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11 Backpropagation 

 
11.1 Multilayer Perceptrons 

 

 
Figure 11.1-1 Three-Layer Network 
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11.1.1 Pattern Classification 

 
The input/target pairs for exclusive-or (XOR) gate, 
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Figure 11.1.1-1 Exclusive-Or Problem 
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Figure 11.1.1-2 Decision Boundaries for XOR Network 

 

 
Figure 11.1.1-3 Two-Layer XOR Network 

 
 

AND 
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Figure 11.1.1-4 Decision Boundaries for XOR Network 

 

 
Figure 11.1.1-5 Two-Layer XOR Network 

1w1 

2w1 

1
-1

-0.5

1 

-1 -0.5 

-0.5

OR Operation 

OR 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

Manukid Parnichkun     

                                                                                                          

133

 
11.1.2 Function Approximation 

 
Two-layer, 1-2-1 network,  

f n
e n

1 1
1

( ) =
+ −  and f n n2 ( ) =                              (11.1.2-1) 

 
Figure 11.1.2-1 1-2-1 Function Approximation Network 
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Figure 11.1.2-2 Nominal Response of Network of Figure 11.1.2-1 
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− ≤ ≤1 11 1

2w , , − ≤ ≤1 11 2
2w , , 0 202

1≤ ≤b , − ≤ ≤1 12b                         (11.1.2-5) 

 

 
Figure 11.1.2-3 Effect of Parameter Changes on Network Response 
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11.2 The Backpropagation Algorithm 

 

 
Figure 11.2-1 Three-Layer Network, Abbreviated Notation 

 
a f W a bm m m m m+ + + += +1 1 1 1( )  for m = 0, 1, ..., M-1                      (11.2-1) 

a p0 =                       (11.2-2) 

a a= M                                  (11.2-3) 
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11.2-1 Performance Index 

 
• Backpropagation algorithm for multilayer networks: generalization of the LMS algorithm 

• Performance index: mean square error 

},{,},,{},,{ 2211 QQ tptptp L                                (11.2.1-1) 

For single output, 

F E e E t a( ) [ ] [( ) ]x = = −2 2                      (11.2.1-2) 

For multiple outputs, 

F E ET T( ) [ ] [ ]x e e (t a) (t a)= = − −                                    (11.2.1-3) 

Approximation of mean square error by 
$ ( ) ( ) ( ) ( ) ( ) ( ) ( )F k k k k k kT Tx (t a ) (t a ) e e= − − =                     (11.2.1-4) 

By the steepest descent algorithm for the approximate mean square error,  
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11.2.2 Chain Rule 
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Defining the sensitivity of $F  to changes in the ith element of the net input at layer m, 
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Steepest descent algorithm, 
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In matrix form, 
Tmmmm kk )()()1( 1−−=+ asWW α                              (11.2.2-11) 
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11.2.3 Backpropagating the Sensitivities 
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Jacobian matrix, 
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Recurrence relation for the sensitivity by using the chain rule in matrix form, 
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• Backpropagation algorithm: The sensitivities are propagated backward through the network from the last layer to the 

first layer: 
121 ssss →→→→ − LMM                                (11.2.3-7) 

Sensitivity at the final layer, 
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))((2 atnFs −−= MMM &                                    (11.2.3-11) 
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11.2.4 Summary 

 
1. The first step: propagate the input forward through the network: 

a p0 =                                             (11.2.4-1) 

a f W a bm m m m m+ + + += +1 1 1 1( )  for m = 0, 1, ..., M-1                       (11.2.4-2) 

a a= M                                             (11.2.4-3) 

2. The second step: propagate the sensitivities backward through the network: 

))((2 atnFs −−= MMM &                             (11.2.4-4) 
11))(( ++= mTmmmm sWnFs & , for m = M-1, …, 2, 1                       (11.2.4-5) 

