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14 Competitive Networks  

 
14.1 Hamming Network 

 

 
Figure 14.1-1 Hamming Network 

 
• The first layer (which is a layer of instars) performs a correlation between the input vector and the prototype vectors.  

• The second layer performs a competition to determine which of the prototype vectors is closest to the input vector. 
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Layer 1 

• Multiple instars: Multiple pattern recognition 

Q Prototype vectors, R: Number of input 

},,,{ 21 Qppp K                                      (14.1-1) 
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Layer 2 

• Layer 2: a competitive layer 

• Initialized with the outputs of the feedforward layer  

• Finally, only one neuron with nonzero output: winning neuron: recognized pattern: a winner-take-all competition  
12 )0( aa =                       (14.1-4) 
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• The output of the neuron with the largest initial condition decreases more slowly than the outputs of the other neurons.  
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14.2 Competitive Layer 

 

 
Figure 14.2-1 Competitive Layer 
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14.2.1 Competitive Learning 

 
Instar rule, 

))1()()(()1()( −−+−= qqqaqq iiii wpww α                           (14.2.1-1) 

Kohonen rule, 

)()1()1())1()(()1()( qqqqqq iiii pwwpww ααα +−−=−−+−=                         (14.2.1-2) 

)1()( −= qq ii ww ,  *ii ≠                         (14.2.1-3) 

• The row of the weight matrix that is closest to the input vector moves toward the input vector.  

• It moves along a line between the old row of the weight matrix and the input vector. 

 
Figure 14.2.1-1 Graphical Representation of the Kohonen Rule 
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Figure 14.2.1-2 Input and Initial Random Pattern Vectors 

 
Presenting p2, 
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α = 0.5, 
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Figure 14.2.1-3 Weight Modification 

 

 
Figure 14.2.1-4 Final Weight Modification and Region Classified by the Final Weight Modification 
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14.2.2 Problems with Competitive Layers 

 
• The choice of learning rate forces a trade-off between the speed of learning and the stability of the final weight vectors.  

• When clusters are close together, a weight vector forming a prototype of one cluster may "invade" the territory of 

another weight vector. 

• A neuron's initial weight vector is located so far from any input vectors that it never wins the competition. 

• A competitive layer must have as many classes as it has neurons. When the number of clusters is not known in 

advance.  

• Competitive layers cannot form classes with nonconvex regions or classes that are the union of unconnected regions. 
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14.3 Self Organizing Feature Maps 

 
Kohonen rule, 

)()1()1())1()(()1()( qqqqqq iiii pwwpww ααα +−−=−−+−=  )(* dNi
i

∈                                 (14.3-1) 

Neighborhood, 

},{)( ddjdN iji ≤=                             (14.3-2) 

• When a vector p is presented, the weights of the winning neuron and its neighbors will move toward p.  

 

 
Figure 14.3-1 Neighborhoods 

 

}18,14,13,12,8{)1(13 =N                             (14.3-3) 

}23,19,18,17,15,14,13,12,11,9,8,7,3{)2(13 =N                              (14.3-4) 
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Figure 14.3-2 Self-Organizing Feature Map 

 

 
Figure 14.3-3 Initial Weight Vectors 
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• Each three-element weight vector is represented by a dot on the sphere.  

• The weights are normalized, therefore they are on the surface of a sphere.  

• Dots of neighboring neurons are connected by lines to see how the physical topology of the network is arranged in the 

input space. 

• Each time a vector is presented, the neuron with the closest weight vector wins the competition.  

• The winning neuron and its neighbors move their weight vectors closer to the input vector (and therefore to each 

other).  

• The weight vectors spread out over the input space as more vectors are presented. 

• The weight vectors move toward the weight vectors of neighboring neurons.  
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Figure 14.3-4 Self-Organization, 250 Iterations per Diagram 
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Figure 14.3-5 Feature Map with a Twist 

 
14.3.1 Improving Feature Maps 

 
• Varying the size of the neighborhoods during training.  

• Varying the learning rate over time.  

• Using larger learning rate for the winning neuron than the neighboring neurons 

• Using distance between the input vector and the prototype vectors instead of the inner product  

 
 
 
 
 
 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

Manukid Parnichkun                  

                                                                                                         

208

 
14.4 Learning Vector Quantization 

 

 
Figure 14.4-1 LVQ Network 
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• In the first layer, the winning neuron indicates a subclass. 

• The second layer is used to combine subclasses into a single class.  

⇒= )1( 2
kiw  subclass i is a part of class k.                                  (14.4-4) 

• The columns of W2 represent subclasses, the rows represent classes. 

 
14.4.1 LVQ Learning 

 
Supervised learning, 

},{,},,{},,{ 2211 QQ tptptp K            (14.4.1-1) 

If hidden neuron i is to be assigned to class k, then set 12 =kiw                              (14.4.1-2) 

• Once W2 is defined, it will never be altered.  

• The hidden weights W1 are trained with a variation of the Kohonen rule. 
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Figure 14.4.1-1 Members of Classes 
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Figure 14.4.1-2 Initial Weight 

 

Presenting p3, 
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Figure 14.4.1-3 After First and Many Iterations 
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15 Grossberg Network 

 
15.1 Basic Nonlinear Model 

 
Leaky integrator,  

)()()( tptn
dt

tdn
+−=ε                                           (15.1-1) 

where ε: the system time constant, 

 

 
Figure 15.1-1 Leaky Integrator 
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The response of the leaky integrator to an arbitrary input p(t), 

∫ −+= −−−
t

tt dtpenetn
0

/)(/ )(1)0()( ττ
ε

ετε                  (15.1-2) 

The input p(t): constant and the initial condition n(0) = zero,  

)1()( /εteptn −−=                            (15.1-3) 

 

 
Figure 15.1-2 Leaky Integrator Response, p = 1 and ε = 1 

 

• If the input p is scaled, then the response n(t) will be scaled by the same amount.  

• The speed of response of the leaky integrator is determined by the time constant ε.  
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Shunting model,  

−−++ +−−+−= pbtnptnbtn
dt

tdn ))(())(()()(ε                                 (15.1-4) 

 

 
Figure 15.1-3 Shunting Model 

 
• p+: the excitatory input, a nonnegative value  

• p-: the inhibitory input, a nonnegative value   

• b+ and b-: the upper and lower limits on the neuron response, nonnegative constants  
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Shunting model, 

• The first term, -n(t) , a linear decay term 

• The second term, ++ − ptnb ))(( , nonlinear gain control, used to set an upper limit on n(t) of b+  

• The third term, −−+− pbtn ))(( , nonlinear gain control. Used to set a lower limit on n(t) of b- 

 

 
Figure 15.1-4 Shunting Network Response 

 
• If n(0) falls between b+ and - b-, then n(t) will remain between these limits. 
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15.2 Two-Layer Competitive Network 

 

 
Figure 15.2-1 Grossberg Competitive Network 

 

Grossberg network:  

1. Layer 1  

2. Layer 2  

3. Adaptive weights  
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Layer 1 

• Layer 1 of the Grossberg network receives external inputs and normalizes the intensity of the input pattern.  

