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ABSTRACT 

Nowadays, the agricultural industry has widely adopted automatic machinery to 

increase their productivity and reduce production costs. Labor-intensive agricultural 

tasks are especially targeted to be replaced by an automated robot, such as soil 

preparation, cultivation, fertilizing, weed control, Insecticide spray, and harvesting. 

Since these tasks require the robots to follow a predetermined path, one important 

criteria required from these robots is an accurate and precise localization, which 

includes XYZ position, heading, and attitude (roll and pitch tilts). This research 

presents a novel to design, construct a positioning and tilt angle system of agricultural 

machinery with high precision and low cost using an image-processing triple-laser-

guided (TLG) system coupled with an inertial measurement unit (IMU). The TLG 

system consists of a laser-pointing unit (LPU) at the base station and a laser-target 

unit (LTU) at the mobile robot. The robot’s XYZ position and heading are determined 

from the positions and the angles relative to the field of both LPU and LTU. The IMU 

sensor fusion determines the robot’s roll and pitch with a complementary filter. The 

IMU-coupled TLG system was demonstrated on an outdoor, 20 x 21 m flat field at 

various light intensities, and then tested in an actual paddy field in the same 

conditions. The paddy field testing indicates that the uneven area of the actual field 

does not affect the system. The overall lateral and vertical accuracies of the IMU-

coupled TLG system are 1.68 cm and 0.59 cm, respectively. The general heading, 

roll, and pitch accuracies of the IMU-coupled TLG system are 0.90º, 0.78º, and 0.76º, 

respectively. The lateral and heading accuracies of the IMU-coupled TLG system are 

comparable to commercially available GNSS-INS systems from NovAtel and 

Trimble. On the other hand, the total cost of the IMU-coupled TLG system is only a 

fraction of the total cost of the commercially available localization systems. 

Keywords: Laser tracking system, Localization, Inertial Measurement Unit (IMU), 

Sensor Fusion, Position control. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study  

In recent years, automatic guidance machinery for farming has been widely 

researched and implemented in the agricultural industry to increase productivity and 

reduce costs. Specifically, automatic guided robots support many agricultural tasks, 

i.e., seeding, weed controlling, soil tilling, fertilizing, watering, and harvesting. Most 

automatic farming uses Global positioning system (GPS) and machine vision mainly. 

The accuracy was 25 mm and 60 mm, respectively (Reid et al., 2000). Using GPS for 

outdoor location and RF-base trilateration for indoor was proposed by Borenstein et 

al. (1997). Many sensors and methodologies were studied to compare and find the 

best solution suitable for applications (Hague et al., 2000). The position estimator 

method, named maximum likelihood (ML), is applied to get the highest position 

accuracy (Zekavat and Buehrer, 2011). The technology expanded fastly; in a short 

year, navigation systems developed for US agriculture were born; for example, a 

transplanting robot can travel within an error range of ±100 mm from the 

predetermined path. RTK-GPS is popular equipment that offers position accuracy 

down to 20 mm (Zhang and Pierce, 2013), but it has many errors in heading 

measurement.  

An inertial measurement unit (IMU) is an electronic device that also measures 

acceleration, angular velocity, and magnetic field. Both acceleration and angular 

velocity output of IMU can calculate their tilts using the sensors fusion technique 

(Min and Jeung, 2015; Zhe et al., 2020). In order to get good accuracy in tilts 

measurement, complementary filter and Kalman filter are applied in many applicable 

cases (Pititeeraphab et al., 2016). Gui et al. (2015) and Ngo et al. (2017) reported that 

the comparison results of the complementary filter could be more stable and accurate 

than the Kalman filter. Filtering and adding more IMU are also used to improve tilt 

measurement accuracy down to 0.004 deg (Weng et al., 2017). 

In order to save sensing equipment costs and obtain more accuracy, multi-sensor 

fusion is a regularity to reduce the cost and improve the system performance. Zhu et 

al. (2011); Emter and Ulrich ( 2012); LeVoir et al., (2020) presented camera fuse with 
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LiDAR. The results look pretty good; position cross-track SD reaches 13.7 mm, and 

angle cross-track SD is about 0.93 deg during the late-growth season. Range 

measurement by the time of arrival (TOA) gives high accuracy (Zekavat and Buehrer, 

2011); the distance error is less than 10 mm and low cost. The sensor made by TOA 

can use with each other to identify the position. More sensor fusion techniques with 

GPS (Gomez-Gil et al., 2011; Singh et al., 2019), differential GPS (DGPS) (Emter et 

al., 2010), global navigation satellite system  (GNSS) (Sippel et al., 2008; Guo et al., 

2018), real time kinematic GPS (RTK-GPS) (Lenain et al., 2006; Han et al., 2015), 

RTK-DGPS (Gan-Mor et al., 2007), RTK-GNSS (Jilek, 2015; Tatarnikov et al., 2017; 

Pini et al., 2020), camera (Betke and Gurvits, 1997; Shim and Cho, 2015), encoder 

(Shalal et al., 2015a; Nemec et al., 2019), IMU (Shalal et al., 2015b; Le et al., 2019), 

Magnetic sensors (Sheinker et al., 2013; Nilwong et al., 2019), ultra wide band 

(UWB) (Shi et al., 2020), radar (Guan et al., 2018), ultrasonic (Hoppenot and Colle, 

1997), radio frequency (RF) (Hsu et al., 2007), laser beacons based (Moreira et al., 

2020), infrared (IR) landmark (Her et al., 2012), optical sensor (Corbellini et al., 

2006; Souvestre et al., 2009), Position-Sensitive Detector (PSD) (De-La-Llana-calvo 

et al., 2020), laser range finder (LRF) (Larsson et al., 1996; Bento et al., 2005; Libby 

and Kantor, 2011; Canedo-Rodríguez et al., 2016) describe in chapter 2 literature 

reviews. 

Mainly, farmers employ RTK GNSS coupled with inertial navigation systems (INS) 

extensively due to its relatively higher accuracy and precision than other sensing 

techniques. In the RTK GNSS-INS system, the robot's position is determined based 

on the trilateration of the Universal Transverse Mercator obtained through a 

constellation of satellites. In contrast, the robot's heading and attitude are obtained by 

real-time measurements of angular velocity, linear acceleration, and the earth's 

magnetic field via the INS.  

Nonetheless, there are a few drawbacks to the agricultural practicality of the RTK 

GNSS-INS system: 

1. The RTK GNSS-INS system's accuracy and precision depend on the 

transmissivity of satellites' signals. The decrease in the satellite transmissivity 

due to signal blockage from neighboring buildings or trees and cloudy weather 
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can deteriorate the RTK GNSS-INS system's positioning accuracy and 

precision. 

2. The heading determination in the RTK GNSS-INS system partly relies on the 

sensor fusion between the earth's magnetic field measurement from 

magnetometers and the angular velocity measurement from gyroscopes with 

tilt compensation accelerometers in the INS unit. Due to geographical 

variation in the earth's magnetic field, the RTK GNSS-INS system requires a 

time-consuming calibration when the operating field has been moved. 

3. The earth's magnetic field measurement can easily be interfered with by the 

surrounding environment, such as motor, metallic structures, and electronic 

equipment; therefore, the INS's heading measurement can be inconsistent and 

unreliable. 

4. The RTK GNSS-INS system is currently costly and not affordable to small-

scale farming operations. 

In order to compensate for the drawbacks of an expensive RTK GNSS-INS system, 

this research presents a low-cost, inertial measurement unit (IMU)-coupled triple-

laser-guided (TLG) system with superior localization accuracy and precision at a 

substantially lower cost. 

1.2 Statement of the Problem 

This research considers a solution to locate a robot position in the paddy field, which 

solves problems in the list below: 

 Low-accuracy and precision that is not enough for a robot in a paddy field 

 The expensive of the RTK-INS navigation system in markets 

 Signals blocked in low RF signals (Both satellite and RF communication signal) 

areas, such as urban areas with buildings, dense forests, and cloudy days. 