3. The last step: update the weights and biases using the approximate steepest descent rule: 
Tmmmm kk )()()1( 1−−=+ asWW α                                   (11.2.4-6) 

mmm kk sbb α−=+ )()1(                                                   (11.2.4-7) 
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11.3 Example 

 
1-2-1 network to approximate the function, 
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sin1)( π  for 22 ≤≤− p                           (11.3-1) 

 

 
Figure 11.3-1 1-2-1 Function Approximation Network 
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Initial network, 
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Figure 11.3-2 Initial Network Response and Approximated Sine Function 
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Presenting p = 1, 

10 == pa                         (11.3-3) 
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Learning rate α = 0.1, 
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• Proceed to choose another input p and perform another iteration of the algorithm.  

• Continue to iterate until the difference between the network response and the target function reaches some acceptable 

level.  

 

• For a network to be able to generalize, it should have fewer parameters than there are data points in the training set.  

• Don't use a bigger network when a smaller network will work. 

• In general pattern recognition problem 

o First layer: to generate decision boundaries 

o Second layer: to perform AND operation of the decision boundaries 

o Third layer: to perform OR operation of the separated group 
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12 Variations on Backpropagation 

 
12.1 Drawbacks of Backpropagation 

 
• LMS algorithm is guaranteed to converge to a solution that minimizes the mean squared error, so long as the learning 

rate is not too large.  

• In LMS algorithm, the mean squared error of a single-layer linear network is a quadratic function.  

• SDBP (Steepest Descent Backpropagation) is equivalent to the LMS algorithm when used on a single-layer linear 

network.  

• In SDBP, the performance surface of a multilayer network may have many local minimum points, and the curvature 

can vary widely in different regions of the parameter space. 
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12.1.1 Performance Surface Example 

 

 
Figure 12.1.1-1 1-2-1 Function Approximation Network 
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Figure 12.1.1-2 Nominal Function 
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Figure 12.1.1-3 Squared Error Surface Versus 1

1,1w  and 2
1,1w  

 
• It is clearly not a quadratic function. The curvature varies drastically over the parameter space.  

• In some regions the surface is very flat, which would allow a large learning rate. 

• In some regions the curvature is high, which would require a small learning rate.  

• The sigmoid is very flat for very large magnitude of inputs. 

• There are more than one local minimum points.  

• The global minimum point locates at 1
1,1w = 10 and 2

1,1w  = 1. A local minimum locates at 1
1,1w = 0.88 and 2

1,1w  = 38.6. 
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Figure 12.1.1-4 Squared Error Surface Versus 1

1,1w  and 1
1b  

 
• The minimum error is zero and occurs when 1

1,1w = 10 and 1
1b =-5.  

• With an initial guess of 1
1,1w = 0 and 1

1b =-10, the gradient is very close to zero, and the steepest descent algorithm would 

stop, even though it is not close to a local minimum point. 
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Figure 12.1.1-5 Squared Error Surface Versus 1

1b  and 2
1b  

 
• Two zero error minimum points locate at 1

1b = -5 with 2
1b  = 5 and 1

1b = 5 with 2
1b  = -5.  

• The surface is symmetry causing zero to be a saddle point of the performance surface. 

 

 

 

 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

Manukid Parnichkun     

                                                                                                          

153

 
Hints: used to set initial guess for the SDBP algorithm 

• The initial parameters should not be set to zero. This is because the origin of the parameter space tends to be a saddle 

point for the performance surface.  

• The initial parameters should not be set to large values. This is because the performance surface tends to have very flat 

regions as we move far away from the optimum point. 

 

• Typically, the initial weights and biases should be set to small random values.  

• It is also useful to try several different initial guesses, in order to be sure that the algorithm converges to a global 

minimum point. 

 

In batching mode of SDBP, weights and biases are updated every after all the inputs/targets presented to the network. 

