
Final Examination Sensing and Actuation AT74.03 November 26, 2019

Time: 9:00-10:30 h. Marks: 100 Open Book

Attempt all questions.

Q.1 A uniform-cross-section-area half circle tube is used to measure unknown pressure, P_u , as shown in the figure below.

One end of the tube is exposed to atmosphere, the other end is connected with a container of gas with unknown pressure. If mercury is filled in the tube for the amount that makes the length of $3\pi/4$ m. Use atmospheric pressure, P_{atm}, of 101.325 kPa, mercury density of 13550 kg/m³, gravitational acceleration of 9.8 m/s² and the cross-section-area of the tube is very small compared to the length of the mercury.

- (a) Determine the unknow pressure if $x = \pi/8$ m. (10)
- (b) Determine the unknow pressure if $x = 15\pi/16$ m. (10)

Solution

(a) At $x = \pi/8$ m, the other end of the mercury, y, is calculated,

$$y = \frac{\pi}{8} + \frac{3\pi}{4} = \frac{7\pi}{8} \tag{1}$$

The mercury is on the left side of the tube only.

$$P_u = 101325 + 13550 \times 9.8 \times 3 \times \left(\sin\left(\frac{7\pi}{3\times 8}\right) - \sin\left(\frac{\pi}{3\times 8}\right)\right) = 365375.5 \text{ Pa}$$
(2)

(b) At $x = 15\pi/16$ m, the other end of the mercury, y, is calculated,

$$y = \frac{15\pi}{16} + \frac{3\pi}{4} = \frac{27\pi}{16} \tag{3}$$

The mercury is on both sides of the tube.

$$P_u = 101325 + 13550 \times 9.8 \times 3 \times \left(\sin\left(\frac{27\pi}{3\times 16}\right) - \sin\left(\frac{15\pi}{3\times 16}\right)\right) = 160807.9 \text{ Pa} \qquad (4)$$

Q.2 A rotameter is used to measure volume flow rate of an unknown fluid. When the float rises to 5 cm level, the fluid flows at 0.8125 m^3 /s. When the float rises to 10 cm level, the fluid

flows at 1.5 m³/s. When the float rises to 20 cm level, the fluid flows at 3.25 m^3 /s. Determine the fluid flow rates, when the float rises to 30 cm level. (20)

Solution

The relation between the float position and the volume flow rate is expressed by quadratic equation.

$$Q = V(\pi (R + mx)^2 - A)$$
(1)

$$Q = ax^2 + bx + c \tag{2}$$

When the float rises to 5 cm level,

$$0.8125 = 0.05^2a + 0.05b + c = 0.0025a + 0.05b + c$$
(3)

When the float rises to 10 cm level,

$$1.5 = 0.1^2 a + 0.1b + c = 0.01a + 0.1b + c \tag{4}$$

When the float rises to 20 cm level,

$$3.25 = 0.2^{2}a + 0.2b + c = 0.04a + 0.2b + c$$
⁽⁵⁾

$$\begin{bmatrix} 0.8125\\ 1.5\\ 3.25 \end{bmatrix} = \begin{bmatrix} 0.0025 & 0.05 & 1\\ 0.01 & 0.1 & 1\\ 0.04 & 0.2 & 1 \end{bmatrix} \begin{bmatrix} a\\ b\\ c \end{bmatrix}$$
(6)

Thus,

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0.0025 & 0.05 & 1 \\ 0.01 & 0.1 & 1 \\ 0.04 & 0.2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.8125 \\ 1.5 \\ 3.25 \end{bmatrix} = \begin{bmatrix} 25 \\ 10 \\ 0.25 \end{bmatrix}$$
(7)

When the float rises to 30 cm level,

$$Q = 25 \times 0.3^2 + 10 \times 0.3 + 0.25 = 5.5 \text{ m}^{3/\text{s}}$$
(8)

Q.3 An RTD made of Nickel has the relation between temperature and resistance expressed by $R = 50 + \gamma_1 T + \gamma_2 T^2 \Omega$ when T is temperature in °C.