 

 
Figure 15.2-2 Layer 1 of Grossberg Network 

 

pWbnpWnbnn ])[)((]))[(()()( 1111111
1

−−++ +−−+−= ttt
dt

tdε                     (15.2-1) 

• The parameter ε determines the speed of response. It is chosen so that the neuron responses will be much faster than 

the changes in the adaptive weights. 
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The excitatory input: pW ][ 1+ , where 1W+ : an on-center weight matrix  
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The inhibitory input: pW ][ 1− , where 1W− : an off-surround weight matrix 
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The inhibitory bias 1b−  is set to zero (the lower limit of the shunting model is set to zero). 

The excitatory bias 1b+  is set to the same value (the upper limit for all neurons is the same). 

 
111 ,,2,1, Sibbi K==++                                 (15.2-4) 

Response of neuron i, 

∑
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ε                                   (15.2-5) 
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In the steady state ( 0/)(1 =dttdni ), 
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Defining relative intensity of input i, 
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The steady state neuron, 
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• 1
in  is proportional to the relative intensity ip , regardless of the magnitude of the total input P.  

• The total neuron activity is bounded, 
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• The input vector is normalized so that the total activity is less than 1b+ , while the relative intensities of the individual 

elements of the input vector are maintained.  
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Example: Two neurons, with 1b+ =1, ε = 0.1, 
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1 )())(1()()(1.0 ptnptntn
dt

tdn
−−+−=                                        (15.2-11) 

1
1
22

1
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1
2

1
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−−+−=                            (15.2-12) 

 

 
Figure 15.2-3 Responses from Layer 1 
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Layer 2 

1. Normalizing total activity in the layer 

2. Contrast enhancing the patterns, so that the neuron that receives the largest input will dominate the response. 

3. Operating as a short-term memory (STM) by storing the contrast-enhanced pattern. 

 

 
Figure 15.2-4 Layer 2 of Grossberg Network 
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))((])[)((}))((])){[(()()( 2222212222222
2

ttttt
dt

td nfWbnaWnfWnbnn −−++ +−+−+−=ε                      (15.2-13) 

• The excitatory input }))((]{[ 12222 aWnfW ++ t , where 12 WW ++ =  provides on-center feedback connections. 

• The inhibitory input, ))((][ 222 tnfW− , where 12 WW −− =  provides off-surround feedback connections.  

• The rows of 2W , adaptive weight, after training, will represent the prototype patterns.  

Example: A two-neuron layer 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥
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))(()(})())(()){(1()()()1.0( 2
1

22
2

12
2

2
2

22
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2
2

2
2 tnftntnftntn
dt

tdn T −+−+−= aw                          (15.2-17) 

• The inputs to Layer 2 are the inner products between the prototype patterns and the output of Layer 1.  

• Layer 2 performs a competition between the neurons, which tends to contrast enhance the output pattern.  

• In the Grossberg network, the competition maintains large values and attenuates small values, but does not necessarily 

drive all small values to zero.  
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Figure 15.2-5 Response of Layer 2, Applying [ ]T8.02.01 =a  for 0.25 Seconds 
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• After the input has been set to zero, the network further enhances the contrast and stores the pattern.  
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15.2.1 Choice of Transfer Function 

 

 
Figure 15.2.1-1 Effect of Transfer Function f 2(n) 
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15.2.2 Learning Law 

 
• Grossberg calls these adaptive weights, W2, the long-term memory (LTM).  

• The rows of W2 represent patterns that have been stored and that the network is be able to recognize.  

One learning law for W2, 

)}()()({
)( 122

,

2
, tntntw

dt
tdw

jiji
ji +−= α                                       (15.2.2-1) 

• The first term is a passive decay term.  

• The second term implements a Hebbian-type learning.  

• Together, this learning implement the Hebb rule with decay. 

Turn off learning when )(2 tni  is not active,  

)}()(){(
)( 12

,
2

2
, tntwtn

dt
tdw

jjii
ji +−= α                          (15.2.2-2) 

)}()]([){()]([ 122
2

tttn
dt

td
ii

i nww
+−= α                            (15.2.2-3) 

• This is the continuous-time implementation of the instar learning rule.  
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Example: A network with two neurons in each layer, α = 1, 
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• Two different input patterns are alternately presented to the network for periods of 0.2 seconds at a time.  

• Layer 1 and Layer 2 converge very quickly, in comparison with the convergence of the weights,  

for pattern 1: ⎥
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for pattern 2: ⎥
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1
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• Pattern 1 is coded by the first neuron in Layer 2. 

• Pattern 2 is coded by the second neuron in Layer 2. 
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Figure 15.2.2-1 Response of the Adaptive Weights 

 
Three major differences between the Grossberg and the basic Kohonen competitive network 

1. The Grossberg network is a continuous-time network (satisfies a set of nonlinear differential equations).  

2. Layer 1 of the Grossberg network automatically normalizes the input vectors.  

3. Layer 2 of the Grossberg network can perform a "soft" competition, rather than the winner-take-all competition of the 

Kohonen network.  
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16 Adaptive Resonance Theory 

 
16.1 Overview of Adaptive Resonance 

 
• Layer 1, Layer 2, Orienting Subsystem  

• L1-L2: Instar, L2-L1: Outstar 

 

 
Figure 16.1-1 Basic ART Architecture 
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16.2 Layer 1 

 
• The main purpose of Layer 1 is to compare the input pattern with the expectation pattern from Layer 2. (Both patterns 

are binary in ART1.)  

• If the patterns are not closely matched, the orienting subsystem will cause a reset in Layer 2.  

• If the patterns are close enough, Layer 1 combines the expectation and the input to form a new prototype pattern. 