∑
=

Δ=Δ
Q

1i
WW i                                                                        (12.1.1-2) 

∑
=

Δ=Δ
Q

1i
bb i                                                                        (12.1.1-3) 

WWW Δ+=+ )()1( kk                                                               (12.1.1-4) 

bbb Δ+=+ )()1( kk                                                                 (12.1.1-5) 
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12.2 Heuristic Modifications of Backpropagation 

 
Heuristic Backpropagation 

• Momemtum Backpropagation 

• Variable Learning Rate Backpropagation 

 

 
Figure 12.2-1 Trajectory with Too Large Learning  
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12.2.1 Momentum 

 
First-order low-pass filter, 

)()1()1()( kwkyky γγ −+−=                                          (12.2.1-1) 

where w(k): the input to the filter, y(k): the output of the filter, γ: the momentum coefficient  

10 <≤ γ                                        (12.2.1-2) 

Sine wave input, 

⎟
⎠
⎞

⎜
⎝
⎛+=

16
2sin1)( kkw π                                     (12.2.1-3) 

 
Figure 12.2.1-1 Smoothing Effect of Momentum 
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• The oscillation of the filter output is less than the oscillation in the filter input. 

• As γ is increased the oscillation in the filter output is reduced.  

• The average filter output is the same as the average filter input. 

• As γ is increased the filter output is slower to respond. 

 

Parameter updates for SDBP, 
Tmmm k )()( 1−−=Δ asW α                              (12.2.1-4) 

mm k sb α−=Δ )(                                               (12.2.1-5) 

 

Parameter updates for momentum modification to backpropagation (MOBP), 
Tmmmm kk )()1()1()( 1−−−−Δ=Δ asWW αγγ                         (12.2.1-6) 

mmm kk sbb αγγ )1()1()( −−−Δ=Δ                                            (12.2.1-7) 
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Figure 12.2.1-2 Trajectory with Momentum, γ = 0.8 

 

• By the use of momentum, a larger learning rate can be used, while maintaining the stability of the algorithm. 

• Momentum tends to make the trajectory continue in the same direction.  

• The larger the value of γ, the more "momentum" the trajectory has.  

 

 

 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

Manukid Parnichkun     

                                                                                                          

158

 
12.2.2 Variable Learning Rate 

 
The rules of the variable learning rate backpropagation algorithm (VLBP): 

1. If the squared error (over the entire training set) increases by more than some set percentage ζ (typically one to five 

percent) after a weight update, then the weight update is discarded, the learning rate is multiplied by some factor 0 < ρ 

< 1, and the momentum coefficient γ (if it is used) is set to zero. 

2. If the squared error decreases after a weight update, then the weight update is accepted and the learning rate is 

multiplied by some factor η > 1. If γ has been previously set to zero, it is reset to its original value. 

3. If the squared error increases by less than ζ, then the weight update is accepted but the learning rate and the 

momentum coefficient are unchanged. 
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Figure 12.2.2-1 Variable Learning Rate Trajectory, %4,7.0,05.1 === ζρη , γ = 0.8 

 

• The learning rate, step size, tends to increase when the trajectory is traveling in a straight line with constantly 

decreasing error.  

• When the trajectory reaches a narrow valley, the learning rate is rapidly decreased and the momentum is eliminated, 

which allows the trajectory to make the quick turn to follow the valley toward the minimum point.  
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12.3 Numerical Optimization Techniques 

 
Numerical Backpropagation 

• Conjugate Gradient Backpropagation 

• Levenberg-Marquardt Backpropagation 

 
12.3.1 Conjugate Gradient 

 
General procedure for locating the minimum of a function in a specified direction: 

1. Interval location: to find some initial interval that contains a local minimum  

2. Interval reduction: to reduces the size of the initial interval until the minimum is located to the desired accuracy 
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Figure 12.3.1-1 Interval Location 

 

1. Evaluating the performance index at an initial point, represented by a1 in the figure.  

F(x0)                               (12.3.1-1) 

2. Evaluating the function at a second point, represented by b1 in the figure, which is a distance ε from the initial point, 

along the first search direction p0.  

