities

o oF  (on™) oF
S = = =
on™ on™ ) on™*t

on™ on™

Jacobian matrix,

(11.2.3-1)

on'  ony
m+1 m+l
an™ on, on,
= m m
onm | o O

M+ m+!
an Sm+1 an Sm+1

(11.2.3-2)

m m
on; on,

Sm
a \Nim+1am+qm+l
o]

m+1 _ of "(n™ .
on =Wt L = ( J):Wi”;*lfm(n;“) (11.2.3-3)
on? on? ©oon? '
m+1
N wmiEn(nm (11.2.3-4)
on
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f™(n™) 0o - 0
eramy=| 0 ) 0 (11.2.3-5)
0 0 - f"(n3)
Recurrence relation for the sensitivity by using the chain rule in matrix form,
oF (onm\" oF . oF .
m _ _ =Fm m Wm+l T :Fm m Wm+l T am+l 112 _
" (6n”‘] o (n™)(W™) POy (n")(W™) s ( 3-6)

e Backpropagation algorithm: The sensitivities are propagated backward through the network from the last layer to the

first layer:
S e -3 (11.2.3-7)
Sensitivity at thefinal layer,
SM
R oY (t, —a;)?

w_OF _ot-a'(t-a_ = " . .0 )
3" on" onM oM =20 ai)aniM (11.2.3-8)

da__da" ") . w ]
an™ on™ — onM =D (11.2.39)
s' =-2(t —a)f"(n") (11.2.3-10)
s¥ =-2F" (n")(t - a) (11.2.3-11)
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11.2.4 Summary

1. Thefirst step: propagate the input forward through the network:

a’=p (11.2.4-1)
a™ = f™(W™a" 1 b™) form=0, 1, ..., M-1 (11.2.4-2)
a=a" (11.2.4-3)
2. The second step: propagate the sensitivities backward through the network:

s¥ = —2F" (n")(t-a) (11.2.4-4)
"= E"(n™(W™) ™ for m=M-1, ..., 2,1 (11.2.4-5)

3. The last step: update the weights and biases using the approximate steepest descent rule;
W™k +1) = W™ (k) - os™ (@™ )" (11.2.4-6)
b™(k +1) = b™(k) — as™ (11.2.4-7)
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11.3 Example

1-2-1 network to approximate the function,

g(p)=1+sin[% p) for —2<p<2 (11.3-1)
Input Log-Sigmoid Layer Linear Layer
N\ B 4 A\

Wi Z__,L

n? a2

A —>

2
Wi Z‘_’L 1,2 *bz

_/ J . J
a! = logsig(Wip+bt) a? = purelin(W2a! + b?)

Figure 11.3-1 1-2-1 Function Approximation Network
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Initial network,

b'(0) =

WiQ) < [_ o.zq

—-0.48
~-0.41]

_0.13},W (0)=[0.09 -0.17],b*(0) = [0.48] (11.3-2)

== Network Response
— Sine Wave

A
LN B
(=]
-
”

Figure 11.3-2 Initial Network Response and Approximated Sine Function
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Presenting p = 1,
a’=p=1 (11.3-3)
1
i ([-075]) |13 "% | [0321 ]
a' =f'(w'a’+b') = Iogsgq 041}[] [ 0 13D ogsg@_ 0.54D =**7 |5 [0.368} (11.3-4)
1+
a’=f3(W%a'+b?) = purelln([o 09 -0. 17]{ (258} +[0.48] | = [0.4486] (11.3-5)
e=t-a= {1+ sm } {1+sm } 0.446 = 1.261 (11.3-6)
E1ry i 1 A1) 4t _
=4 (1+ e" j (L+e [1 1+e™ )(1+e ) b-a')er) (11.3-7)
f2(n) = %(n) =1 (11.3-8)
§ = —2F2(n?)(t — &) = —2[ £ 2(n?) [1.261) = —2[1)(1.261) = ~2.522 (11.3-9)
S = l':l(nl)(WZ)T ? = |:(1_ ail)(ai) (1) . }[ 0.09 }[_ 2.522]
0 (1-az)(a;) ] - 017
_ [(1— 0.321)(0.321) 0 }[ 0.09 }[_ 2522]- {— 0.0495} (11.3.10)
0 (1-0.368)(0.368) | — 0.17 0.0997
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Learning rate o = 0.1,