 Tilts compensation for end-effector 

 Robust against electromagnetic field 

 Easy for carry-on and installation.  
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1.3 Research Questions 

The list below is shown the research questions. The answer will be evident to decide 

an appropriate localization system for autonomous machinery systems in outdoor and 

indoor environments. 

 Can the system work under sunlight directly and indirectly? 

 How much light intensity that the system can work? 

 What is the limitation of measurement? 

 What is the accuracy and precision of position and attitude? 

 How to apply with an autonomous farming robot? 

 How much does it cost? 

 What is the strategy to implement the localization system? 

 How to track the target in the paddy field? 

 What is the best sensor for sensing laser points? 

 How to test and get the performance, accuracy, and precision of the system? 

 How is the system robust against electromagnetic field interferences and 

environmental influences? 

1.4 Objectives of the Study 

The main objective of this study in the list below answers the research question 

above. The objective of the study is in the following topic: 

 To develop low-cost multisensor fusion with the 5 cm. precision 

 To demonstrate the actual deployment both in actual flat field and in paddy field 

 To compare with commercial outdoor localization systems based on RTK 

1.5 Scope and Limitations 

The scope and limitations of this research are listed as follows: 

 The robot speed is equal to or less than 2 m/S 

 No intensity sunlight at laser target sensor directly 

 The working area is 20 x 20 m 

 Ground slope less than 45 degree 

 No laser blocked between laser base and laser target scene 

 Low moisture area. 
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1.6 Contributions and Publications 

There is a contribution in IEEE access publication which includes all concepts and 

designs to get indoor and outdoor robot position and attitude in a flat field. The 

publication is “S. Kaewkorn, M. Ekpanyapong and U. Thamma, "High-Accuracy 

Position-Aware Robot for Agricultural Automation Using Low-Cost IMU-Coupled 

Triple-Laser-Guided (TLG) System," in IEEE Access, vol. 9, pp. 54325-54337, 2021, 

doi: 10.1109/ACCESS.2021.3071554.”. Readers can access for free via 

“https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639”.  

1.7 Organization of the Study 

This dissertation is organized into five main parts. The chapters are divided into 

subtopics: Chapter 1 introduces the background of study in high-accuracy robot 

position and tilts for agriculture and their system with literature reviews. Both indoor 

and outdoor technics are discussed to summarize the advantage and disadvantages in 

various views. The sub-chapter objectives of the study and scope show the aims of 

this research in bullet points. Moreover, an IEEE Access publication with an impact 

factor of 3.367 is presented. Chapter 2 summarizes literature reviews in tables and 

discussions by listed groups of sensor types and reported their brief details, accuracy 

in position errors, and tilt errors. Chapter 3 describes the system equipment of the 

laser base station and the mobile unit in the first and second sub-chapter, respectively. 

In order to succeed in the measurement system, all parameters from sensors, data 

communication, control strategies, and determination of robot’s position and pose are 

shown in this chapter. The experimental results are then in chapter 4. Conclusions, 

discussions, and recommendations for future work contain in chapter 5.  
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CHAPTER 2 

LITERATURE REVIEWS 

In this chapter, localization systems for agricultural applications for both indoor and 

outdoor environments including historical products and research studies are 

summarized in terms of accuracy, precision, worthiness, technology, difficulty, and 

efficiency.  The total of 72 published research and books is reviewed, summarized, 

and rewritten in 10 tables with descriptions—the information guide to decide a new 

localization system that is better than the old one. 

To begin the study of localization for a robot in a paddy field, pieces of knowledge 

about agriculture machinery are essential. 

2.1 Localization Methodology for Agriculture 

The literature review begins with searching manuscripts and books from the websites. 

The best research searching is "Google Scholar," which can feed a lot of research 

knowledge about robot localization in the paddy field with their details. Mendeley, a 

citation managing tool, is used to help collect bibliographical information and 

correctly generate a reference list. The 23 historical types of research from 1997 to 

2020 in Table 2.1 are reviewed to study automatic guidance robots.  

The studying and development of robot navigation systems started before 1990. The 

purpose is to make a farming machine work in fields automatically (Borenstein et al., 

1997). There are two main types of position sensors, which are absolute measurement 

sensors and relative measurement sensors. The absolute measurement can determine 

the robot’s position in reference to the geographical coordinate, so the information 

from the sensor identifies the place in latitude and longitude. In comparison, the 

relative measurement determines the robot’s coordinate relative to a local reference. 

For example, the navigation solution for the outdoor environment is GPS (absolute), 

and the answer for the indoor climate is RF-based trilateration (relative) via 

triangulation (Borenstein et al., 1997). 

GPS has become a widely adopted sensor to measure a point on ground location 

because of easy use, low cost, and lightweight, but it has low accuracy and low 

precision (Position error up to 25 m). Therefore, GPS with ground base compensation 
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(RTK-GPS) is developed to further minimize the positioning error; the total 

displacement SD is 13.4 mm designed with RTK-GPS + IMU + Odometer for a John 

Deer tractor model 6430 (Perez-Ruiz et al., 2012). 

Although, RTK-GPS has high accuracy enough for agriculture, there are some 

drawbacks, for examples, low satellite signals and tall building signal block and 

reflection those lead to low position accuracy. 

Satellite signal blocked, and low heading accuracy of RTK can be improved by sensor 

fusion methodology. Local relative position sensors such as cameras (Shalal et al., 

2015a) and laser scanners (Backman et al., 2012) are used to identify the position in 

RTK blocked time.  

IMU is presented to improve heading accuracy because  IMU can measure tilt quickly 

and accurately. The tilts accuracy measure by IMU sensor fusion is 0.2˚ (Zhang and 

Pierce, 2013). 
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Table 2.1 

Review on Localization Methodology for Agriculture 

Author Sensors Strategies Experimental Accuracy (mm) 
(Borenstein et 
al., 1997) 

Review A review on mobile robot positioning & sensors and 
techniques in seven categories for positioning systems: 1. 
Odometry; 2. Inertial Navigation; 3. Magnetic Compasses; 4. 
Active Beacons; 5. Global Positioning Systems; 6. Landmark 
Navigation; and 7. Model Matching 

Review The navigation solution:  
- Outdoor is GPS 
- Indoor is RF-base trilateration using 
triangulation. The results are in appendix A 

(Reid et al., 
2000) 

Review Review navigation system sensors such as:  
 Mechanical feelers, Machine vision, Global position systems, 
Geomagnetic direction sensor 
Review Navigation planner such as:  
 Dead reckoning, Kinematic model, Sensor fusion, 
Autonomous functions 

Review Most of the navigation system developed 
for US agriculture is machine vision, and 
GPS techniques are:  
Machine vision gives 60 mm accuracy at 
4.9 km/h, 
GPS has line tracking accuracy of 25 mm 
and 1 deg accuracy in the heading. 

(Hague et al., 
2000) 

Review in Odometer, 
IMU, Laser range 
finder, Radar, Sonar, 
Camera 

To examine ground-based sensing systems for autonomous 
agricultural vehicles in various sensor categories 

Review The summary of position offset error of 
sensors in Fig. 5 shows the best accuracy is 
sensors fusion with Kalman filter, which is 
within 50 mm 

(Corbellini et 
al., 2006) 

Laser + Optical 
sensor 

Detecting laser light rotating with an optical sensor to get the 
tractor position 

A tractor with the 
position in fields up 
to 0.5 km 

Different distance SD: 
- Raw data 1500 mm at a distance of 250 m 
- Filtered data 700 mm at a distance of 250 
m 

(Gan-Mor et 
al., 2007) 

RTK-DGPS Improve the accuracy by using a three-point hitch implement 
mounted on RTK-DGPS for a tractor 

The testing system 
and a tractor 

RMSE of the lateral deviations: 69.1 mm 
and 74.1 mm for speed 4.0 and 7.2 km/h, 
respectively 

(Rovira-Más 
et al., 2008) 

RTK-GPS + Stereo 
camera + IMU 

A 3D terrain map by a stereo camera and localization aid 
sensors (RTK-GPS, IMU) 

A utility vehicle 
(John Deere, 
Moline, IL) 