F(x0+εp0)                                 (12.3.1-2) 

4. Continuing to evaluate the performance index at new points bi, successively doubling the distance between points. This 

process stops when the function increases between two consecutive evaluations.  
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Figure 12.3.1-2 Reducing the Size of the Interval of Uncertainty 
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The algorithm for the Golden Section search: 

618.0=τ  

Set   )(),)(1( 11111 cFFabac c =−−+= τ  

   )(),)(1( 11111 dFFabbd d =−−−= τ  

For k = 1, 2, ... repeat 

 If Fc < Fd then 

Set kkkkkk cddbaa === +++ 111 ;;  

   ))(1( 1111 ++++ −−+= kkkk abac τ  

   )(; 1+== kccd cFFFF  

else 

Set kkkkkk dcbbca === +++ 111 ;;  

   ))(1( 1111 ++++ −−−= kkkk abbd τ  

   )(; 1+== kddc dFFFF  

 end 

end  until tolab kk <− ++ 11  

where tol is the accuracy tolerance set by the user. 
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• For quadratic functions the algorithm will converge to the minimum in at most n iterations, where n is the number of 

parameters being optimized.  

• The mean squared error performance index for multilayer networks is not quadratic, therefore the algorithm would not 

normally converge in n iterations.  

• In conjugate gradient backprogagation, the search direction is reset to the steepest descent direction (negative of the 

gradient) after n iterations. 

 

 
Figure 12.3.1-3 Steps and Trajectory of CGBP 
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12.3.2 Levenberg-Marquardt Algorithm 

 
Newton's method, 

kkkk gAxx 1
1

−
+ −=                                     (12.3.2-1) 

where 
k

Fk xxxA =∇≡ )(2 and 
k

Fk xxxg =∇≡ )( . 

F(x): a sum of squares function, 

)()()()(
1

2 xvxvxx T
N

i
ivF == ∑

=

                                (12.3.2-2) 

j

i
N

i
i

j
j x

vv
x

FF
∂

∂
=

∂
∂

=∇ ∑
=

)()(2)()]([
1

xxxx                          (12.3.2-3) 

)()(2)( xvxJx TF =∇                            (12.3.2-4) 

where Jacobian matrix, 
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                              (12.3.2-5) 
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∑
= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂∂
∂

+
∂

∂
∂

∂
=

∂∂
∂

=∇
N

i jk

i
i

j

i

k

i

jk
jk xx

vv
x

v
x

v
xx

FF
1

22

,
2 )()()()(2)()]([ xxxxxx                                (12.3.2-6) 

)(2)()(2)(2 xSxJxJx +=∇ TF                       (12.3.2-7) 

where 

∑
=

∇=
N

i
ii vv

1

2 )()()( xxxS                                (12.3.2-8) 

S(x) is assumed small,  

)()(2)(2 xJxJx TF ≅∇                              (12.3.2-9) 

Gauss-Newton method, 

)()()]()([)()(2)]()(2[ 11
1 kk

T
kk

T
kkk

T
kk

T
kk xvxJxJxJxxvxJxJxJxx −−

+ −=−=                       (12.3.2-10) 

• The advantage of Gauss-Newton over the standard Newton's method is that it does not require calculation of second 

derivatives. 

• One problem with the Gauss-Newton method is that the matrix H = JTJ may not be invertible.  

Modification to the approximate Hessian matrix, 

IHG μ+=                                  (12.3.2-11) 
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{ }nλλλ ,,, 21 L : eigenvalues of H, { }nzzz ,,, 21 L : eigenvectors of H, 

iiiiiiiii zzzzHzzIHGz )(][ μλμλμμ +=+=+=+=                         (12.3.2-12) 

• The eigenvectors of G are the same as the eigenvectors of H, and the eigenvalues of G are )( μλ +i .  

• G can be made positive definite by increasing μ until )( μλ +i  > 0 for all i, and therefore the matrix will be invertible. 