 

 
Figure 16.2-1 Layer 1 of the ART1 Network 
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ε d t
dt

t t t t tn n b n p W a n b W a
1

1 1 1 2 1 2 1 1 1 2( ) ( ) ( ( )){ ( )} ( ( ) )[ ] ( ):= − + − + − ++ − −                      (16.2-1) 

a hardlim n1 1= + ( )                             (16.2-2) 
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1
0
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0
0

                                (16.2-3) 

• The excitatory input: p W a+ 2 1 2: ( )t ,  

If the jth neuron in Layer 2 wins the competition,  
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j S j                            (16.2-4) 

p W a p w+ = +2 1 2 2 1: :
j                           (16.2-5) 

• The inhibitory input: [ ] ( )−W a1 2 t , the gain control term, where 

− =
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                   (16.2-6) 

• The gain control input to Layer 1 will be one when Layer 2 is active, and zero when Layer 2 is inactive. 
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16.2.1 Steady State Analysis 
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where ε << 1 

If Layer 2 is inactive, each a j
2 0= ,  

{ }ε
dn
dt

n b n p
i

i i i

1
1 1 1= − + −+( )                              (16.2.1-2) 

0 11 1 1 1 1= − + − = − + ++ +n b n p p n b pi i i i i i( ) ( )                                    (16.2.1-3) 

n b p
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i

i

1
1

1
=

+

+

                      (16.2.1-4) 

• If pi = 0  then ni
1 0= , and if pi = 1 then n bi

1 1 2 0= >+ / .  

By using hardlim+ function,  

a p1 =                               (16.2.1-5) 

• When Layer 2 is inactive, the output of Layer 1 is the same as the input pattern. 
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If Layer 2 is active and neuron j is the winning neuron in Layer 2, a j

2 1=  and ak
2 0=  for k ≠ j,  

{ }ε
dn
dt

n b n p w n b
i

i i i i j i

1
1 1 1 2 1 1 1= − + − + − ++ −( ) ( ),

:                      (16.2.1-6) 

{ }0 1 11 1 1 2 1 1 1 2 1 1 1 2 1 1= − + − + − + = − + + + + + −+ − + −n b n p w n b p w n b p w bi i i i j i i i j i i i j( ) ( ) ( ) ( ( ) ),
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,
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,
:                     (16.2.1-7) 

n
b p w b

p wi
i i j

i i j

1
1 2 1 1

2 12
=

+ −

+ +

+ −( ),
:

,
:                                         (16.2.1-8) 

To obtain AND operation, 
+ −+ −b p w bi i j

1 2 1 1( ),
:                                  (16.2.1-9) 

+ −− >b b1 2 0( )                    (16.2.1-10) 
+ −− <b b1 0                             (16.2.1-11) 

+ − +> >b b b1 12( )                              (16.2.1-12) 

For example, + =b1 1 and − =b1 15. , 

a p w1 2 1= ∩ j
:                             (16.2.1-13) 

Summary of the steady state operation of Layer 1, 

If Layer 2 is not active (i.e., each a j
2 0= ),                             a p1 =                                                                         (16.2.1-14) 

If Layer 2 is active (i.e., one a j
2 1= ),                                   a p w1 2 1= ∩ j

:                                                                   (16.2.1-15) 
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Example: 

ε = = =+ −01 1 151 1. , , .b b                               (16.2.1-16) 
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If Layer 2 is active, and neuron 2 of Layer 2 wins the competition,  
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130 5= − −                                (16.2.1-20) 
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n t e t
1
1 301
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n t e t
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1 401
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Figure 16.2.1-1 Response of Layer 1 

 

p w a∩ =
⎡

⎣
⎢
⎤

⎦
⎥ ∩

⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢
⎤

⎦
⎥ =2

2 1 10
1

1
1

0
1

:                      (16.2.1-24) 
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16.3 Layer 2 

 
• Layer 2 of the ART1 network is almost identical to Layer 2 of the Grossberg network.  

• Its main purpose is to contrast enhance its output pattern, winner-take-all competition. 

• The integrator of ART can be reset.  

• In this type of integrator any positive outputs are reset to zero whenever the a 0  signal becomes positive.  

• The outputs that are reset remain inhibited for a long period of time until an adequate match has occurred and the 

weights have been updated. 

• The reset signal, a 0 , is the output of the orienting subsystem. It generates a reset whenever there is a mismatch at 

Layer 1 between the input signal and the L2-L1 expectation. 

• Two transfer functions are used in ART1.  

• The transfer function f2(n2) is used for the on-center/off-surround feedback connections. 

• The output of Layer 2 is computed as a2 = hardlim+(n2) .  
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Figure 16.3-1 Layer 2 of the ART1 Network 

 

ε d t
dt

t t t t tn n b n W f n W a n b W f n
2

2 2 2 2 2 2 1 2 1 2 2 2 2 2( ) ( ) ( ( )){[ ] ( ( )) } ( ( ) )[ ] ( ( )):= − + − + − ++ + − −               (16.3-1) 
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The excitatory input: {[ ] ( ( )) }:+ +W f n W a2 2 2 1 2 1t  
+ W 2 : on-center feedback connections  

W1 2: : adaptive weights, trained according to an instar rule 

The inhibitory input: [ ] ( ( ))− W f n2 2 2 t  
− W 2 : off-surround feedback connections  

Example: A two-neuron layer,  
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• The inputs to Layer 2 are the inner products of the prototype patterns with the output of Layer 1.  

• Layer 2 then performs a competition between the neurons.  

• The transfer function f2(n) is chosen to be a faster-than-linear transfer function.  

• After the competition, one neuron output will be 1, and the other neuron output will be zero. 
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Figure 16.3-2 Response of Layer 2, a1 = [1  0]T 

 
The steady state Layer 2 output, 

a 2 0
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⎦
⎥                         (16.3-6) 

The steady state operation of Layer 2, 
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16.4 Orienting Subsystem 

 
• The purpose of Orienting Subsystem is to determine if there is a sufficient match between the L2-L1 expectation and 

the input pattern.  

 

 
Figure 16.4-1 Orienting Subsystem of the ART1 Network 
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ε dn t
dt

n t b n t n t b
0

0 0 0 0 0 0 0 1( ) ( ) ( ( )){ } ( ( ) ){ }= − + − − ++ + − −W p W a                    (16.4-1) 

The excitatory input: + W p0 , where 
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The inhibitory input: − W a0 1 , where 
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ρ: vigilance parameter, 0 < ρ < 1  

If the vigilance is close to 1, a reset will occur unless a1 is close to p.  

If the vigilance is close to 0, a1 need not be close to p to prevent a reset.  