W2(1) = W2(0) - as’(a)" =[0.09 -0.17]-0.1-2.522]0.321 0.368]=[0.171 —0.0772] (11.3-11)
b?(1) = b?(0) — as® = [0.48]- 0.1]- 2.522] = [0.732] (11.3-12)
Ly e ot _[-027] _ [-0.0495] . [-0.265 ]
WD = WH(O) ~as (@) {— 0.41} 0{ 0.0997 }[1]_[— 0.420} (11.3-13)
b (1) = b'(0) — s = [— 0.48} ~ 0.1[_ 0.0495} _ {— 0.475} (11.3-14)
-0.13 0.0997 | |-0.140

e Proceed to choose another input p and perform another iteration of the algorithm.

e Continue to iterate until the difference between the network response and the target function reaches some acceptable
level.

e [For anetwork to be able to generalize, it should have fewer parameters than there are data points in the training set.
e Don't use abigger network when a smaller network will work.
e Ingeneral pattern recognition problem

o First layer: to generate decision boundaries

0 Second layer: to perform AND operation of the decision boundaries

o Third layer: to perform OR operation of the separated group
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12 Variations on Backpropagation

12.1 Drawbacks of Backpropagation

e LMS agorithm is guaranteed to converge to a solution that minimizes the mean squared error, so long as the learning
rate is not too large.

e InLMS agorithm, the mean squared error of a single-layer linear network is a quadratic function.

o SDBP (Steegpest Descent Backpropagation) is equivalent to the LMS algorithm when used on a single-layer linear
network.

e |n SDBP, the performance surface of a multilayer network may have many local minimum points, and the curvature

can vary widely in different regions of the parameter space.
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12.1.1 Perfor mance Surface Example

Input Log-Sigmoid Layer Log-Sigmoid Layer
r N A\ 'a A\
1 n! ah
W Z_‘_’ L W,
b, n2 a?
p ]; >SS
nl, a, lbz
Whi 2 —"L Wi 1
&b
U y, N J

a' = logsig(Wip+b!) @ = logsig (W2al +b?)

Figure 12.1.1-1 1-2-1 Function Approximation Network

wy, =10,w3, =10,b! = -5,y =5,w, =L w’, =Lb* =-1 (12.1.1-1)
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Figure 12.1.1-2 Nominal Function
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Figure 12.1.1-3 Squared Error Surface Versus w;, and w;,

e [tisclearly not aquadratic function. The curvature varies drastically over the parameter space.
e Insome regionsthe surface isvery flat, which would allow alarge learning rate.

e Insome regionsthe curvature is high, which would require asmall learning rate.

e Thesigmoidisvery flat for very large magnitude of inputs.

e There are more than one local minimum points.

e Theglobal minimum point locates at w;,= 10 and w;, = 1. A local minimum locates at w;,= 0.88 and w;, = 38.6.
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Figure 12.1.1-4 Squared Error Surface Versus w;, and b;

e The minimum error is zero and occurs when w;, = 10 and by =-5.
e With aninitial guess of w;,= 0 and b;=-10, the gradient is very close to zero, and the steepest descent algorithm would

stop, even though it is not close to alocal minimum point.
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Figure 12.1.1-5 Squared Error Surface Versus b and b?

e Two zero error minimum pointslocate at b = -5 with b =5 and bf =5 with b7 = -5.

e The surface is symmetry causing zero to be a saddle point of the performance surface.
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Hints: used to set initial guess for the SDBP algorithm

e Theinitial parameters should not be set to zero. This is because the origin of the parameter space tends to be a saddle
point for the performance surface.

e Theinitial parameters should not be set to large values. This is because the performance surface tends to have very flat

regions as we move far away from the optimum point.
e Typicaly, theinitial weights and biases should be set to small random values.
e |t is also useful to try severa different initial guesses, in order to be sure that the algorithm converges to a global

minimum point.

In batching mode of SDBP, weights and biases are updated every after all the inputs/targets presented to the network.

AW = iAWi (12.1.1-2)
Ab=3ab (12.1.1-3)
W(k+1) = W(K) + AW (12.1.1-4)
b(k+1) = b(k) + Ab (12.1.1-5)
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12.2 Heuristic M odifications of Backpropagation

Heuristic Backpropagation
e Momemtum Backpropagation

e Variable Learning Rate Backpropagation

Figure 12.2-1 Trajectory with Too Large Learning

15
Sguared Error
1 \
0.5
0
10° 10' 10° 10
Iteration Number
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12.2.1 Momentum

First-order low-pass filter,
y(k) = (k=1 + Q- y)w(k)
where w(k): the input to the filter, y(k): the output of the filter, y: the momentum coefficient

0<y<1
Sine wave input,

(12.2.1-1)

(12.2.1-2)

(12.2.1-3)

50 100 150 200

Figure 12.2.1-1 Smoothing Effect of Momentum

155

Manukid Parnichkun




ASIAN INSTITUTE OF TECHNOLOGY MECHATRONICS

e The oscillation of the filter output is less than the oscillation in the filter input.
e Asyisincreased the oscillation in the filter output is reduced.
e Theaveragefilter output is the same as the average filter inpuit.

e Asyisincreased thefilter output is slower to respond.