Levenberg-Marquardt algorithm, 

)()(])()([ 1
1 kk

T
kkk

T
kk xvxJIxJxJxx −

+ +−= μ                             (12.3.2-13) 

)()(])()([ 1
kk

T
kkk

T
k xvxJIxJxJx −+−=Δ μ                             (12.3.2-14) 

• As μk is increased it approaches the steepest descent algorithm with small learning rate: 

)(
2

1)()(1
1 xxxvxJxx F

k
kkk

T

k
kk ∇−=−≅+ μμ

 for large μk.                             (12.3.2-15) 

• As μk is decreased to zero the algorithm becomes Gauss-Newton. 

Procedure and Rules in Levenberg-Marquardt algorithm 

1. The algorithm begins with μk set to some small value (e.g., μk = 0.01).  

2. If a step does not yield a smaller value for F(x) , then the step is repeated with μk multiplied by some factor υ > 1 (e.g., 

υ = 10). Eventually F(x) should decrease.  

3. If a step does produce a smaller value for F(x), then μk is divided by υ for the next step. 
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where ej,q is the jth element of the error for the qth input/target pair. 
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Marquardt sensitivity, 
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For the Marquardt sensitivities at the final layer, 
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The iterations of the Levenberg-Marquardt backpropagation algorithm (LMBP), 

1. Present all inputs to the network and compute the corresponding network outputs and the errors. Compute the sum of 

squared errors over all inputs, F(x). 

2. Compute the Jacobian matrix. Calculate the sensitivities with the recurrence relations, after initializing. Augment the 

individual matrices into the Marquardt sensitivities. Compute the elements of the Jacobian matrix. 

3. Solve to obtain Δx k . 

4. Recompute the sum of squared errors using x xk k+ Δ . If this new sum of squares is smaller than that computed in step 

1, then divide μ by υ, let x x xk k k+ = +1 Δ  and go back to step 1. If the sum of squares is not reduced, then multiply μ by 

υ and go back to step 3. 
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Figure 12.3.2-1 Levenberg-Marquardt Step and Trajectory, μ0 = 0.01, υ = 5 
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12.3.3 Example of Levenberg-Marquardt Algorithm 

 
A 1-1-1 network is used in a function approximation problem by Levenberg-Marquardt method,  

                               

 

 

The initial weights and biases, 

       4.0)0(,3.0)0(,2.0)0(,1.0)0( 2
1

2
11

1
1

1
11 ==== bwbw                                        (12.3.3-1) 

The relation between inputs and targets, 

{ } { } { } { } { }35,35,30,20,25,15,25,10,15,5 5544332211 ========== tptptptptp                 (12.3.3-2) 

when 10,01.0 == υμ k ,    

1,),)(1(,)1( 221
1

1
1

111 ==−=+= −− fnfaafef n &&             (12.3.3-3) 
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Present p1, 
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Summation of error square, 
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13 Associative Learning 

 
• An association is any link between a system's input and output such that when a pattern A is presented to the system it 

will respond with pattern B.  

• The input pattern is referred to as the stimulus.  

• The output pattern is referred to as the response. 

 
13.1 Simple Associative Network 

 

 
Figure 13.1-1 Single-Input Hard Limit Associator 
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a = hardlim(wp+b) = hardlim(wp-0.5)                     (13.1-1) 

⎩
⎨
⎧

=
,0
,1

p  
stimulusno

stimulus
_

  
⎩
⎨
⎧

=
,0
,1

a  
responseno

respone
_

                  (13.1-2) 

Stimulus: 

1. The unconditioned stimulus, p0  

2. The conditioned stimulus, p  

• The weights associated with p0 are fixed, but that the weights associated with p are adjusted according to the relevant 

learning rule. 