The system can generate 3D field maps for 
precision agriculture, as shown in Fig. 9, 11, 
and 13 



 

 
 

9 

Author Sensors Strategies Experimental Accuracy (mm) 
(Nagasaka et 
al., 2009) 

GPS + IMU + 
Encoder 

Development of an automated rice transplanter guided by a 
global positioning system,  an inertial measurement unit, and 
rotary encoder 

A rice transplanter 
in a paddy field 

RMS lateral deviation was observed to be < 
40 mm, 
RMS heading Error was < 3.6 deg 

(Sun et al., 
2010) 

RTK-GPS + IMU + 
Encoder 

Design a positive-placement vegetable crop transplanter 
retrofitted with an RTK GPS receiver, plant, inclination, and 
odometry sensors 

Self-developed 
Row-crop 
transplanter 

The mean of position Error is 20 mm 

(Gomez-Gil et 
al., 2011) 

GPS GPS data and tractor kinematic control laws fusion by placing 
the GPS receiver ahead of the  tractor and applying  kinematic 
laws of tractor movement 

Simulation and 
tested with a tractor 
on a field 

RMS Error: 48 mm at 5 m of forwarding 
GPS guidance position 

(Libby and 
Kantor, 2011) 

Laser range finder + 
Encoder 

Uses wheel odometry and laser rangefinder with an extended 
Kalman filter (EKF) algorithm for localizing a mobile robot in 
an orchard environment 

Self-testing system 
in an orchard 

The mean crosstrack Error is 140 mm 
The mean downtrack Error is 160 mm 

(Zekavat and 
Buehrer, 
2011) 

Book Handbook of position location The book describes 
all about position 
and location 

Features: 
Table 1.1. Comparison of basic methods, 
Table 1.2. Comparison of positioning 
systems (Part 1),  
Table 2.2. Comparison of different 
measurement models, 
Table 2.3. Comparison of different position 
estimators 
The viewpoint: TOA gives high accuracy 

(Backman et 
al., 2012) 

GPS + Laser scanner 
+ IMU 

Navigation system for agricultural machines using Nonlinear 
Model Predictive Control (NMPC) with GPS, 2D laser 
scanner, and IMU fused with extended Kalman filter (EKF) 

Tractor and  trailer 
system 

The accuracy requirement was at most 100 
mm; lateral Error at a speed of 12 km/h 

(Perez-Ruiz et 
al., 2012) 

RTK-GPS + IMU + 
Odometer 
 

Geospatial mapping of transplanted tomato plant using RTK-
GPS on a tractor and IMU and absolute shaft encoder on a 
transplanter 

A tractor (John 
Deere model 6430 
and transplanter 
(model 1600) 

Easting displacement SD is 19.2 mm, 
Northing displacement SD is 23.0 mm,  
Total SD is 13.4 mm 

(Xue et al., 
2012) 

RTK-GNSS + 2D-
LiDAR 

Using a camera with pitch and yaw motion control to navigate 
between rows in cornfields 

Self-developed 
robot platform in a 
cornfield 

The maximum guidance Error is 15.8 mm 
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Author Sensors Strategies Experimental Accuracy (mm) 
(English et al., 
2013) 

GPS + INS + Camera Positioning system using pose estimation by fusing data from a 
low-cost global positioning sensor, low-cost inertial sensors, 
and a new technique for vision-based row tracking algorithm 
to improve the performance of the positioning system 

A testing robotic 
platform designed 
for spraying weeds 

RMS Error: 
- Skytraq (RTK GPS)+row tracking is 80 
mm 
- uBlox (GPS) + row tracking is 520 mm 

(Zhang and 
Pierce, 2013) 

book Agricultural automation fundamentals and practices Book The famous sensor for agriculture robots is 
RTK-GPS. The RTK-GPS has an accuracy 
of ±2 cm, whereas the IMU composed of 
fiber optics gyroscope has an accuracy of 
0.2° (P16) 

(Han et al., 
2015) 

RTK-GPS+IMU Auto-guidance tillage tractor for a paddy field in Korea using 
look-ahead distance method for controlling the tractor with 
RTK-GPS and GNSS-INS sensor fusion 

Tillage tractor with 
sensors and 
actuators 

RMS lateral Errors:  
- Straight paths is ranging from 38 mm to 
128 mm, 
- Moisture (content > 30%) is 1000 mm 

(Shalal et al., 
2015a) 

Camera + Laser 
scanner + IMU + 
Odometers 

Using tree trunk orchards detection algorithm with a camera 
and laser scanner data fusion, tested in sunny and cloudy days 

CoroWare Explorer 
platform with on-
board sensors 

Tree trunks and non-tree objects with the 
detection accuracy of 96.64% 

(Guo et al., 
2018) 

GPS, GNSS, RTK Examination of the feasibility of multi-GNSS precise point 
positioning (PPP) in precision agriculture (PA) compared with 
GPS only and RTK 

Self-testing system Multi-GNSS improved the accuracy of 
base-line length from 126.0 mm to 35.0 mm 
and the repeatability from 110.0 mm to 49.0 
mm, in addition to the BeiDou, Galileo, and 
GLONASS positioning accuracy of 20 mm 

(YIN et al., 
2018) 

RTK-GNSS + IMU Implementation of rice transplanter automatic guidance with 
RTK-GNSS and IMU fusion 

The automatically 
guided rice 
transplanter 

Position Error < 100 mm 

(Pini et al., 
2020) 

RTK-GNSS RTK-GNSS experimental to get methodologies for use in 
precision agriculture 

Real field test in 
different 
environments 

Position Error < 25 mm 

(Li et al., 
2020) 

Dual antenna RTK-
GNSS 

Use dual antenna GNSS for land leveling equipment A tractor with land 
leveling equipment 

SD of land leveler:  
 Before leveling is 74.4 mm, 
 After leveling is 12.6 mm 
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Author Sensors Strategies Experimental Accuracy (mm) 
(LeVoir et al., 
2020) 

Camera + LiDAR Develop a high-accuracy adaptive low-cost location by using 
the camera, and a LiDAR for precision agriculture (PA) by 
machine-learning 

Self-developed the 
"bikebot" 

Cross-track SD: 
- During growth season is 25.1 mm, 
- During the late growth season is 13.7 mm
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2.2 Using Sensors for Indoor and Outdoor Localization 

To design the localization measurement system, the location application is divided 

into two scenarios, indoor and outdoor environments. The system designers must 

understand sensors' features and properties to pick suitable sensors for their 

application. Sensor review for indoor and outdoor localization system is summarized 

here in this section where the sensors were divided into two main categories: absolute 

position sensor in table 2.2-2.3 and relative position sensor with tilts sensor in Table 

2.4.  

2.2.1 Absolute Position based on Satellite Signals and Ground Base Station 

Table 2.2 lists localization techniques using absolute position based on satellite 

signals. The GPS and GNSS are used as the primary sensor to obtain robot positions 

in the outdoor environment. The difference between GPS and GNSS is GPS receives 

signals from only one group of satellites named GPS, while GNSS receives the 

signals from multi-satellite such as the United States' Global Positioning System 

(GPS), Russia's Global Navigation Satellite System (GLONASS), China's BeiDou 

Navigation Satellite System (BDS), and the European Union's Galileo.  