Parameter updates for SDBP,
AW™(K) = —as™ (@™ )" (12.2.1-4)
Ab™(K) = —as" (12.2.1-5)

Parameter updates for momentum modification to backpropagation (MOBP),
AW™(K) = AW ™ (K - 1) — (1— y)as™ (@™ )" (12.2.1-6)

Ab™(K) = 7Ab™(k —1) — (1- y)as" (12.2.1-7)
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Figure 12.2.1-2 Trgectory with Momentum, y = 0.8

¢ By the use of momentum, alarger learning rate can be used, while maintaining the stability of the algorithm.

e Momentum tends to make the trgjectory continue in the same direction.

e Thelarger the value of y, the more "momentum” the trgjectory has.
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12.2.2 Variable L earning Rate

The rules of the variable learning rate backpropagation algorithm (VLBP):

1.

If the squared error (over the entire training set) increases by more than some set percentage C (typically one to five
percent) after aweight update, then the weight update is discarded, the learning rate is multiplied by some factor 0 < p
< 1, and the momentum coefficient y (if it is used) is set to zero.

If the squared error decreases after a weight update, then the weight update is accepted and the learning rate is
multiplied by some factor n > 1. If y has been previously set to zero, it isreset to its original value.

If the squared error increases by less than ¢, then the weight update is accepted but the learning rate and the

momentum coefficient are unchanged.
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Figure 12.2.2-1 Variable Learning Rate Trgjectory, n =1.05,p =07, = 4%,y = 0.8

e The learning rate, step size, tends to increase when the trgjectory is traveling in a straight line with constantly
decreasing error.
e When the trgjectory reaches a narrow valley, the learning rate is rapidly decreased and the momentum is eliminated,

which allows the trgjectory to make the quick turn to follow the valley toward the minimum point.
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12.3 Numerical Optimization Techniques

Numerical Backpropagation
e Conjugate Gradient Backpropagation
e Levenberg-Marquardt Backpropagation

12.3.1 Conjugate Gradient

Genera procedure for locating the minimum of afunction in a specified direction:

1. Interval location: to find some initia interval that contains alocal minimum

2. Interval reduction: to reduces the size of theinitial interval until the minimum is located to the desired accuracy

160
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| B

by
bs

Figure 12.3.1-1 Interval Location

1. Evaluating the performance index at an initial point, represented by a; in the figure.
F(Xo) (12.3.1-1)
2. Evaluating the function at a second point, represented by b, in the figure, which is a distance € from the initial point,
along the first search direction po.
F(Xotepo) (12.3.1-2)
4. Continuing to evaluate the performance index at new points b, successively doubling the distance between points. This

process stops when the function increases between two consecutive evaluations.
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A Fx) A F(x)

a ¢ b . a ¢ d b

(a) Interval is not reduced. (b) Minimum must occur
between ¢ and b.

Figure 12.3.1-2 Reducing the Size of the Interval of Uncertainty
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The algorithm for the Golden Section search:
r =0.618
Set ¢ =a+@1-7)(b-a)F =F()
d =b-(A-7)(B-a)F =F(d)
Fork=1, 2, ... repeat
If Fc < Fqthen
Set a.,=a:b,,=d.:d,., =c
Cez = Ay + (1—-7)(Bey — ay)

I:d = Fc; Fc = F(Ck+1)

else
Set &, =0:b =bic,, =d,
At = By — A= 7)(Bey — )
F.=F,;F, = F(d,.,)
end

end until b, -a,., <tol

where tol is the accuracy tolerance set by the user.

163

Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY MECHATRONICS

e [For quadratic functions the algorithm will converge to the minimum in at most n iterations, where n is the number of
parameters being optimized.

e The mean squared error performance index for multilayer networks is not quadratic, therefore the algorithm would not
normally converge in n iterations.

¢ In conjugate gradient backprogagation, the search direction is reset to the steepest descent direction (negative of the
gradient) after n iterations.