Eample: 

ε α β ρ= = = =01 3 4 0 75. , , , ( . )or                   (16.4-9) 
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Figure 16.4-2 Response of the Orienting Subsystem 

 
The steady state operation of the Orienting Subsystem, 

a 0 1
0
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,
,
  if

otherwise
[ / ]a p1 2 2 < ρ                      (16.4-13) 
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16.5 Learning Law: Ll-L2 

 
16.5.2 Learning Law: L1-L2 

 
Learning law for W1:2, 
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⎢

⎣

⎡

= −+−+

011

101
110

,

100

010
001

,

0

0
0

,

1

1
1

L

MOMM

L

L

L

MOMM

L

L

MM
WWbb                      (16.5.2-2) 

• When neuron i of Layer 2 is active, the ith row of W1:2, iw1:2, is moved in the direction of a1.  

• iw1:2 is normalized.  

• The excitatory bias is +b = 1 (a vector of l's), and the inhibitory bias is -b = 0 to ensure iw1:2 remain between 0 and 1.  

⎥
⎦

⎤
⎢
⎣

⎡
−−= ∑

≠

)()()())(1()(
)]([ 12:112:12

2:1

,,

, tatwtatwta
dt

twd

jk
kji jiji

ji ζ                           (16.5.2-3) 

Neuron i is active in Layer 2 ( 1)(2 =tai ), 

⎥
⎦

⎤
⎢
⎣

⎡
−−= ∑

≠ jk
kj awaw jiji
12:112:1

,, )1(0 ζ                      (16.5.2-4) 
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When 11 =ja , 

ζζζ +−+−=−−−= 2:121212:12:1
,,, )1()1()1(0 jijiji www aa                           (16.5.2-5) 

1
21

2:1
,

−+
=

aζ

ζ
jiw                          (16.5.2-6) 

When 01 =ja ,  

212:1
,0 ajiw−=                                 (16.5.2-7) 

02:1
, =jiw                              (16.5.2-8) 

1
21

1
2:1

−+
=

a

aw
ζ

ζ
i                          (16.5.2-9) 

where ζ > 1, 

• The prototype patterns is normalized. 
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16.5.3 Learning Law: L2-L1 

 
Learning law for W2:1, 

)]()()[(
)]([ 11:22

1:2

ttta
dt

td
jj

j aw
w

+−=                        (16.5.3-1) 

• When neuron j in Layer 2 is active, column j of W2:1 is moved toward the a1.  
11:211:2 , awaw0 =+−= jj                             (16.5.3-2) 

 

• W1:2 and W2:1 are updated at the same time.  

• When neuron j of Layer 2 is active and there is a sufficient match between the expectation and the input pattern (which 

indicates a resonance condition), then row j of W1:2 and column j of W2:1 are adapted.  

• In fast learning, column j of W2:1 is set to a1, while row j of W1:2 is set to a normalized version of a1. 
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16.6 ART1 Algorithm Summary 

 
Initialization 

• W2:1 matrix is set to all 1's.  

• W1:2 matrix is set to )1/( 1 −+ Sζζ . 

Algorithm 

1. First, we present an input pattern to the network. Since Layer 2 is not active on initialization (i.e., each 02 =ja ), the 

output of Layer 1 is  

pa =1                                     (16.6-1) 

2. Next, we compute the input to Layer 2, 
12:1 aW                                    (16.6-2) 

     and activate the neuron in Layer 2 with the largest input; 

⎩
⎨
⎧

=
,0
,12

ia   
otherwise

if T
k

T
i ]))max[()(( 12:112:1 awaw =                                             (16.6-3) 

     In case of a tie, the neuron with the smallest index is declared the winner. 

3. We then compute the L2-L1 expectation (where we assume neuron j of Layer 2 is activated): 
1:221:2

jwaW =                                      (16.6-4) 
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4. Now that Layer 2 is active, we adjust the Layer 1 output to include the L2-Ll expectation: 

pwpa =∩= 1:21
j                                         (16.6-5) 

5. Next, the Orienting Subsystem determines the degree of match between the expectation and the input pattern: 

⎩
⎨
⎧

=
,0
,10a   

otherwise
if ]/[ 221 ρ<pa                                    (16.6-6) 

6. If a0= 1, then we set 02 =ja , inhibit it until an adequate match occurs (resonance), and return to step 1. If a0= 0, we 

continue with step 7. 

7. Resonance has occurred. Therefore we update row j of W1:2: 

1
21

1
21

−+
=

a

aw
ζ

ζ:
j                             (16.6-7) 

8. We now update column j of W2:1: 
11:2 aw =j                               (16.6-8) 

9. We remove the input pattern, restore all inhibited neurons in Layer 2, and return to step 1 with a new input pattern. 

• The input patterns continue to be applied to the network until the weights stabilize (do not change).  

• ART1 algorithm always forms stable clusters for any set of input patterns. 
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17 Stability 

 
17.1 Recurrent Networks 

 
• For feedforward networks, the output is constant (for a fixed input) and is a function only of the network input.  

• For recurrent networks, the output of the network is a function of time.  

By nonlinear differential equations of the form, 
d
dt

t t t ta g a p( ) ( ( ), ( ), )=                    (17.1-1) 

 

 
Figure 17.1-1 Nonlinear, Continuous-Time, Recurrent Network 
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17. 2 Stability Concepts 

 

                                 
Figure 17.2-1 Three Ball Bearing Systems with Dissipative Friction in a Gravity Field 

 
Asymptotically stable point: If we move the bearing to a different position, it will eventually settle back to the bottom of 

the trough.  

Stable in the sense of Lyapunov point: If we place the bearing in a different position, it will not move back but will not 

roll farther away from the center point.  

Unstable equilibrium point:     If the bearing is given the slightest disturbance, it will roll down the hill.  
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Figure 17.2-2 Basins of Attraction 
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17.2.1 Definitions 

 
An equilibrium point; a point a* where the derivative is zero.  

Definition 1: Stability (in the sense of Lyapunov) 

The origin, a* = 0, is a stable equilibrium point if for any given value ε > 0 there exists a number δ(ε) > 0 such that if ||a 

(0)|| < δ, then the resulting motion a(t) satisfies ||a (t)|| < ε for t > 0 . 

 

 
Figure 17.2.1-1 Stable (with Friction) and Unstable (without Friction) 

 
Definition 2: Asymptotic Stability 

The origin is an asymptotically stable equilibrium point if there exists a number δ > 0 such that whenever ||a (0)|| < δ the 

resulting motion satisfies ||a (t)|| → 0 as t → ∞. 

 

 
Figure 17.2.1-2 Asymptotic Stable (with Friction), Stable (without Friction) 
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Definition 3: Positive Definite 

A scalar function V(a) is positive definite if V(0) = 0 and V(a) > 0 for a ≠ 0. 