 

 
Figure 13.1-2 Banana Associator 
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Figure 13.1-3 Bananas Recognition System 

Unconditioned Stimulus (Banana Shape) and Conditioned Stimulus (Banana Smell) 

 
     The definitions of the unconditioned and conditioned inputs for this network are 

⎩
⎨
⎧

=
,0
,10p  

detectednotshape
detectedshape
__

_   
⎩
⎨
⎧

=
,0
,1

p  
detectednotsmell

detectedsmell
__

_                        (13.1-3) 
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13.2 Unsupervised Hebb Rule 

 
Unsupervised Hebb rule, 

)()()1()( qpqaqwqw jiijij α+−=                                     (13.2-1) 

)()()1()( qqqq TpaWW α+−=                                    (13.2-2) 

)(,),2(),1( Qppp K                            (13.2-3) 

Initial weights in banana associator, 

0)0(,10 == ww                            (13.2-4) 

The training sequence consists of repetitions of two sets of inputs, 

K},1)2(,1)2({},1)1(,0)1({ 00 ==== pppp                            (13.2-5) 

w0: the weight for the unconditioned stimulus p0: constant, 

w: the weight for the conditioned stimulus p: updated at each iteration,  

Unsupervised Hebb rule with a learning rate of 1, 

)()()1()( qpqaqwqw +−=                       (13.2-6) 

0)5.01001()5.0)1()0()1(()1( 00 =−⋅+⋅=−+= hardlimpwpwhardlima  (no response)                (13.2-7) 

0100)1()1()0()1( =⋅+=+= paww                         (13.2-8) 
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1)5.01011()5.0)2()1()2(()2( 00 =−⋅+⋅=−+= hardlimpwpwhardlima  (banana)                        (13.2-9) 

1110)2()2()1()2( =⋅+=+= paww                    (13.2-10) 

1)5.01101()5.0)3()2()3(()3( 00 =−⋅+⋅=−+= hardlimpwpwhardlima  (banana)                      (13.2-11) 

2111)3()3()2()3( =⋅+=+= paww                    (13.2-12) 

• If the inputs are continuously presented and w is updated, the weight w will become arbitrarily large.  

• Synapses cannot grow without bound. 

• There is no mechanism for weights to decrease. Every weight will grow until the network responds to any stimulus. 
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13.2.1 Hebb Rule with Decay 

 
)()()1()1()1()()()1()( qqqqqqqq TT paWWpaWW αγγα +−−=−−+−=                           (13.2.1-1) 

γ: decay rate, a positive constant less than one 

• As γ approaches zero, the learning law becomes the standard rule.  

• As γ approaches one, the learning law quickly forgets old inputs and remembers only the most recent patterns.  

The maximum weight value max
ijw , 

αγαγ +−=+−= ijjiijij wpaww )1()1( ,  or 
γ
α

=ijw                     (13.2.1-2) 

With γ of 0.1 in banana associator, 

0)5.01001()5.0)1()0()1(()1( 00 =−⋅+⋅=−+= hardlimpwpwhardlima  (no response)                (13.2.1-3) 

00100)0()1()1()0()1( =+⋅+=−+= wpaww γ                         (13.2.1-4) 

1)5.01011()5.0)2()1()2(()2( 00 =−⋅+⋅=−+= hardlimpwpwhardlima  (banana)                        (13.2.1-5) 

10110)1()2()2()1()2( =−⋅+=−+= wpaww γ                         (13.2.1-6) 

1)5.01101()5.0)3()2()3(()3( 00 =−⋅+⋅=−+= hardlimpwpwhardlima  (banana)                        (13.2.1-7) 

9.111.0111)2()3()3()2()3( =⋅−⋅+=−+= wpaww γ             (13.2.1-8) 
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10

1.0
1max ===

γ
α

ijw                              (13.2.1-9) 

 

 
Figure 13.2.1-1 Response of Hebb Rule, With and Without Decay 

 
Without reinforcement, ai = 0, associations decays away. 