1.5
Squared Error
1t
0.5
0
10° 10' 10°
lteration Number

Figure 12.3.1-3 Steps and Trajectory of CGBP
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12.3.2 Levenberg-Marquardt Algorithm

Newton's method,

X1 = X, —A 0, (12.3.2-1)
where A, = V*F(x)|,, and g, = VF(x)[,., -
F(x): asum of sgquares function,
F(x) = ivﬁ(x) = v (X)V(X) (12.3.2-2)
_F(X) _ N ov; (x) )
[VE(X)], = > ZiZ_l:vi (x) ox (12.3.2-3)
VF(x) = 237 (X)V(X) (12.3.2-4)
where Jacobian matrix,
[ ovi(x)  ow(x) vy (x) |
o0X, 0X, OX,
N, (X)  V,(X) oV, (X)
JX)=| ax X, X (12.3.2-5)
M) () ve(¥)
| oX 0X, X, |
165 Manukid Parnichkun



ASIAN INSTITUTE OF TECHNOLOGY MECHATRONICS

57RO, = Gt <28 TP v ) 12329
VZF (x) = 237 (x)J(X) + 25(x) (12.3.2-7)
where
S(x) = ivi (X)V?V, (x) (12.3.2-8)
S(x) isassumed small,
V2F(x) = 237 (x)J(X) (12.3.2-9)
Gauss-Newton method,
Xea = X, —[237 (¢, )I(x )23 (x V(%) = %, —[IT (x, DI IT (X, v () (12.3.2-10)

e The advantage of Gauss-Newton over the standard Newton's method is that it does not require calculation of second
derivatives.
e One problem with the Gauss-Newton method is that the matrix H = J'J may not be invertible.

Modification to the approximate Hessian matrix,

G=H+ul (12.3.2-11)
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{4, Ay, A, )2 eigenvalues of H, {z,,z,,+-,z,}: eigenvectors of H,

Gz, =[H+ )z, =Hz + uz, = Az, + pz, = (A + p)z, (12.3.2-12)
e Theeigenvectorsof G are the same as the eigenvectors of H, and the eigenvalues of G are (4 + u).
e G can be made positive definite by increasing p until (4 + #) > 0for al i, and therefore the matrix will be invertible.

L evenberg-Marquardt algorithm,

X = X, —[IT (% )I(X,) + 211737 (X, V(%) (12.3.2-13)
AX, = ~[I7 (X, )I(X) + 211713 (X, V(%) (12.3.2-14)

e Asyyisincreased it approaches the steepest descent algorithm with small learning rate:
X = X, —ikJT (X V(X)) = X, _Z_;IJKVF(X) for large pi. (12.3.2-15)

e As |y isdecreased to zero the algorithm becomes Gauss-Newton.

Procedure and Rulesin Levenberg-Marquardt algorithm

1. The algorithm begins with p set to some small value (e.g., ux = 0.01).

2. If astep does not yield asmaller value for F(x) , then the step is repeated with p, multiplied by some factor v > 1 (e.g.,
v = 10). Eventually F(x) should decrease.

3. If astep does produce asmaller value for F(x), then p isdivided by v for the next step.
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Q Q Q s N
FO) =) (t,—a,) (t,—a) =D ele, =D > (&) =D (v)° (12.3.2-16)
=1 =1 g=1 j=1 i=1
where g 4 is the jth element of the error for the qth input/target pair.
oe, Oe;, 08y Oey |
ow; oW, Wy OB
08, 0&, 08, J&,
o, g g,
J(X) = aesM 1 aesM 1 ’ aeSM X aeSM 1 (1232'17)
anl,l 8Wiz aW;,R abll
e, oJ&, o8, OJ&,
-~ T
OF(x) _ 988 (12.3.2-18)
0X, 0X,
_ M _ % i
[l = x  ox (12.3.2-19)
oF _OF o (12.3.2-20)
6\N| j 6ni a\N| j
= F (12.3.2-21)
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Marquardt sensitivity,

=m __ th _ aekq
S,h = on™ - m
Nig ani,q

where h=(g-1D)S" +k.

n y O’hi’\,g O’hi’\,g mi'\,/clq

g 0, for(i k)
SM=—FV(n¥)
S;n — Fm(n;n)(Werl)T S;ml

S™ =[S[ISy|-+IS5]

: My Bg Oltg—ag) Ay :{— fM ("), for(i = k)

(12.3.2-22)

(12.3.2-23)

(12.3.2-24)

(12.3.2-25)

(12.3.2-26)
(12.3.2-27)
(12.3.2-28)
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The iterations of the Levenberg-Marquardt backpropagation algorithm (LMBP),

1.

Present all inputs to the network and compute the corresponding network outputs and the errors. Compute the sum of

squared errors over al inputs, F(x).