Definition 4: Positive Semidefinite 

A scalar function V(a) is positive semidefinite if V(a) ≥ 0 for all a. 

 
17.3 Lyapunov Stability Theorem 

 
Consider the autonomous (unforced, no explicit time dependence) system, 

d
dt
a g a= ( )                          (17.3-1) 

Theorem 1: Lyapunov Stability Theorem 

If a positive definite function V(a) can be found such that dV(a)/dt is negative semidefinite, then the origin (a = 0) is 

stable for the system of (17.3-1). If a positive definite function V(a) can be found such that dV(a)/dt is negative definite, 

then the origin (a = 0) is asymptotically stable. In each case, V is called a Lyapunov function of the system. 
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17.4 Pendulum Example 

 

 
Figure 17.4-1 Pendulum 

 
Using Newton's second law (F = ma),  

ml d
dt

c d
dt

mg
2

2 ( ) sin( )θ θ θ= − −                    (17.4-1) 

ml d
dt

c d
dt

mg
2

2 0θ θ θ+ + =sin( )                               (17.4-2) 

where θ: the angle of the pendulum, m: the mass of the pendulum, l: the length of the pendulum, c: the damping 

coefficient, and g: the gravitational constant. 
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State variables, 

a1 = θ  and a d
dt2 =
θ                       (17.4-3) 

da
dt

a1
2=                        (17.4-4) 

da
dt

g
l

a c
ml

a2
1 2= − −sin( )                                   (17.4-5) 

Consider the stability of the origin (a = 0), 
da
dt

a1
2 0= =                           (17.4-6) 

da
dt

g
l

a c
ml

a g
l

c
ml

2
1 2 0 0 0= − − = − − =sin( ) sin( ) ( )                                    (17.4-7) 

• The origin is an equilibrium point. 

Total (kinetic and potential) energy of the pendulum 

V ml a mgl a( ) ( ) ( cos( ))a = + −
1
2

12
2

2
1                           (17.4-8) 

d
dt

V V g V
a

da
dt

V
a

da
dt

T( ) [ ( )] ( )a a a= ∇ = ⎛
⎝⎜

⎞
⎠⎟
+ ⎛

⎝⎜
⎞
⎠⎟

∂
∂

∂
∂1

1

2

2                                 (17.4-9) 

d
dt

V mgl a a ml a g
l

a c
ml

a cl a( ) ( sin( )) ( ) sin( ) ( )a = + − −⎛
⎝⎜

⎞
⎠⎟
= − ≤1 2

2
2 1 2 2

2 0                  (17.4-10) 
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• dV(a)/dt is negative semidefinite.  

• From Lyapunov's theorem, then, we know that the origin is a stable point.  

• However, we cannot say, from the theorem and this Lyapunov function, that the origin is asymptotically stable. 

• As long as the pendulum has friction, it will eventually settle in a vertical position, the origin is asymptotically stable.  

 

When g = 9.8, m = 1, 1 = 9.8, c = 1.96, 
da
dt

a1
2=                       (17.4-11) 

da
dt

a a2
1 20 2= − −sin( ) .                    (17.4-12) 

V a a= + −⎡
⎣⎢

⎤
⎦⎥

( . ) ( ) ( cos( ))9 8 1
2

12
2

2
1                 (17.4-13) 

dV
dt

a= −( . )( )19 208 2
2                            (17.4-14) 
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Figure 17.4-2 Pendulum Energy Surface, Three Possible Minimum Points of the Energy Surface at 0 and ±2π 

 

 
Figure 17.4-3 Pendulum Response on State Variable Plane, a1(0) = 1.3 radians (74°), a2(0) = 1.3 radians per second 
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Figure 17.4-4 State Variables vs. Time 

 

 
Figure 17.4-5 Pendulum Lyapunov Function (Energy) vs. Time 
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17.5 Lasalle's Invariance Theorem 

 
Definition 5: Lyapunov Function 

Let V be a continuously differentiable function from Rn to R. If G is any subset of Rn, we say that V is a Lyapunov 

function on G for the system da/dt = g(a) if 

)())(()( agaa TV
dt

dV
∇=                                  (17.5-1) 

does not change sign on G. 

Definition 6: Set Z 

}_____,0/)(:{ GofclosuretheindtdVZ aaa ==                           (17.5-2) 

Definition 7: Invariant Set 

A set of points in Rn is invariant with respect to da/dt = g(a) if every solution of da/dt = g(a) starting in that set remains in 

the set for all time. 

Definition 8: Set L 

L is defined as the largest invariant set in Z. 

• If L has only one stable point, then that point is asymptotically stable.  
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Theorem 2: Lasalle's Invariance Theorem 

 If V is a Lyapunov function on G for da/dt = g(a), then each solution a(t) that remains in G for all t > 0 approaches        

L° = L ∩G as t → ∞. (G is a basin of attraction for L, which has all of the stable points.) If all trajectories are bounded, 

then a(t) → L as t → ∞. 

• If a trajectory stays in G, then it will either converge to L, or it will go to infinity. If all trajectories are bounded, then 

all trajectories will converge to L. 

Corollary 1: Lasalle's Corollary 

Let G be a component (one connected subset) of 

})(:{ ηη <=Ω aa V                              (17.5-3) 

• Assume that G is bounded, dV(a)/dt ≤ 0 on the set G, and let the set L° = closure(L ∩ G) be a subset of G. Then L°  is 

an attractor, and G is in its region of attraction. 
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17.5.1 Example 

 
η = 100,  

}100)(:{100 ≤=Ω aa V                            (17.5.1-1) 

 

 
Figure 17.5.1-1 Illustration of the Set Ω100 
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By choosing the component of Ω100 that contains a = 0.  

 

 
Figure 17.5.1-2 Illustration of the Set G 

 

}_____,0:{}_____,0/)(:{ 2 GofclosuretheinaGofclosuretheindtdVZ aaaaa ====              (17.5.1-2) 

}6.16.1,0:{ 12 ≤≤−== aaZ a                     (17.5.1-3) 
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Figure 17.5.1-3 Illustration of the Set Z 

 
}0:{ == aaL                       (17.5.1-4) 

}0:{)( ===∩=° aaLGLclosureL .                      (17.5.1-5) 

• L° is an attractor (asymptotically stable point) in G, its region of attraction.  

• Any trajectory that starts in G will decay to the origin. 
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}300)(:{300 ≤=Ω aa V                           (17.5.1-6) 

 

 
Figure 17.5.1-4 Illustration of G = Ω300 and Z 

 
G = Ω300, since Ω300 has only one component. 