(a) Determine the sensitivity of this Nickel RTD (in $\Omega/^{\circ}$ C) and the sensitivity of this Nickel RTD when it is shunted with a constant resistor of 150 Ω (in $\Omega/^{\circ}$ C) as functions of γ_1, γ_2, T . (10) (b) Determine the sensitivities from both Nickel RTD and Nickel RTD with 150 Ω shunting resistor if $\gamma_1 = 0.125 \Omega/^{\circ}$ C, $\gamma_2 = 0.0025 \Omega/^{\circ}$ C² at 0 and 200 °C. (10)

Solution

(a)

The sensitivity of Nickel RTD is determined,

$$S_{Ni} = \frac{dR}{dT} = \gamma_1 + 2\gamma_2 T \tag{1}$$

Nickel RTD with 150 Ω shunting,

$$R = \frac{150(50+\gamma_1 T+\gamma_2 T^2)}{200+\gamma_1 T+\gamma_2 T^2}$$
(2)

The sensitivity of Nickel RTD with 150 Ω shunting is determined,

$$S_{Ni/150} = \frac{dR}{dT} = \frac{150(\gamma_1 + 2\gamma_2 T)(200 + \gamma_1 T + \gamma_2 T^2) - 150(50 + \gamma_1 T + \gamma_2 T^2)(\gamma_1 + 2\gamma_2 T)}{(200 + \gamma_1 T + \gamma_2 T^2)^2}$$
(3)

$$S_{Ni-150} = \frac{dR}{dT} = \frac{22500(\gamma_1 + 2\gamma_2 T)}{(200 + \gamma_1 T + \gamma_2 T^2)^2}$$
(4)

(b)

At 0°C,

$$S_{Ni_0} = \gamma_1 + 2\gamma_2 T = 0.125 \tag{5}$$

$$S_{Ni/150_0} = \frac{22500(\gamma_1 + 2\gamma_2 T)}{(200 + \gamma_1 T + \gamma_2 T^2)^2} = \frac{22500(0.125)}{40000} = 0.0703$$
(6)

At 200°C,

$$S_{Ni_200} = \gamma_1 + 2\gamma_2 T = 0.125 + 2 \times 0.0025 \times 200 = 1.1250$$
(7)

$$S_{Ni/150_200} = \frac{22500(\gamma_1 + 2\gamma_2 T)}{(200 + \gamma_1 T + \gamma_2 T^2)^2} = \frac{22500(0.125 + 2 \times 0.0025 \times 200)}{(200 + 0.125 \times 200 + 0.0025 \times 200^2)^2} = 0.2396$$
(8)

Q.4 A linear stepping motor is used to carry parts from station A to station B which are 20 meters apart. If platen of the linear stepping motor has 20 teeth per meter and forcer has 16 teeth per meter. Determine the full-step drive frequency and number of steps in order to carry parts from station A to station B at constant speed for 5 seconds. (20)

Solution

Distance between platen teeth,

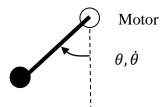
$$d_p = \frac{1}{20} = 0.05 \text{ m} \tag{1}$$

Distance between forcer teeth,

$$d_f = \frac{1}{16} = 0.0625 \text{ m} \tag{2}$$

Distance per step,

$$d_f - d_p = 0.0125 \text{ m}$$
 (3)


Number of steps for the distance of 20 m,

$$N = \frac{20}{0.0125} = 1600 \text{ steps}$$
(4)

Driving frequency,

$$f = \frac{1600}{5} = 320$$
 Hz (5)

Q.5 A motor is used to rotate a point mass load in vertical plane at a constant angular velocity as shown in the figure below.

(a) Determine the required power from the motor as a function of angular position of the arm. Use notation m, l, ω, g to represent mass of load, arm length, angular velocity, and gravitational acceleration respectively. (10)

(b) If m = 2 kg, l = 75 cm, $\omega = 30 RPM$, $g = 9.8 m/s^2$, Select the motor power by using 2 as the safety factor and select gear transmission ratio. Assume without gear the motor speed is 2400 RPM. (10)

Solution

(a)

Torque depends on angular position,

$$T = mglsin(\theta) \tag{1}$$

Thus, the power also depends on angular position.

$$P = T\omega = mgl\omega sin(\theta) \tag{2}$$

(b)

The motor is selected at the maximum power.

$$P_{max} = 2 \times 9.8 \times 0.75 \times 30 \left(\frac{2\pi}{60}\right) = 46.18 \, W$$
 (3)

Use 2 as safety factor, thus, the selected motor should have the minimum power

$$P = 46.18 \times 2 = 92.36 \, W \tag{4}$$

The required gear ratio should be

$$N = \frac{2400}{30} = 80:1$$
 ratio (5)