Compute the Jacobian matrix. Calculate the sensitivities with the recurrence relations, after initializing. Augment the

individual matrices into the Marquardt sensitivities. Compute the elements of the Jacobian matrix.
Solveto obtain Ax, .
Recompute the sum of squared errors using x, +Ax, . If this new sum of squares is smaller than that computed in step

1, then divide p by v, let x, , = x, + Ax, and go back to step 1. If the sum of squares is not reduced, then multiply p by
v and go back to step 3.
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15

16

10

1.5
Squared Error
’
0.5
0
10° 10' 10°

Iteration Number

Figure 12.3.2-1 Levenberg-Marquardt Step and Tragjectory, po=0.01,v =5
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12.3.3 Example of L evenberg-Marquardt Algorithm

A 1-1-1 network is used in a function approximation problem by Levenberg-Marquardt method,

w W [
D — p| 100sig > 3 ,purelm—»a
. 4
lbl 1bl

The initial weights and biases,

W2, (0) =0.1,b!(0) = 0.2, w2 (0) = 0.3, b2 (0) = 0.4 (12.3.3-1)
The relation between inputs and targets,
{p, =51, =15},{p, =10,t, = 25},{p, =15,t, = 25}, {p, = 20,t, = 30}, {p, = 35,t, = 35} (12.3.3-2)
when g, =0.01,0 =10,
fl=(@+e™* fl=@1-a})@) f>=nf2=1 (12.3.3-3)
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Present p,,
p=p,=5n =w,p+b =01x5+02=07,a' =(1+e™) = (1+e ") =0.668 (12.3.3-4)
n’ =wlal +b? =0.3x0.668+ 0.4=0.600,a> =a=n’ =0.600,e=e =t —a=15-0.600=14.400 (12.3.3-5)
S?2=-f2=-18! = f'W2S? =[(1- 0.668)0.668](0.3)(~1) = —0.067 (12.3.3-6)

Present po,
p=p,=10,n' =W, p+b =0.1x10+0.2=12,a' =(1+e™) " =1+ e*?) " =0.769 (12.3.3-7)
n? =wia; +b? =0.3x0.769+ 0.4=0.63La> =a=n’ =0.63Le=e, =t —a= 25— 0.631= 24.369 (12.3.3-8)
S?=—f2=-18}= f'W2S? =[(1- 0.769)0.769](0.3)(-1) = —0.053 (12.3.3-9)

Present ps,
p=p,=15n =w,p+b' =01x15+02=17,al =(l+e ™) =(1+e*7)*=0.846 (12.3.3-10)
n? =w2a; +b’ =0.3x0.846 + 0.4 = 0.654,a’ =a=n’ = 0.654,e=¢e, =t —a = 25— 0.654 = 24.346 (12.3.3-11)
S2=-f?=-15!= f'w2S? =[(1- 0.846)0.846](0.3)(-1) = —0.039 (12.3.3-12)
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Present g,
p=p,=20,n} =W, p+b =01x20+02=22a =(1+e ™)  =(1+e2?)" =0.900 (12.3.3-13)
n’ =wia  +b’ =0.3x0.900+ 0.4=0.670,a’ =a=n’ =0.670,e=¢, =t —a=30- 0.670=29.330 (12.3.3-14)
S?=-f2=-1S} = f W3S’ =[(1- 0.900)0.900](0.3)(~1) = —0.027 (12.3.3-15)

Present ps,
p=p, =35 =W, p+b=01x35+02=37,al =(l+e ™) =(1+e3)*=0976 (12.3.3-16)
n? =w2a +b? =0.3x0.976 + 0.4=0.693,a2 =a=n’ = 0.693,e= e, =t —a=35-0.693 = 34.307 (12.3.3-17)
S2=-1?=-15 = f'W2S? =[(1- 0.976)0.976](0.3)(-1) = —0.007 (12.3.3-18)

Summation of error square,
F(X) =D e® =14.400% + 24.369° + 24.346 + 29.330” + 34.307” = 3431.155 (12.3.3-19)
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oe, oe oOe oOg
ow;, oby owy obf
oe, 08, ‘3922 5_93 [—0067x5 -0067 -1x0668 —1]
1
a‘a"’lll gbl aaWn gbl _0053x10 -0053 —-1x0.769 -1
I(x) = W% a—é avti % —| —0.039x15 -0039 -1x0846 -1 (12.3.3-20)
11 11
884 884 664 884 —0027X 20 —0027 —1>< 0900 —1
vl bl ow? obt| |-0007x35 -0007 -1x0976 -1
og, O& O 08
ow;, oby ow; ob? |
[~0.335 —0.067 —0668 —1]
~0530 -0053 -0769 -1
J(X)=|-0585 —0039 -0846 -1 (12.3.3-21)
_0540 —0027 -0900 -1
|-0245 —0007 -0976 -1
~0335 -0067 —0668 —1]'[-0335 —0067 —0668 —1]
1087 0090 1.851 2235
_0530 -0053 —0.769 —-1||-0530 —0053 —0769 -1
T 0.090 0.010 0.150 0.193 (1233_22)
JJ=|-0585 —0039 -0846 —1||-0585 —0039 -0846 —1|= 3.
1851 0150 3516 4.159
~0540 -0027 —0900 —-1||-0540 —0027 —0900 -1
2235 0193 4.159 5.000
|-0245 -0007 -0976 -1]|-0245 —0007 -0976 —1|
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Ay
Aby

2

Awg;

Ab?