There are many types of research in GPS and GNSS systems fusion with other sensors 

to increase precision and accuracy, as shown in Table 2.2. One interesting case is 

Mizushima et al. (2011) study using three vibratory gyroscopes and two inclinometers 

sensor fusion for a roll, pitch, and heading measurements with improved GPS position 

accuracy. The outdoor positioning accuracy reduced from 259 mm to 30 cm  on a 

sloping ground and 84 mm to 37 mm  a rough terrain. The maximum orientation error 

(RMS) of roll, pitch, and yaw are 0.43˚, 0.61˚, and 0.64˚, respectively. 
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Table 2.2 

Review on Localization by using Absolute Position based on Satellite Signals 

Author Sensors Strategies Application Experimental Position Accuracy (mm) Orientation 
Accuracy (deg) 

(Gao et al., 
2007) 

GPS + IMU + WSS 
+ GL/YRS 

Develop a GPS, low-cost IMU, and onboard 
vehicle sensors integrated land vehicle 
positioning system using a centralized Kalman 
filter 

Outdoor The system on a 
car 

Horizontal position 
difference RMS is 380 mm 

N/A 

(Sippel et al., 
2008) 

GNSS + Laser 
tracking 

Design of a laser tracking system for GNSS 
augmenting 

Outdoor Real railway 
tracking model 

Maximum absolute position 
Error is 65 mm 

N/A 

(Nagasaka et 
al., 2009) 

GPS + IMU + 
Encoder 

Development of an automated rice transplanter 
guided by a GPS,  IMU, and rotary encoder 

Outdoor A rice 
transplanter in a 
paddy field 

Lateral deviation RMS was 
observed to be < 40 mm 

Heading angle 
RMS Error was 
< 3.6 deg 

(Lee et al., 
2009) 

GPS + Camera + 
Odometer 

Development of robot localization using 
camera fuse odometer with particle filter and 
GPS with Kalman filter 

Outdoor A mobile robot Average position Error: X is 
780 mm and Y is 430 mm 

N/A 

(Weinstein 
and Moore, 
2010) 

GPS + IMU, 
Potentiometer + 
Encoder 

A localization scheme for Ackerman steering 
vehicles using a low-cost GPS and 
inclinometer fusion by complementary filter 
and Kalman filter to estimate the vehicle's 
pose. A string potentiometer and an encoder to 
determine the vehicle steering angle and the 
speed 

Outdoor The electric 
mini-Baja 
vehicle 

Results in the position plot 
seem reasonable, as shown 
in Fig. 8 

N/A 

(Emter et al., 
2010) 

DGPS + IMU + 
Odometer+ 
Compass + LiDAR 
+ ToF camera 

Multi-sensor fusion for a total 6 DoF 
estimation of position and attitude in outdoor 
environments using a new Kalman filter 

Outdoor A mobile robot The plotting results in maps 
look smoother with filtered 
and odometry has error 
when moving for a long time 
as shown in Fig. 3-6 

N/A 
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Author Sensors Strategies Application Experimental Position Accuracy (mm) Orientation 
Accuracy (deg) 

(Gomez-Gil 
et al., 2011) 

GPS GPS data and tractor kinematic control laws 
fusion by placing the GPS receiver ahead of 
the tractor and on applying kinematic  laws  of 
tractor movement 

Outdoor Simulation and 
testing with a 
tractor 

Position Error RMS is 48 
mm at 5 m of forwarding 
GPS guidance position 

N/A 

(Mizushima 
et al., 2011) 

GPS + Gyroscope + 
Inclinometer 

Three vibratory gyroscopes and two 
inclinometers sensor fusion to get a roll, pitch, 
and heading with improved GPS position 
accuracy 

Outdoor A prototype of 
the attitude 
sensor 

Improved the positioning 
accuracy from 259 mm to 30 
mm in the sloping ground 
from 84 mm to 37 mm in the 
bumpy road 

Max Error 
RMS: 
- roll 0.43 deg, 
- pitch 0.61 deg, 
- heading 0.64 
deg 

(Li et al., 
2012) 

GPS + Laser range 
finder + Encoder 

Localization algorithm for the outdoor 
navigation system, using cubature Kalman 
filter based on standard dead reckoning sensors 
and laser range and bearing information 

Outdoor Simulation Cubature Kalman filter 
performs much better than 
using the extended Kalman 
filter by fixed 10 mm 
accuracy for simulation 

N/A 

(Backman et 
al., 2012) 

GPS + Laser 
scanner + IMU 

Navigation system for agricultural machines 
using nonlinear model predictive control 
(NMPC) with GPS, 2D laser scanner, and IMU 
fused by extended Kalman filter (EKF) 

Outdoor Tractor and 
trailer system 

Accuracy requirement was 
at most 100 mm lateral Error 
at a speed of 12 km/h 

N/A 

(English et 
al., 2013) 

GPS + INS + 
Camera 

Positioning  system using pose estimation by 
fusing data from a low-cost GPS,  low-cost 
IMU, and a new technique for vision-based  
row tracking algorithm to improve the 
performance of the positioning system 

Outdoor 
across a 6 
hectare field. 

Robotic platform 
designed for 
spraying weeds 

Error RMS: 
- Skytraq (RTK GPS) + row 
tracking is 80 mm, 
- uBlox (GPS) + row 
tracking is 520 mm 

N/A 

(Wei et al., 
2013) 

GPS + Camera + 
Laser range finder 

A stereoscopic system, a laser range finder 
(LRF), and a global localization sensor GPS, 
fused with an unscented information filter 

Outdoor A 4 wheels 
vehicle 

Position error SD: Minimum 
Error of Unscented IF (UIF) 
fusion (with rejection) is 
1080 mm 

N/A 
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Author Sensors Strategies Application Experimental Position Accuracy (mm) Orientation 
Accuracy (deg) 

(Singh et al., 
2019) 

GPS A design of connecting a robot with GPS 
locating to a Wi-Fi modem and a GPRS 
modem for sending robot position and heading 
to IoT server 

outdoor Mobile robot The robot location accuracy 
result is relatively low, as 
shown in the section result 
and discussion picture, 
which shows a path plot on 
Google Earth 

N/A 
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Nowadays, the positioning triangulation from the GPS/GNSS satellites has been 

improved by adding a base station compensator, namely real-time kinematic (RTK), 

to reach high accuracy down to a bit of a millimeter. Since the RTK base station  is 

stationary, it improves the prevision and accuracy of the robot localization using 

transmitted compensation information set to the rover receivers via a radio frequency 

signal. 

The three types of RTK system is reviewed in Table 2.3 with positioning accuracy. 

The RTK-GPS by Lenain et al. (2006) integrated with control raw had a tracking error 

in range ±150 mm, while RTK-GNSS (Jilek, 2015) has reported a position error under 

10 mm. The accuracy of RTK-GNSS can be further improved by using dual-

frequency antennas named "Backfire helix" with positioning error  of 1.5 mm in 

vertical direction and below 1 mm in the horizontal plane (Tatarnikov et al., 2017). 

RTK-DGPS is a way to increase position accuracy; Gan-Mor et al. (2007) reported 

that RTK-DPGS gives RMSE of the lateral deviations 69.1 mm and 74.1 mm for 

speed 4.0 and 7.2 km/h, respectively. 
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Table 2.3 

Review on Localization by using Satellite Signals with Ground Base Compensation 

Author Sensors Strategies Application Experimental Position Accuracy (mm) Orientation 
Accuracy (deg) 

(Lenain et al., 
2006) 

RTK-
GPS 

Use control raw with RTK-GPS to get 
high-accuracy path tracking for farm 
vehicles and anti-sliding 

Outdoor Vehicles used in 
actual experiments 

Tracking Error remains in the target 
range ±150 mm 

N/A 

(Gan-Mor et 
al., 2007) 

RTK-
DGPS 

Improve the accuracy by using a 
three-point hitch implement mounted 
on RTK-DGPS for a tractor 

Outdoor on paved 
and rough surfaces 

The testing system 
and a tractor 

RMSE of the lateral deviations: 69.1 
mm and 74.1 mm for speed 4.0 and 7.2 
km/h, respectively 

N/A 

(Jilek, 2015) RTK-
GNSS 

Field measurements in outdoor 
environments using RTK-GNSS 

Outdoor Orpheus-X3 
mobile robot 

Predicted Errors are under 10 mm N/A 

(Tatarnikov et 
al., 2017) 

RTK-
GNSS 

Using dual frequency Backfire helix 
antennas for RTK to get high 
precision positioning 

Outdoor Testing system Positioning Error is estimated as 1.5 
mm in vertical and below 1 mm in the 
horizontal plane in the RMS sense  

N/A 
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To design a high-performance locating system, the modified RTK and sensor fusion 

are applied, as presented in Table 2.4. By using Two RTK (De-La-Llana-calvo et al., 

2020; Valente et al., 2020), the average positioning error were improved to be less 

than 30 mm (Aghili and Salerno, 2009). In addition, multi-antenna RTK is a strategy 

to achieve a higher accuracy (LI and Teunissen, 2012). RTK sensor fusion is also 

developed to improve position and orientation accuracy (Fang et al., 2009; (Kato and 

Morioka, 2019; He et al., 2020). 