}0:{ 2 == aZ a                                  (17.5.1-7) 

}0,:{ 21 =±===° anaLL πa                    (17.5.1-8) 

02
1 == a

dt
da                      (17.5.1-9) 

)()sin(2.0)sin( 1121
2 πnaaaa

dt
da

±=⇒⎟
⎠
⎞

⎜
⎝
⎛ −=−−=                 (17.5.1-10) 
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Figure 17.5.1-5 The Set L° 
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18 Hopfield Network 

 
18.1 Hopfield Model 

 

 
Figure 18.1-1 Hopfield Model 

 

i
i

i
S

j
jjii

i
S

j ij

iji I
R

tntaTItn
R

nta
dt

tdnC +−=+−
−

= ∑∑
==

)()()()()(
1

,
1 ρ

                       (18.1-1) 

∑
=

−=+==
S

j
ii

jiiji
ji afn

RRR
T

1

1

,,
, )(,111,1

ρ
                            (18.1-2) 
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By multiplying with Ri,                                       iii

S

j
jjii

i
i IRtntaTR

dt
tdnCR +−= ∑

=

)()()(
1

,                                                   (18.1-3) 

Defining,                                                                    iiijiijii IRbTRwCR === ,, ,,ε                                                           (18.1-4) 

i

S

j
jjii

i btawtn
dt

tdn
++−= ∑

=1
, )()()(ε                                    (18.1-5) 

bWann
++−= )()()( tt

dt
tdε                                (18.1-6) 

))(()( tt nfa =                                  (18.1-7) 

 
Figure 18.1-2 Hopfield Network 
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18.2 Lyapunov Function 

 
Lyapunov function in Lasalle’s theorem of Hopfield network, 

∑ ∫
=

− −
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−=
S

i

T
a

T
i

duufV
1 0

1 )(
2
1)( abWaaa                              (18.2-1) 

dt
d

dt
d

dt
d

dt
d TTTTT aWaaWaaWaaWaa −=−=∇−=− ][][

2
1}

2
1{                 (18.2-2) 

dt
dan

dt
daaf

dt
daduuf

da
dduuf

dt
d i

i
i

i
i

a

i

a ii

==
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−− ∫∫ )()()( 1

0

1

0

1                  (18.2-3) 

dt
dduuf

dt
d T

S

i

ai an=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∑ ∫
=

−

1 0

1 )(                       (18.2-4) 

dt
d

dt
d

dt
d TTTT abaabab −=−∇=− ][}{                            (18.2-5) 

dt
d

dt
d

dt
d

dt
dV

dt
d TTTTTT abnWaabanaWaa ][)( −+−=−+−=                              (18.2-6) 

T
TTT

dt
td
⎥⎦
⎤

⎢⎣
⎡−=−+−

)(][ nbnWa ε                           (18.2-7) 

∑
=

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛−=⎥⎦

⎤
⎢⎣
⎡−=

S

i

ii
T

dt
da

dt
dn

dt
d

dt
tdV

dt
d

1

)()( εε ana                     (18.2-8) 
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dt
daaf

da
daf

dt
d

dt
dn i

i
i

i
i )]([)]([ 11 −− ==                          (18.2-9) 

∑∑
=

−

=
⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

S

i

i
i

i

S

i

ii

dt
daaf

da
d

dt
da

dt
dnV

dt
d

1

2
1

1

)]([)( εεa                          (18.2-10) 

If f-1(ai) is an increasing function,  

0)]([ 1 >−
i

i

af
da
d                            (18.2-11) 

0)( ≤aV
dt
d                                  (18.2-12) 

• If f-1(ai) is an increasing function, dV(a)/dt is a negative semidefinite function. V(a) is a valid Lyapunov function. 

 
18.2.1 Invariant Sets 

 
SRG ⊂                                                                           (18.2.1-1) 

}_____,0/)(:{ GofclosuretheindtdVZ aaa ==                     (18.2.1-2) 

}:{ 0aa ==
dt
dZ , which is set of equilibrium points                 (18.2.1-2) 

ZL =                               (18.2.1-3) 

• All points in Z are potential attractors. 
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18.2.2 Example 

 

⎟
⎠
⎞

⎜
⎝
⎛== −

2
tan2)( 1 nnfa γπ

π
                                 (18.2.2-1) 

1,1,0 211,22,1212,21,1 ======== CCRRRR ρρ                           (18.2.2-2) 

⎥
⎦

⎤
⎢
⎣

⎡
=

01
10

W                                      (18.2.2-3) 

1== CRiε                                     (18.2.2-4) 

With γ = 1.4 and I1 = I2 = 0, 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
0

b                                              (18.2.2-5) 

The Lyapunov function, 

∑ ∫
=

− −
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−=
S

i

T
a

T
i

duufV
1 0

1 )(
2
1)( abWaaa                                          (18.2.2-6) 

[ ] 21
2

1
21 01

10
2
1

2
1 aa

a
a

aaT −=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−=− Waa                               (18.2.2-7) 

iii
aaa

uduuduuf
000

1 2
2

coslog2
2

tan2)( ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛= ∫∫ −

π
π

γπ
π

γπ
                        (18.2.2-8) 
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⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=∫ −

i

a

aduuf
i

2
coslog4)( 2

0

1 π
γπ

                        (18.2.2-9) 

⎥⎦
⎤

⎢⎣
⎡ +−−= }

2
log{cos}

2
log{cos

4.1
4)( 21221 aaaaV ππ
π

a                       (18.2.2-10) 

WannWfnn
+−=+−= )(

dt
d                          (18.2.2-11) 

12
1 na

dt
dn

−=                           (18.2.2-12) 

21
2 na

dt
dn

−=                            (18.2.2-13) 

⎟
⎠
⎞

⎜
⎝
⎛= −

1
1

1 2
4.1tan2 na π

π
                               (18.2.2-14) 

⎟
⎠
⎞

⎜
⎝
⎛= −

2
1

2 2
4.1tan2 na π

π
                                (18.2.2-15) 
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Figure 18.2.2-1 Hopfield Example Lyapunov Function and Trajectory 

 

 
Figure 18.2.2-2 Hopfield Example Time Response 
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Figure 18.2.2-3 Lyapunov Function Response 

 

 
Figure 18.2.2-4 Hopfield Convergence to a Saddle Point 
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18.2.3 Hopfield Attractors 

 
The potential attractors of the Hopfield network are equilibrium points. 