[-0.335 —-0.067 —-0.668 —1] [14.400 ]
—56.225
-0.530 -0.053 -0.769 -1| |24.369 4938
J'v=|-0585 —-0039 -0846 -1| |24.346|= 10&'3836 (12.3.3-23)
-0.540 -0.027 -0.900 -1| |29.330 '
~126.752
|-0.245 -0.007 -0976 -1| |34.307]
AX=~[I"I+pu 1] 3TV (12.3.3-24)
1.087+0.01 0.090 1.851 2235 |'[-56.225 -0.899
0.090 0.010+ 0.01 0.150 0.193 —4.238 —-11.364
i _ (12.3.3-25)
1.851 0.150 3.516+0.01 4.159 —108.836 47.605
2.235 0.193 4.159 5.000+0.01| |-126.752| |-13.380
wi@] [wh©)] [aw, | [0.1] [-0.899 ~0.799
1 1 1 _ _
bi (D) |_| bi(0) Ab! | |02 .\ 11.364| |-11.164 (12.33-26)
wi@ | |[WA()| |Aw; | |03 47.605 47.905
b? (1) b?(0) Ab? 04| |-13.380| |-12.980
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13 Associative L earning

e An association is any link between a system's input and output such that when a pattern A is presented to the system it

will respond with pattern B.
e Theinput patternisreferred to asthe stimulus.

e The output pattern is referred to as the response.

13.1 Simple Associative Networ k

Inputs Hard Limit Neuron

f N0 A\

w ?HE_‘;’

/U J
a = hardlim(wp+b)

P e

Figure 13.1-1 Single-Input Hard Limit Associator
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a = hardlim(wp+b) = hardlim(wp-0.5) (13.1-1)
o {L stmylus o {L respone (13.1-2)
0, no_stimulus 0, no_response

Stimulus:
1. The unconditioned stimulus, p°
2. The conditioned stimulus, p

e Theweights associated with p° are fixed, but that the weights associated with p are adjusted according to the relevant
learning rule.

Inputs Hard Limit Neuron

N A\
Sight of banana p° wo=1

z nE a;?anana?

Ww=0 lb=—0.5

Smell of banana p

/1 J
a = hardlim(wWpo+wp +b)

Figure 13.1-2 Banana Associator
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Shape Smell

Network

v

Banana?

Figure 13.1-3 Bananas Recognition System
Unconditioned Stimulus (Banana Shape) and Conditioned Stimulus (Banana Smell)

The definitions of the unconditioned and conditioned inputs for this network are

o {L shape _ detected _{L smell _ detected

b= 0, smell _not _ detected

(13.1-3)
0, shape_not _ detected
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13.2 Unsupervised Hebb Rule

Unsupervised Hebb rule,
w; (9) = w; (9—1 +aa (9) p; (a) (13.2-1)
W(q) =W(q-1)+ca(g)p’ (a) (13.2-2)
P, p(2)....,p(Q) (13.2-3)
Initial weights in banana associator,
w® =1, w(0) =0 (13.2-4)

The training sequence consists of repetitions of two sets of inputs,
{P°Q=0p@)=3,{p"(D=1Lp2)=3,... (13.2-5)
w": the weight for the unconditioned stimulus p% constant,
w: the weight for the conditioned stimulus p: updated at each iteration,
Unsupervised Hebb rule with alearning rate of 1,

w(q) = w(q-1) +a(q) p(q) (13.2-6)
a(2) = hardlim(w®p°(2) + w(0) p(1) — 0.5) = hardlim(1-0+0-1-0.5) = 0 (NO response) (13.2-7)
w(2) =w(0) +a(l)p(l) =0+0-1=0 (13.2-8)
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a(2) = hardlim(w® p°(2) + w(l) p(2) — 0.5) = hardlim(1-1+ 0-1— 0.5) =1 (banana) (13.2-9)
w(2) = w() +a(2)p(2) =0+1.1=1 (13.2-10)
a(3) = hardlim(w’p°(3) + w(2) p(3) — 0.5) = hardlim(1-0+1-1-0.5) =1 (banana) (13.2-11)
w3 =w(2)+aB)p3) =1+1-1=2 (13.2-12)