The information in table 2.4 is a review of localization by using modified RTK in 

several techniques and their results from 2009 to 2021. Using RTK-GNSS + IMU + 

UWB is shown to be one of the best indoor/outdoor options for positioning and 

orientation system. The position error is 15 mm, and the heading error is 0.05˚ at a 

baseline of 10 m. 
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Table 2.4 

Review on Localization by using Modified RTK by Specific Techniques 

Author Sensors Strategies Application Experimental Position Accuracy (mm) Orientation Accuracy (deg) 
(Aghili and 
Salerno, 
2009) 

two RTK-GPS + IMU Mobile robot localization using 
Kalman filter with 2 RTK(GPS) + 
IMU fusion for driftless 3-D 
attitude determination and robot 
position estimate 

Outdoor Canadian 
Space 
Agency 
(CSA) 

- Attitude estimation 
exhibits have no drifting,  
- Average position Error 
is 30 mm,  
- Max Error is 120 mm 

N/A 

 (Fang et al., 
2009) 

RTK + Camera + 
Odometers 

Ground-texture-based localization 
by mounted a camera at the bottom 
of a vehicle, odometry, and RTK to 
create the mapping 

Outdoor A vehicle Position Error: 
- X is 62.8 mm, 
- Y is 63.9 mm 

Heading Error is 0.78 deg  

(LI and 
Teunissen, 
2012) 

Multiple antennas 
RTK 

Improving long-baseline RTK 
positioning (80 km) with multiple 
antennas dual-frequency GPS data 
by using Array-aided precise point 
positioning (A-PPP) 

Outdoor Self-testing 
system 

STD of ARTK: 
- North is 54 mm, 
- East is 59 mm, 
- Up is 38.9 mm 
 

N/A 

(Kato and 
Morioka, 
2019) 

RTK-GNSS + 2D-
LiDAR 

Use deep reinforcement learning 
and localization using RTK-GNSS; 
the robot can take adequate action 
from obstacle positions obtained 
from 2D-LiDAR 

Outdoor Self-
developed 
autonomous 
mobile robot 

Accuracy of several 
centimeters within 10 km 
in general urban 
environments 

N/A 

(De-La-
Llana-calvo 
et al., 2020) 

Two RTK-GNSS Evaluate two low-cost RTK-GNSSs 
in terms of positioning accuracy 
and precision 

Outdoor Self-
developed 
mobile robot 

Root Mean Square Error 
(RMSE) < 50 mm 

N/A 

(Valente et 
al., 2020) 

Two RTK-GNSS Improve two RTK-GNSS by 
mounted on a fixed, known distance 
between the GNSS antennas on the 
robot (472 mm) 

Outdoor RTK-GNSS 
and a tester 
robot 

Root Mean Square Error 
(RMSE) < 50 mm 

N/A 
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Author Sensors Strategies Application Experimental Position Accuracy (mm) Orientation Accuracy (deg) 
(He et al., 
2020) 

RTK-GNSS + LiDAR An integrated localization and 
mapping (SLAM) by dual-antenna 
GNSS positioning and LiDAR-
SLAM 

Large-scale 
outdoor 
environments 

Unmanned 
ground 
vehicle 
(UGV) 

Mean Error: 
- X 260 mm,  
- Y 290 mm,  
- Z 370 mm 

Mean Error:  
- Yaw is 0.73 deg, 
- Pitch is 1.289 deg 

(Zhang et al., 
2020) 

RTK-GNSS + IMU + 
UWB 

Use IMU, UWB, and dual-antenna 
RTK-GNSS fusion by Kalman filter 
for Indoor/Outdoor positioning and 
orientation 

Indoor / 
outdoor with 
positioning 
and 
orientation 
system 

Real testing 
system 

Position Error is 15 mm 
(Single baseline RTK) 

- Heading  Error is  0.09 deg 
at baseline 2 m 
- Heading  Error is 0.05 deg 
at baseline 10 m 

(Dai et al., 
2020) 

RTK-GNSS + IMU + 
Laser range finder 

Intertarget Occlusion Handling in 
Multiextended Target Tracking 
(METT) Based on Labeled Multi-
Ber noulli (LMB) Filter 

Outdoor Ego vehicle 
equipped 
with sensors 

The system can estimate 
tracks (no satellite 
signal); the results are 
shown in Fig. 11 and Fig. 
13 

N/A 

(Niu et al., 
2020) 

RTK + Camera Combination of RTK and VI-
SLAM based on smartphones 

Indoor / 
Outdoor 

Urban areas RMS Error : 
GNSS-hostile area: 
- RTK 5441.2 mm, 
- VI-SLAM 5402.1 mm 
GNSS-allowed area: 
- RTK 1376.1 mm, 
- VI-SLAM 5391.9 mm 

N/A 

(Mayer et al., 
2021) 

RTK-GNSS + LoRa An energy-efficient RTK-based 
system using low-power long-range 
communication (LoRa) to 
communicate with RTK base 

Outdoor Real field 
testing 

Base- Rover distance in 
kilometers of distance: 
- Overall Position Error 
200 mm, 
- Peak Error < 100 mm 

N/A 
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2.2.2 Relative Position and Tilts 

A local positioning system is a technique to complete a localization system. A 

camera, a laser scanner, an IMU, and an odometer are necessary sensors to develop 

such system. Table 2.5 is the summary of a review of the necessary positioning and 

orientation sensors for robot’s relative location and its pose. Camera + LiDAR gives 

position error in range ± 150 mm, while Camera + Laser scanner + IMU + Odometers 

can get 103 mm of the average position error RMS. Although image processing using 

neuron networks is developed, the accuracy is still low (Nilwong et al., 2019).  
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Table 2.5 

Review on Localization by using Camera with Sensors Fusion 

Author Sensors Strategies Application Experimental Position 
Accuracy (mm) 

Orientation 
Accuracy (deg) 

(Betke and 
Gurvits, 1997) 

camera An algorithm to estimate robot 
localization using landmarks with well-
known triangulation techniques. 
sensors can be cameras or others 

Simulation Simulation 
with/without 
the outlier 
landmarks 

Length of the  vector Error: 
 - With outlier landmarks is 1270 
mm, 
 - Without the outlier landmarks is 
16 mm 

N/A 

(Zhu et al., 
2011) 

Camera + 
LiDAR 

Use of precise 3D Li-dar range fused 
with a multi-stereo based visual 
odometry system to detect landmarks 

Indoor A segway 
robotic 
platform 
(RMP400) 

Position Error is in range ± 150 
mm 

Min of angular upper 
bounds Error : 
 -Stereo is 0.11 deg, 
 -Lidar is 0.11 deg 

(Emter and 
Ulrich, 2012) 

Camera + 
LiDAR 

Use a laser scanner (LIDAR) and a 
camera fusion for simultaneous 
localization and mapping 

Outdoor Self-developed 
mobile robot 

The system can create maps, as 
shown in Fig. 6-8 

N/A 

(Shim and 
Cho, 2015) 

Camera Robot 2D localization using visual 
information from the external multi 
surveillance cameras installed indoors 

Indoor Indoor with a 
self-developed 
mobile robot 
with 
omnidirectional 
wheels 

Position Error of two-dimensional 
map is within 71 mm 

N/A 

(Shalal et al., 
2015b) 

Camera + 
Laser scanner 
+ IMU + 
Odometers 

Localization using Extended Kalman 
Filter  for a camera  
 and laser scanner data fusion 

Outdoor CoroWare 
Explorer 
platform with 
on-board 
sensors 

The average of position  Error 
RMS is 103 mm 

The average heading 
Error RMS is 3.32 deg 
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Author Sensors Strategies Application Experimental Position 
Accuracy (mm) 

Orientation 
Accuracy (deg) 

(Nilwong et 
al., 2019) 

Camera + 
Compass 

Comparisons between localization 
results of Faster Regional-
Convolutional Neural Network (Faster 
R-CNN) landmark detection, and a 
single convolutional neural network 
(CNN) to determine the location and 
compass orientation from the whole 
image 

Outdoor 
with light 
source 

Wheelchair 
robot equipped 
with sensors 

Position Error Std: 
- Faster R-CNN is 1429.9 mm, 
- CNN is 2097.1 mm,  
- CNN (AlexNet) is 1546.4 mm 

Heading Error Std: 
- Faster R-CNN is 6.0188 
deg, 
- CNN is 4.7458 deg,  
- CNN (AlexNet) is 
4.9254 deg 

(Nemec et al., 
2019) 

Camera + 
Odometers + 
IMU 

Sensor fusion between odometers, 
gyroscope, accelerometer, 
magnetometer and visual landmark 
localization system using extended 
Kalman filter 

Indoor E-puck robot 
and visual 
landmark 

Position Error RMS  < 5mm N/A 
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This research incorporates a laser range finder as the primary measure equipment. A 

laser range finder, utilizing time-of-flight measurement of travel laser, has accuracy 

within 20 mm (Larsson et al., 1996) depending on the surrounding environment. 