)1()1()( −−= qwqw ijij γ                                          (13.2.1-8) 

γ = 0.1,  

)1(9.0)( −= qwqw ijij                            (13.2.1-9) 
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13.3 Simple Recognition Network 

 

 
Figure 13.3-1 Instar 

 
a = hardlim(Wp + b) = hardlim(1wTp + b)                        (13.3-1) 

The instar is active whenever the inner product between the weight vector and the input is greater than or equal to –b: 

bT −≥= θcos11 pwpw                        (13.3-2) 

θ: the angle between two vectors.  
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• The inner product is maximized when the angle θ is 0.  

• The instar will be active when p is "close" to 1w.  

• By setting the bias b appropriately, we can select how close the input vector must be to the weight vector in order to 

activate the instar. 

• The larger the value of b, the more patterns there will be that can activate the instar, thus making it the less 

discriminatory. 

For the neuron that recognizes only the pattern 1w  

pw1−=b                               (13.3-3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

Manukid Parnichkun     

                                                                                                          

186

 
13.4 Instar Rule 

 
The original unsupervised Hebb rule, 

)()()1()( qpqaqwqw jiijij α+−=                          (13.4-1) 

To get the benefits of weight decay, while limiting the forgetting problem, a decay term is proportional to ai(q). 
old
ijijiijij wqaqpqaqwqw )()()()1()( γα −+−=                              (13.4-2) 

In instar rule, γ = α,                                        ))()(()1()( old
ijjiijij wqpqaqwqw −+−= α                                                       (13.4-3) 

))1()()(()1()( −−+−= qqqaqq iiii wpww α                                         (13.4-4) 

If the instar is active (ai = 1),               )()1()1())1()(()1()( qqqqqq iiii pwwpww ααα +−−=−−+−=                                  (13.4-5) 

 
Figure 13.4-1 Graphical Representation of the Instar Rule 

 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

Manukid Parnichkun     

                                                                                                          

187

 

 
Figure 13.4-2 Orange Recognizer 

 

 
Figure 13.4-3 Orange Recogniton System 
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)( 00 bpwhardlima ++= Wp                             (13.4-6) 

⎩
⎨
⎧

=
,0
,10p  

detectednotorange
visuallydetectedorange

__
__  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

weight
texture
shape

p                                  (13.4-7) 

[ ]000)0()0(,3 1
0 === Tw wW                                         (13.4-8) 

Learning rate of α = 1, 

))1()()(()1()( 111 −−+−= qqqaqq wpww                                  (13.4-8) 
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13.5 Simple Recall Network 

 

 
Figure 13.5-1 Outstar Network 

 
a = satlins(Wp)                          (13.5-1) 

If we would like the network to associate a stimulus (an input of 1) with a particular output vector a*, we can simply set 

W (which contains only a single column vector) equal to a*. Then, if p is 1, the output will be a*: 

a = satlins(Wp) = satlins(a*⋅1) = a*                                        (13.5-2) 
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13.6 Outstar Rule 

 
)1()()()()1()( −−+−= qwqpqpqaqwqw ijjjiijij γα                           (13.6-1) 

In outstar rule, γ = α, 

)())1()(()1()( qpqwqaqwqw jijiijij −−+−= α                                  (13.6-2) 

)())1()(()1()( qpqqqq jjjj −−+−= waww α                                  (13.6-3) 

If the outstar is stimulated (pi = 1),             

   )()1()1())1()(()1()( qqqqqq iiii awwaww ααα +−−=−−+−=                                     (13.6-4) 

 
Figure 13.6-1 Graphical Representation of the Outstar Rule 

 
 
 

a



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

Manukid Parnichkun     

                                                                                                          

192

 

 
Figure 13.6-1 Pineapple Recaller 

 

 
Figure 13.6-2 Pineapple Recalling System 
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a = satlins(W0p0+Wp)                                 (13.6-4) 
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Learning rate of α = 1, 

)())1()(()1()( qpqqqq jjjj −−+−= waww                                    (13.6-7) 
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)2( satlinsa  (measurements given),                              (13.6-12) 
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)3( satlinsa  (measurements recalled)                              (13.6-14) 
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)3())2()3(()2()3( 111 pwaww                       (13.6-15) 

 