0a
=

dt
d                                 (18.2.3-1) 

The minima of a function must be stationary points. The stationary points of V(a), 

0=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

=∇
Sa

V
a
V

a
VV L

21

                                    (18.2.3-2) 

∑ ∫
=

− −
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−=
S

i

T
a

T
i

duufV
1 0

1 )(
2
1)( abWaaa                                          (18.2.3-3) 

⎥⎦
⎤

⎢⎣
⎡−=−+−=∇

dt
tdV )(][)( nbnWaa ε                                      (18.2.3-4) 

dt
daaf

da
daf

dt
d

dt
dnV

a
i

i
i

i
i

i

)]([)])(([)( 11 −− −=−=−=
∂
∂ εεεa                            (18.2.3-5) 

If f--1(a) is linear,  

)(aa V
dt
d

∇−= α                             (18.2.3-6) 

• The response of the Hopfield network is steepest descent.  

• If you are in a region where f--1(a) is approximately linear, the network solution approximates steepest descent.  
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For an increasing function, 

0)]([ 1 >−
iaf

dt
d                                (18.2.3-7) 

The points for which 

0a
=

dt
td )(                            (18.2.3-8) 

are also the points where 

0a =∇ )(V                            (18.2.3-9) 

• The attractors, which are members of the set L, will also be stationary points of the Lyapunov function V(a) . 
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18.3 Effect of Gain 

 

a f n n
= = ⎛

⎝⎜
⎞
⎠⎟

−( ) tan2
2

1

π
γπ                                (18.3-1) 

 

 
Figure 18.3-1 Inverse Tangent Amplifier Characteristic 

 
• As γ goes to infinity, f(n) approaches a signum (step, hardlims) function. 

The general Lyapunov function, 

V f u duT
a

i

S
T

i

( ) ( )a a Wa b a= − +
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−−

=
∫∑1

2
1

01

                                 (18.3-2) 
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f u u− = ⎛
⎝⎜

⎞
⎠⎟

1 2
2

( ) tan
γπ

π                                (18.3-3) 

f u du a aa
i i

i
−∫ = ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥ = − ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟1

0
2

2 2
2

4
2

( ) log cos log cos
γπ π

π
γπ

π                               (18.3-4) 

 

 
Figure 18.3-2 Second Term in the Lyapunov Function 

 
• As γ increases the function flattens and is close to 0 most of the time.  

• As the gain γ goes to infinity, the integral in the second term of the Lyapunov function will be close to zero in the 

range -1 < ai < 1.  
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The high-gain Lyapunov function, 

V T T( )a a Wa b a= − −
1
2

                                          (18.3-5) 

V cT T T T( )a a Wa b a a Aa d a= − − = + +
1
2

1
2

                    (18.3-6) 

∇ = = − = − =2 0V c( ) , ,a A W d b                       (18.3-7) 

∇ = − =
−

−
⎡

⎣
⎢

⎤

⎦
⎥

2 0 1
1 0

V ( )a W                               (18.3-8) 

∇ − =
− −
− −

= − = + −2 21
1

1 1 1V I( ) ( )( )a λ
λ

λ
λ λ λ                      (18.3-9) 

The eigenvalues are λ1 = -l and λ2 = l. The eigenvectors are 

z z1 2

1
1

1
1

=
⎡

⎣
⎢
⎤

⎦
⎥ =

−
⎡

⎣
⎢

⎤

⎦
⎥,                               (18.3-10) 

There will be constrained minima at the two corners of the hypercube 

a =
⎡

⎣
⎢
⎤

⎦
⎥

1
1

 and a =
−
−
⎡

⎣
⎢

⎤

⎦
⎥

1
1

                               (18.3-11) 
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Figure 18.3-3 Example High Gain Lyapunov Function 

 
• When the gain is very small, there is a single minimum at the origin. As the gain is increased, two minima move out 

from the origin toward the two corners given. 
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18.4 Hopfield Design 

 
• The Hopfield network does not have a learning law associated with it. It is not trained, nor does it learn on its own.  

• A design procedure based on the Lyapunov function is used to determine the weight matrix. 

The high-gain Lyapunov function, 

V T T( )a a Wa b a= − −
1
2

                                (18.4-1) 

• The Hopfield design technique is to choose the weight matrix W and the bias vector b so that V takes on the form of a 

function to be minimized.  

 
18.4.1 Content-Addressable Memory 

 
• When an input pattern is presented to the network, the network should produce the stored pattern that most closely 

resembles the input pattern.  

• The initial network output is assigned to the input pattern. The network output should then converge to the prototype 

pattern closest to the input pattern.  

The prototype patterns, 

{ , , }p p p1 2 K Q                         (18.4.1-1) 
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• Each of these vectors consists of S elements, having the values 1 or -1.  

• Q << S. 

Quadratic performance index, 

J q
T

q

Q

( ) ([ ] )a p a= −
=
∑1

2
2

1

                           (18.4.1-2) 

• If the elements of the vectors a are restricted to be ±1, this function is minimized at the prototype patterns. 

When the prototype patterns are orthogonal, the performance index at one of the prototype patterns,  

J p p p p p( ) ([ ] ) ([ ] )j q
T

j
q

Q

j
T

j
S

= − = − = −
=
∑1

2
1
2 2

2

1

2
2

                              (18.4.1-3) 

• J(a) will be largest (least negative) when a is not close to any prototype pattern, and will be smallest (most negative) 

when a is equal to any one of the prototype patterns. 

When the weight matrix applies the supervised Hebb rule (with target patterns being the same as input patterns) as 

W p p=
=
∑ q q

T

q

Q

( )
1

                                 (18.4.1-4) 

b 0=                              (18.4.1-5) 

The Lyapunov function, 

V T T
q q

T

q

Q
T

q q
T

q

Q

( ) ( ) ( )a a Wa a p p a a p p a= − = −
⎡

⎣
⎢

⎤

⎦
⎥ = −

= =
∑ ∑1

2
1
2

1
21 1

                            (18.4.1-6) 
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V Jq
T

q

Q

( ) ([ ] ) ( )a p a a= − =
=
∑1

2
2

1

                                     (18.4.1-7) 

• The Lyapunov function is indeed equal to the quadratic performance index for the content-addressable memory 

problem.  

• The Hopfield network output will tend to converge to the stored prototype patterns. 

• If there is significant correlation between the prototype patterns, the supervised Hebb rule does not work well. In that 

case the pseudoinverse technique has been suggested.  

• In the best situation, where the prototype patterns are orthogonal, every prototype pattern will be an equilibrium point 

of the network. However, there will be many other equilibrium points as well. The network may well converge to a 

pattern that is not one of the prototype patterns.  

• A general rule is that, when using the Hebb rule, the number of stored patterns can be no more than 15% of the number 

of neurons.  