Therefore, a review on localization using laser with sensors fusion in table 2.6 is 

necessary for the research. There are many types of sensor fusion with a laser range 

finder. Laser + Photodiode presented by Souvestre et al. (2009) gives a dynamic 

precision in 1-6 mm and a static precision in the mm range. 
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Table 2.6 

Review on Localization by using Laser with Sensors Fusion 

Author Sensors Strategies Application Experimental Position Accuracy (mm) Orientation 
Accuracy (deg) 

(Larsson et al., 
1996) 

Laser range finder 
+ Odometer 

Localization and mapping using laser range 
finder and odometer with the range 
weighted Hough transform (RWHT) 
algorithm extract lines from the range data 

Indoor 
simulation and 
a mobile robot 

Self-testing system Position Error SD is 20 
mm 

Orientation Error 
is 0.3 deg 

(Bento et al., 
2005) 

Laser range finder 
+ encoder + 
magnetic sensor 

A guidance system for autonomous 
vehicles navigation in semi-structured 
outdoor environments using encoders, 
landmark, and magnetic sensing fusion by 
EKF 

Simulation and 
real outdoor 
experiments 

Four-wheels 
actuated electric 
vehicle 
("Robucar") 

The results of map plotting 
in a field and simulation 
are shown in Fig.6-7.  
Error SD: 
-Room size is 15 mm, 
-Room angle is 0.17 deg 

N/A 

(Souvestre et 
al., 2009) 

Laser + 
Photodiode 

Using eight beams laser tracking with 
photodiode sensors, Tilt-Pan is controlled 
PID control 

2D Indoor / 
Outdoor  

A self-laser 
tracking system 
prototype 

- Static precision is in mm 
range, 
- Dynamic precision is in 
the range 1-6 mm 

N/A 

(Her et al., 
2012) 

Laser range finder 
+ IR landmark 

Mobile robot localization and mapping 
using laser range finder and IR landmark 
camera fusion 

Indoor Self-developed 
mobile robot 

Position Error SD: 
- X is 83 mm, 
- Y is 93 mm 

Heading Error SD 
is 1.2 deg 

(Canedo-
Rodríguez et 
al., 2016) 

Laser range finder 
+ WiFi + 
Compass + 
Camera 

Multi-sensor fusion algorithm based on 
particle filters, a laser range finder, a WiFi 
card, a magnetic compass, and an external 
multi-camera network 

Indoor Prepared zone 
with pieces of 
equipment 

Position Error SD of  
Position (W+C+c) is  880 
mm  
 

Heading Error SD 
of  (L+W+C+c ) 
is 0.19 deg 

(Le et al., 
2019) 

LiDAR + IMU 3D Mapping, light laser detection and 
ranging (LiDAR), and IMU for state 
estimation, localization, and mapping in 
the agricultural domain 

Outdoor Both simulate 
robot and actual 
four wheels robot 

Relative position Error in 
translation max is 300 mm 

Relative heading 
Error of Rotation 
(Yaw)  < 3 deg 
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Author Sensors Strategies Application Experimental Position Accuracy (mm) Orientation 
Accuracy (deg) 

(Moreira et al., 
2020) 

Laser beacon Laser beacons based systems and natural 
landmarks by extended Kalman Filters 
measure its distance and angle in a local 
referential frame to calculate the angle 

The system 
needs external 
laser beacons 

Simulation and 
real testing 

N/A Heading Error: 
- without Kalman 
filter is 28.64 deg, 
- with Kalman 
filter is 0 deg 
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Some researchers had applied other sensors for localization, as shown in Table 2.7. 

The correct trajectory's position error for Ultrasonic + Odometer is less than 200 mm 

(Hoppenot and Colle, 1997), while position RMSE of radar array is 300 mm (Guan et 

al., 2018). Heading is also measured by radar array with RMSE heading accuracy of 

5.73 deg. The magnetic sensor is also studied in position measurement; the mean of 

position error is 130 mm. In the case of UWB, the average accuracy could reach 200 

mm. 
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Table 2.7 

Review on Localization by using Radiofrequency, Magnetic & Light 

Author Sensors Strategies Application Experimental Position Accuracy (mm) Orientation 
Accuracy (deg) 

(Hoppenot 
and Colle, 
1997) 

Ultrasonic + 
Odometer 

Robot Localization using poor ultrasonic 
sensors and odometers 

Indoor A robot Position Error of the corrected 
trajectory < 200 mm 

N/A 

(Hsu et al., 
2007) 

RF + 
magnetic 
sensor 

Mobile robot localization by Fused 
Magnetic sensor and received signal 
strength (RSS) data with Covariance 
Intersection (CI) 

Indoor Self-developed 
mobile robot 

Mean distance Error:  
Decreased from 10% to less than 
5% Comparing to the localization 
system only with RSS for 
estimation 

N/A 

(Sheinker et 
al., 2013) 

Magnetic 
sensors 

2D localization by detected magnitude and 
phase of magnetic fields in ULF band (low 
frequency quasi-static magnetic field) 

Outdoor 
(10m X 11m 
area) 

Simulation and 
self-testing 
system on a 
wheeled cart 

Mean Error is 130 mm N/A 

(Guan et al., 
2018) 

Radar array Doppler–Azimuth radar array in the 
framework of nonlinear/non-Gaussian 
estimation using a particle filter and a 
random finite set (RFS) model of 
measurements 

Indoor / 
Outdoor 

Simulation 
 

RMSE in position is 300 mm RMSE Heading is 
5.73 deg 

(Shi et al., 
2020) 

UWB UWB ranging with three transmitters for 
Automatic Guided Vehicles (AGVs), results 
are compared with RTK 

Indoor / 
Outdoor 

A testing robot 
platform 

Worked in indoor and outdoor 
area of several hundreds of square 
meters, 
- The average Error is about 200 
mm, 
- The Maximum Error is about 
400 mm 

N/A 



 

 
 

29 

Author Sensors Strategies Application Experimental Position Accuracy (mm) Orientation 
Accuracy (deg) 

(De-La-Llana-
calvo et al., 
2020) 

PSD Finding a robot position by LED emitters 
are placed on the ceiling in fixed, known 
positions, a Lens and a Position-Sensitive 
Detector (PSD) sensor mounted on the top 
of the robot to detect AOA to calculate the 
robot's position 

Indoor A testing 
system 

Average positioning Error is49 
mm for PSD 4 signals 

N/A 
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2.3 IMU Sensor Fusion for Tilt Measurement 

Although most position sensors can report their locations with high accuracy, the 

orientation is still inadequate for agricultural operation. IMU measures acceleration 

and angle velocity; the acceleration and angle velocity can fuse by sensor fusion 

technique to get its angle in roll, pitch, and yaw such as complementary filter, Kalman 

filter, etc.  