¢ |f theinputs are continuously presented and w is updated, the weight w will become arbitrarily large.

e Synapses cannot grow without bound.

e Thereis no mechanism for weights to decrease. Every weight will grow until the network responds to any stimulus.
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13.2.1 Hebb Rule with Decay

W(a) = W(q-1)+aa(q)p’ (q) - W(aq-1) = (1~ »)W(q~1) + aa(q)p' (a) (13.2.1-1)
v: decay rate, a positive constant |less than one
e Asy approaches zero, the learning law becomes the standard rule.
e Asy approaches one, the learning law quickly forgets old inputs and remembers only the most recent patterns.

The maximum weight value w™,

w, = (1-7)w, +eap, = (L- )W, +a, O w, :% (13.2.1-2)
With y of 0.1 in banana associator,

a(l) = hardlim(w’p°(2) + w(0) p(2) — 0.5) = hardlim(1-0+0-1-0.5) = 0 (NO response) (13.2.1-3)

w(l) = w(0) + a(l) p() - m(0) =0+0-1+0=0 (13.2.1-9)

a(2) = hardlim(w®p°(2) +w(1) p(2) - 0.5) = hardlim(1-1+ 0-1-0.5) = 1 (banana) (13.2.1-5)

w(2) = w(l) +a(2) p(2) - (1) =0+1-1-0=1 (13.2.1-6)

a(3) = hardlim(w®p°(3) + w(2) p(3) — 0.5) = hardlim(1-0+1-1-0.5) =1 (banana) (13.2.1-7)

w(d) = w(2) + a3 p(3) - w(2) =1+1-1-0.1-1=1.9 (13.2.1-8)
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- = -10 (13.2.1-9)

a
o®®
o
o

10} ,° = Hebb Rule 1 o Hebb with Decay

q q

Figure 13.2.1-1 Response of Hebb Rule, With and Without Decay

Without reinforcement, a; = 0, associations decays away.
w; () = @-»)w; (g-1) (13.2.1-8)
y=0.1,

w; (a) = 0.9w; (q-1) (13.2.1-9)
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13.3 Simple Recognition Networ k

Inputs  Hard Limit Neuron
r N7 N\

P Wi,

/1 J
a = hardlim(Wp+b)

Figure 13.3-1 Instar

a = hardlim(Wp + b) = hardlim(;w'p + b)

(13.3-1)

The instar is active whenever the inner product between the weight vector and the input is greater than or equal to —b:

0: the angle between two vectors.

W'p = | ,w|Jp| coso > —b (13.3-2)
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e Theinner product is maximized when the angle 6 is 0.

e Theinstar will be active when p is"close" to ;w.

e By setting the bias b appropriately, we can select how close the input vector must be to the weight vector in order to
activate the instar.

e The larger the value of b, the more patterns there will be that can activate the instar, thus making it the less
discriminatory.

For the neuron that recognizes only the pattern ;w

b= |, wilp (1333)
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13.4 Instar Rule

The original unsupervised Hebb rule,

w; () = w,; (9-1) +ea,(a) p; (q) (13.4-1)

To get the benefits of weight decay, while limiting the forgetting problem, a decay term is proportional to a;(q).
w; (0) = w; (a-1) +oa (a) p; () - 7a ()W (13.4-2)
Ininstar rule, y = a, w; (a) = W, (q—1) + e, (a)(p; () — w™) (13.4-3)
W(a)=w(q-1) +aa (a)(p(a)-w(g-D) (13.4-4)
If theinstar isactive (g = 1), w(g)=w(q-1 +a(p(g)—w(g-1) = (1-a),w(g—-1) + ap(q) (13.4-5)

_t N )
“\@ w(g)
W(g-1)
-

Figure 13.4-1 Graphical Representation of the Instar Rule
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Inputs Hard Limit Neuron
( \ A\
Sight of orange p° e wW°=3

a Orange?
Measured shape p, @— . )E > ¢
Measured texture p, b=-2
Measured weight p, & w,,
U J

a = hardlim(wep°+ Wp+b)

Figure 13.4-2 Orange Recognizer

II Measure

Network

v

Orange?