 

 

 

 

 

 



ASIAN INSTITUTE OF TECHNOLOGY                                                                                                                                                   MECHATRONICS 

Manukid Parnichkun                  

                                                                                                         

283

 
18.4.2 Hebb Rule 

 
When the Hebb rule is used to compute the weight matrix in Hopfield network and the prototype patterns are orthogonal, 

W p p=
=
∑ q q

T

q

Q

( )
1

                      (18.4.2-1) 

When a prototype vector pj is applied to the network,  

Wp p p p p p p pj q q
T

j
q

Q

j j
T

j jS= = =
=
∑ ( ) ( )

1

                      (18.4.2-2) 

Wp pj j= λ                               (18.4.2-3) 

• Each prototype vector is an eigenvector of the weight matrix and they have a common eigenvalue of λ = S.  

The eigenspace X for the eigenvalue λ = S, 

X = span{p1, p2, ..., pQ}                            (18.4.2-4) 

• The vector, a, that is a linear combination of the prototype vectors is an eigenvector.  

                     Wa W p p p= + + +{ }α α α1 1 2 2 K Q Q  

                           = + + +{ }α α α1 1 2 2Wp Wp WpK Q Q  

                           = + + +{ }α α α1 1 2 2S S SQ Qp p pK  

= + + + =S SQ Q{ }α α α1 1 2 2p p p aK                                   (18.4.2-5) 
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The entire space RS can be divided into two disjoint sets, 

R X XS = ∪ ⊥                                   (18.4.2-6) 

where X ⊥ : the orthogonal complement of X.  

• Every vector in X ⊥  is orthogonal to every vector in X.  

a ∈ X ⊥ , 

( ) , , , ,p aq
T q Q= =0 1 2 K                                          (18.4.2-7) 

Wa p p a p 0 a= = ⋅ = = ⋅
==
∑∑ q q

T
q

q

Q

q

Q

( ) ( )0 0
11

                                      (18.4.2-8) 

• X ⊥  defines an eigenspace for the repeated eigenvalue λ = 0. 

Summary 

• The weight matrix has two eigenvalues, S and 0.  

• The eigenspace for the eigenvalue S is the space spanned by the prototype vectors.  

• The eigenspace for the eigenvalue 0 is the orthogonal complement of the space spanned by the prototype vectors. 

Hessian matrix for the high-gain Lyapunov function V, 

∇ = −2V W                                    (18.4.2-9) 

• The eigenvalues for ∇2V  will be -S and 0. 
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• The high-gain Lyapunov function is a quadratic function.  

• The first eigenvalue is negative, V will have negative curvature in X.  

• The second eigenvalue is zero, V will have zero curvature in X ⊥ .  

• Because V has negative curvature in X, the trajectories of the Hopfield network will tend to fall into the corners of the 

hypercube {a:-1<ai< 1} that are contained in X. 

• By using the Hebb rule, there will be at least two minima of the Lyapunov function for each prototype vector.  

• If pq is a prototype vector, then -pq will also be in the space spanned by the prototype vectors, X.  

• The negative of each prototype vector will be one of the comers of the hypercube {a:-1<ai< 1} that are contained in X. 

There will also be a number of other minima of the Lyapunov function that do not correspond to prototype patterns. 

• The minima of V are in the corners of the hypercube {a:-1<ai< 1} that are contained in X.  

• These corners will include the prototype patterns, and also some linear combinations of the prototype patterns.  

• The minima that are not prototype patterns are often referred to as spurious patterns.  
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Example:      

When 1,1,0 211,22,1212,21,1 ======== CCRRRR ρρ ,   

⎥
⎦

⎤
⎢
⎣

⎡
=′

01
10

W                      (18.4.2-10) 

An attractor by using high gain Lyapunov function,  

p1

1
1

=
⎡

⎣
⎢
⎤

⎦
⎥                                          (18.4.2-11) 

By using the Hebb rule with one prototype pattern at the attractor, 

[ ]W p p= =
⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥1 1

1
1

1 1
1 1
1 1

( )T                                     (18.4.2-12) 

⎥
⎦

⎤
⎢
⎣

⎡
=−=′

01
10

IWW                           (18.4.2-13) 

The high-gain Lyapunov function, 

V T T( )a a Wa a a= − = −
⎡

⎣
⎢

⎤

⎦
⎥

1
2

1
2

1 1
1 1

                                   (18.4.2-14) 

∇ = − =
− −
− −
⎡

⎣
⎢

⎤

⎦
⎥

2 1 1
1 1

V ( )a W                                (18.4.2-15) 
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Its eigenvalues, 

λ1 2= − = −S  and 02 =λ                           (18.4.2-16) 

The corresponding eigenvectors, 

z1

1
1

=
⎡

⎣
⎢
⎤

⎦
⎥  and z2

1
1

=
−
⎡

⎣
⎢

⎤

⎦
⎥                             (18.4.2-17) 

The first eigenvector, corresponding to the eigenvalue -S, represents the space spanned by the prototype vector: 

X a a= ={ : }a 1 2                              (18.4.2-18) 

The second eigenvector, corresponding to the eigenvalue 0, represents the orthogonal complement of the first eigenvector: 

X a a⊥ = = −{ : }a 1 2                   (18.4.2-19) 

 

 
Figure 18.4.2-1 Example Lyapunov Function 
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18.4.3 Lyapunov Surface 

 
• For the content-addressable memory network, all of the diagonal elements of the weight matrix will be equal to Q (the 

number of prototype patterns).  

The diagonal is zero by subtracting Q times the identity matrix, 

′ = −W W IQ                                       (18.4.3-1) 

′ = − = − = −W p W I p p p pq q q q qQ S Q S Q[ ] ( )                      (18.4.3-2) 

• (S-Q) is an eigenvalue of W', and the corresponding eigenspace is X, the space spanned by the prototype vectors. 

a ∈ X ⊥ ,  

′ = − = − = −W a W I a 0 a a[ ]Q Q Q                          (18.4.3-3) 

• -Q is an eigenvalue of W', and the corresponding eigenspace is X ⊥ . 

Summary 

• The eigenvectors of W' are the same as the eigenvectors of W, but the eigenvalues are (S-Q) and -Q, instead of S and 

0.  

• The eigenvalues of the Hessian matrix of the modified Lyapunov function,∇ ′ = − ′2V ( )a W , are -(S-Q) and Q.  

• The Lyapunov function surface will have negative curvature in X and positive curvature in X ⊥ , in contrast with the 

original Lyapunov function, which had negative curvature in X and zero curvature in X ⊥ . 