2.3.1 Tilt Calculation from IMU Raw Data  

Table 2.8 shows the study of IMU for tilts measurement. The accelerometer inside 

IMU measures the acceleration force vector of gravity, while the gyroscope measures 

angular velocity. The two pieces of information can be combined with sensor fusion 

algorithms to accurately determine its tilt.  
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Table 2.8 

Review on Tilts Measurement by IMU and Sensor Fusion 

Author Sensors Strategies Application Experimental Orientation Accuracy (deg) 
(Gui et al., 
2015) 

IMU Tilting measurement using Micro-Electro-
Mechanical-system (MEMS) based inertial 
measurement unit (IMU), complementary and 
Kalman filter 

Indoor/Tilt System tester The complementary filter can be more 
stable and accurate than the Kalman filter 

(Min and Jeung, 
2015) 

IMU Angle Estimation using MEMS gyroscopes and 
accelerometers by complementary filter 
compared with cut-off frequency method 

Tilt Self-testing system RMSE: 
- Complementary filter is 0.0389 deg, 
- Cut-off frequency method is 0.0565 deg 

(Pititeeraphab et 
al., 2016) 

IMU Design a tilt measurement by using IMU raw 
data filtered with average filter and then compare 
with complementary filter and Kalman filter to 
get the effectiveness 

Indoor/Tilt Actual sensor data on the 
movement of a robot arm 
and simulation 

The average filter can help complementary 
filter or Kalman filter to reduce vibration to 
get a good estimation as the results in Fig. 
11-14 

(Ngo et al., 
2017) 

IMU Comparison of complementary filter and Kalman 
filter for quadrotor 

Outdoor/Tilt Simulation and real 
quadrotor 

The complementary filter is more superior 
to the Kalman filter, drift phenomenon 
(approximate +-0.5 deg) 

(Weng et al., 
2017) 

IMU Wireless tilt measurement system using three 
MEMS accelerometers using Kalman Filter (KF) 

Only 1 axis tilt 
measurement 

A prototype testing 
system 

Measuring resolution 0.02 deg, tilt 
measurement error < 0.004 deg for the step 
change of 0.05 deg 

(Zhe et al., 
2020) 

IMU Fusion of the MEMS accelerometer and the 
MEMS gyroscope by adaptive sparse 
interpolation lossless complementary filter 
(ASICF) 

Roll and pitch A self-driving car and the 
human pose  

RMS Error: 
- Roll is 2.271 deg 
- pitch is 1.7761 deg  
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2.3.2 Sensor Fusion for Orientation  

The sensor fusion algorithms in Table 2.8 reported that the complementary filter 

could be more robust and reliable than the Kalman filter (Gui et al., 2015; Ngo et al., 

2017). The complementary filter is also shown to be more accurate than the Cut-off 

frequency method (Min and Jeung, 2015). Weng et al. (2017) reported a tilt 

measurement system using three MEMS accelerometers with Kalman Filter (KF), 

gives measuring resolution 0.02 deg, and tilt measurement error < 0.004 deg for the 

step change of 0.05 deg. 

 

2.4 Chapter Summary 

No sensor can measure the position and orientation of an object at the same time. 

Multi-sensor fusion is a solution to produce high accuracy and precision for 

localization. 
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CHAPTER 3 

METHODOLOGY 

The IMU-coupled TLG system consists of a base station mounted with a laser-

pointing unit (LPU) and a mobile unit with a laser-target unit (LTU). The LPU 

consists of two laser pointers with different wave ranges and a laser rangefinder 

module. The LTU consists of three laser targets: two projection targets to detect the 

projected laser pointers and one target to reflect the laser rangefinder from the LPU. 

The high accuracy and precision of localization are achieved by the innovative design 

of interaction between the LPU and LTU which is briefly described as follows: 

1. The LPU is controlled to point at the middle of the LTU while the LTU is 

controlled so that the laser targets are perpendicular to the laser-pointing 

beams.  

2. The interactive controlling of the LPU and LTU is achieved by analyzing the 

projected positions of the LPU’s laser pointers on the LTU’s projection targets 

via image processing. 

3. With the LPU pointing perpendicularly at the center of the LTU, the position 

and heading of the mobile unit relative to the laser base station can be 

accurately and precisely determined using the distance measured by the laser 

rangefinder, the fanning angle of LPU, and the relative heading angle of the 

LTU. 

The IMU-coupled TLG system demonstrated in this study consists of a laser base 

station and a mobile unit, as shown in Figure 3.1. Computer software is used for data 

recording, manual control, and PID setup for both the base station and the mobile 

unit. 
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Figure 3.1 

IMU-Coupled TLG System 

 

 

3.1 Laser Base Station 

The laser base station comprises a base frame, a laser-pointing unit (LPU), and a 

fanning-vertical control unit (FVCU), as shown in Figure 3.2. The base frame is 

constructed as a rectangular box frame with dimensions of 30 cm in width, 50 cm in 

length, and 110 cm in height, using hollow steel bars. Four level-adjusting poles are 

applied as the base frame’s legs. The LPU is mounted onto FVCU. Then the LPU-

FVCU assembly is installed onto the base frame. The FVCU is employed to control 

the vertical position along the Z-axis and fanning angle in the XY-plane of the LPU. 
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Figure 3.2 

Schematic Illustration of the Laser Base Station 

 

 

The LPU is designed to track the position and control the heading of the mobile unit. 

The LPU holds three lasers: a heading-measuring laser (HML), a position-measuring 

laser (PML), and a distance-measuring laser (DML). The HML, the PML, and the 

DML are at the top, in the middle, and at the bottom position of the LPU, 

respectively, with a 12-cm vertical separation. The lasers are situated to point in the 

same direction and parallel to the ground. A 405-nm violet laser pointer, a 650-nm red 

laser pointer, and a 650-nm red laser rangefinder are applied as the HML, the PML, 

and the DML, respectively. 

The FVCU, devised to track and control the linear and fanning motions of the LPU, 

consists of a rotary actuator and a linear actuator (Figure 3.2). The rotary actuator 

employs a micro-stepping motor and an incremental encoder with a maximum angle 

of rotation of 180° and a rotating resolution of 9.38x10-3 °/step. The linear actuator is 

driven by a DC motor and controls its moving arm position using an incremental 

encoder and PID position control with the maximum moving distance of 30 cm.  In 

the FVCU, the rotatory actuator is attached to the moving arm of the linear actuator. It 
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is oriented so that its plane of rotation is perpendicular to the linear actuator’s uniaxial 

motion.  

To allow vertical control along the Z-axis and fanning control in the XY-plane of the 

LPU, the LPU is attached to the rotary actuator of the FVCU, and then the LPU-

FVCU assembly is secured on the base frame so that the linear actuator of the FVCU 

is in the vertical position. A microcontroller unit (MCU) is employed to process the 

data from the FVCU and the LPU, to control the actuators in the FVCU, and to 

remotely communicate the data via 433-MHz radio frequency (RF). 

  

3.2 Mobile Unit 

The mobile unit consists of a skid-steering robot, a laser-target unit (LTU), a heading 

control unit (HCU), and an attitude-measuring unit (AMU), as illustrated in Figure 

3.3. The skid-steering robot is a four-wheel-drive using four 24-volt DC motors with 

H-bridge PWM drivers controlled by an MCU. Skid-steering principal, a typical 

maneuver for vehicles with non-orientable wheels, controls the mobile unit rotation 

by applying a speed difference on the left and right wheels, creating lateral slippage or 

skidding. The skid-steering robot’s commands from an external host are remotely 

transmitted to the MCU via 433-MHz RF. The robot’s frame dimensions are 50 cm in 

width, 70 cm in length, and 140 cm in height, and the size of the wheels is 20.4 cm in 

diameter. The robot’s maximum speed is set at 1.5 m/s.  
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Figure 3.3 

Schematic Illustration of the Mobile Unit 

 

 

The LTU includes a heading-measuring target (HMT), a position-measuring target 

(PMT), a distance-measuring target (DMT), and an image sensor. The HMT and the 

PMT, assigned to project the HML and the PML for heading control and 

measurement, are 12 cm x 50 cm projector screens made from black, translucent 

paper. The DMT, assigned to reflect the DML for distance measurement, is a 12 cm x 

50 cm laser reflecting screen made from a white, opaque plastic sheet. The HMT, the 

PMT, and the DMT are placed at the top, in the middle, and at the bottom position of 

the LTU, respectively, with a 12-cm vertical separation between their centers. The 

image sensor used to detect and determine the positions of the projected HML and 

PML on the HMT’s and PMT’s screens is a Pixy2 CMUcam5 smart camera with a 

frame rate of 60 frames per second and the field of view (FOV) covering both HMT 

and PMT. The HMT, the PMT, and the image sensor are placed in a dark enclosure, 

where the HMT and the PMT are placed in front of the image sensor at 18 cm and 30 

cm away, respectively.  
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The positions of the projected HML on the HMT and the projected PML on the PMT 

are used to control the LPU and LTU so that the lasers perpendicularly pointing at the 

center of their assigned targets. This is critical for the IMU-coupled TLG system to 

achieve the highest accuracy and precision in localization and is elaborated in further 

detail in Control Description. The Pixy2 smart camera is programmed to find a violet 

laser blob from the HML on the HMT and a red laser blob from the PML on the PMT. 