Figure 13.4-3 Orange Recogniton System
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a = hardlim(w°p°® + Wp + b) (13.4-6)
detected _ visuall shape
0= {l orange_detected _VIsualy p= texture] (13.4-7)
0, orange_not _detected )
weight
w’ =3, W(0)=,w' (0)=[0 0 0] (13.4-8)
Learning rate of oo = 1,
W(Q)=,w(q-1) +a(q)(p(q)—w(q-1) (13.4-8)
1 1
P°(M)=0,p(1) =| -1|t,4 P’ =1Lp@) =|-1|,... (13.4-9)
-1 -1
1
a(1) = hardlim(w°p°(1) + Wp(1) - 2) = hardlim 3-0+[0 0 o{ 1] —2|=0 (no response) (13.4-10)
-1

0 17 [o]) [o
W(D=w(0) +a@)(p()—-,w(0) =0|+0 | -1|-| 0| = (13.4-11)
0 -1} o]} |O
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-1

0 17 [0 1
W(2)=w(1)+a(2)(p(2)-,w(D) =|0|+1-1/-|0||=-1
o \[-1] [o]) [-1

1
a(3) = hardlim(w’p°(3) + Wp(3) - 2) = hardlim 3-0+[1 -1 —1]{—1}2] =1 (orange)
-1

(1 1] 1 1
WE)=w(2)+a@)(p(-w(2)) =| -1+ -1|-|-1||=| -1
-1 -1 |-1]) |-

1
a(2) = hardlim(w’p°(2) + Wp(2) - 2) = hardlin{B- 1+0 0 O{— 1] - 2} =1 (orange)

(13.4-12)

(13.4-13)

(13.4-14)

(13.4-15)
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13.5 Simple Recall Networ k

Symmetric Saturating
Input Linear Layer

r N7 N

nl al

XA
E n, . a

YA

\lﬁ

ot &

a = satlins (Wp)

Figure 13.5-1 Outstar Network

a = satlins(Wp) (13.5-1)

If we would like the network to associate a stimulus (an input of 1) with a particular output vector a*, we can ssimply set
W (which contains only a single column vector) equal to a*. Then, if p is 1, the output will be a*:

a = satling(Wp) = satling(a*-1) = a* (13.5-2)
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13.6 Outstar Rule

W; () = w; (a4 -1) +aa, () p; () — 0, (Pw; (9 - 1) (13.6-1)
In outstar rule, y = a,

w; () = w; (g -1) +a(a (a) —w; (a-1) p; (a) (13.6-2)
w;(a) =w;(q-1) +a(ala) -w;(q-1)p,;(a) (13.6-3)

If the outstar is stimulated (p; = 1),
W(a)=w(q-1)+a(@a)—-w(a-1) = (1-a)w(q-1) +aa(q) (13.6-4)

_t _ ‘a‘(q)
e (@)
w(g-1)
+——

Figure 13.6-1 Graphical Representation of the Outstar Rule
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Symmetric Saturating

Inputs Linear Layer
! ' r n D a, Recalled shape
- 1
Measured shape p! @—il ! b f p

Measured texture p, e wi,=1

Measured weight p, wi =1 n, a, Recalled texture
33 Z 7£ I
iC n a, Recalled weight
3
Identified Pineapple p> = > _—’IjC._}
31
—/ L8 J

a = satlins (Wopo+Wp)

Figure 13.6-1 Pineapple Recaller

Sight Measure
\ 4

Network

v

Measurements?

Figure 13.6-2 Pineapple Recalling System
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a = satlins(\W’p’+Wp) (13.6-4)
1 00
We=10 1 0 (13.6-5)
001
shape 1 if in b
p® = | texture p={ — A pineappe._tan _be._sen (13.6-6)
. otherwise
weight
Learning rate of o = 1,
w;(a) =w;(a-1)+(a(q) - w,;(q-1)p;(a) (13.6-7)
-1
prreRe =] -1 (13.6-8)
1
0 -1
p°(M) =|0|, p(Y) =1},1p°(2) =| -1/, p(2) =1},... (13.6-9)
0 1
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0 0] 0
a(1) = satlins(W°p°(1)+Wp(1)) = satling | 0|+| 01| =| 0| (nO response) (13.6-10)
o] |0]) |0
0 [0 0 0
w,(2) = w,(0) + (al) —w,(0)) p(1) =| O |+ -10jp=|0 (13.6-11)
o] {|o] |o]) |o
-1/ |0 -1
a(2) =satling | -1|+|0[1|=|-1| (measurements given), (13.6-12)
1| |0 1
0 - 0 -1
w,(2) =w, (D) + (a2 -w,(D))p(2) =|0|+||-1|-|0|1=| -1 (13.6-13)
0 1 0 1
o] [-1 -1
a(3) =satling [0|+|-1[1|=|-1| (measurements recalled) (13.6-14)
0 1 1
~1] (T-1] [-1 -1
w, (3 =w,(2)+ @R -w,(2)p) =|-1|+||-1|-|-1|a=|-1 (13.6-15)
1 1 1 1
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