The centroids of the area of these laser blobs are then quantified via image processing 

of the Pixy2 smart camera and reported to the microcontroller as the positions of the 

projected lasers. To avoid interference for the image sensor’s detection of projected 

HML and PML, the maximum light intensity allowed on the HMT and the PMT is 

20,000 lux. 

The HCU is a 360° bidirectional, rotatable stand. A DC-motor rotary actuator with 

PID position control drives and controls its rotational motion and an absolute encoder 

measures its angle of rotation. For attitude (roll and pitch tilts) measurement, the 

AMU utilizes a low-cost 6DoF IMU where roll and pitch are computed using IMU 

sensor fusion with complementary filter (Gui et al., 2015; Min and Jeung, 2015; Ngo 

et al., 2017). 

For the complete assembly of the mobile unit, the HCU is secured on top and at the 

center of the robot’s frame. The LTU and AMU are then placed and centered on the 

HCU, allowing 360° rotation of the LTU and the AMU on the mobile unit. An MCU 

is utilized to process the data from the LTU, the HCU, and the AMU, control the 

rotary actuator in the HCU, and remotely communicate the data via 433-MHz RF. 

3.3 System Cost Breakdown 

The IMU-coupled TLG system’s total cost mainly comes from the structural, 

mechanical, electronic components of three hardware groups: the laser base station, 

the mobile unit, and the wireless communication components. The cost breakdown 

was based on retail and online prices plus shipping for Bangkok, Thailand, in 

February 2021 and is summarized in Table 3.1. The total cost of the IMU-coupled 

TLG system for this study was $950 in USD. It is to be noted that the skid-steering 

robot’s cost is not included since its purpose in this study was only to be a model 

rover for demonstrating the performance of the IMU-coupled TLG system. 
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Table 3.1 

Cost Breakdown of the IMU-Coupled TLG System (based on Retail and Online Prices 

plus Shipping for Bangkok, Thailand in February 2021) 

 

3.4 Input Parameters 

The input parameters for determining the robot’s position and orientation (attitude and 

heading) in the IMU-couple TLG system, assuming that both the LPU and LTU are 

correctly and promptly controlled as elaborated in Control Descriptions, are described 

as follows: 

1) The distance between the LPU and the LTU ( r ) measured by the DML on the 

LPU at the laser base station (see Figure 3.4) 

2) The fanning angle of the LPU (  ) measured by the FVCU at the laser base 

station (see Figure 3.4) 

3) The height of the LPU ( h ) measured by the FVCU at the laser base station 

4) The roll tilt of the LTU ( ) measured by the AMU on the mobile unit 

5) The pitch tilt of the LTU ( ) measured by the AMU on the mobile unit 

Hardware Group Subgroup Component Descriptions  
Cost in 
USD 

Laser Base 
Station 

Base Frame Materials and fabrication $150.00 
Laser-pointing 
Unit  
(LPU) 

50-meter laser rangefinder module – 1 unit $90.00 
405-nm violet laser pointer – 1 unit $20.00 
605-nm red laser pointer – 1 unit $10.00 

Fanning-vertical 
Control Unit 
(FVCU) 

OMRON E6B2-CWZ6C rotary encoder– 2 units $70.00 
DRV8825 stepper motor driver – 1 unit $10.00 
Rtelligent Nema 17 stepper motor – 1 unit $20.00 
Linear Actuator – 1 unit $70.00 
STM32F3 Discovery microcontroller – 1 unit $20.00 
Circuit components $50.00 

Mobile Unit 

Laser-target Unit  
(LTU) 

Structural frame – materials and fabrication $100.00 
Pixy 2 CMUcam5 image sensor – 1 unit $150.00 

Heading Control 
Unit  
(HCU) 

DC-geared motor – 1 unit $15.00 
L298N H-Bridge DC-motor driver – 1 unit $10.00 
5V 1024-pulse absolute encoder– 1 unit $50.00 
Circuit components $50.00 
Battery – 1 unit $25.00 

Attitude-
measuring Unit  
(AMU) 

IMU with STM32F3 Discovery microcontroller $20.00 

Wireless 
Communication 

Wireless 
Transceivers 

433-MHz radio frequency (RF) modules – 8 units $20.00 

Estimated Total $950.00 
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6) The relative heading angle between the LTU and the skid-steering robot (  ) 

measured by the HCU on the mobile unit 

7) The robot’s heading on the field ( ) is the sum of  and   

Figure 3.4 

Working Field and Reference Axes 

 
 

3.5 Control Descriptions 

In the IMU-coupled TLG system, the robot’s position and heading are computed 

using the distance between the LPU and LTU and the height and fanning angle of the 

LPU, which is further elaborated in Determination of Robot’s Position and 

Orientation. For the highest accuracy of distance and heading measurements, the 

lasers, namely the HML, the PML, and the DML, must be parallel to the ground and 

perpendicularly pointing at the center of their assigned targets, the HMT, the PMT, 

and the DMT, respectively. Hence, the LPU on the laser base station and the LTU on 

the mobile unit must be simultaneously controlled as follows: 
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3.5.1 Fanning Angle and Height Control of the LPU 

The LPU control, carried out by the FVCU, aims to keep its lasers’ projection at the 

center of their assigned targets. Since the HML, the PML, and the DML are all on the 

same LPU’s rigid body and positioned with the same vertical separation as the centers 

of their assigned targets on the LTU, the LPU control is solely focused on maintaining 

the projected PML position at the center of the PMT. If the PML points 

perpendicularly to but away from the center of the PMT, it yields center-deviated 

distances of the projected PML in both X- and Z-axes of the PMT, designated as 
PMT

X
Err  and PMT

Z
Err , respectively, as illustrated in Figure 3.5(a). To keep the projected 

PML at the PMT’s center, the rotary actuator in the FVCU controls the fanning angle 

(  ) of the LPU to minimize the PMT

X
Err  to zero, while the linear actuator in the 

FVCU controls the height ( h ) of the LPU to minimize the PMT

Z
Err  to zero, as 

depicted in Figure 3.5(b). The LPU fanning angle and height control for PMT

X
Err  and 

PMT

Z
Err  minimization is achieved using a PID control with PWM signaling to the 

FVCU, as illustrated in Figure 3.5(c). 
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Figure 3.5 

LPU Control Maintaining the Projected PML at the Center of the PMT: (a) Before 

LPU Control, Center-Deviated PML Projection on the PMT (b) After LPU Control, 

PML Projection at the PMT's Center (c) LPU Fanning Angle and Height Control 

Strategy 

PMT
xErr

PMT
zErr

PMT
zErr

PMT
xErr

 

(a) 
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(b) 

PMT
Z

PMT
X ErrErr /

 

(c) 
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3.5.2 Heading Control of the LTU 

The aim of the LTU’s heading control carried out by the HCU is to ensure that three 

lasers’ beams from the LPU are perpendicular to the targets of the LTU. Suppose the 

LPU’s laser beams are non-perpendicular to the LTU’s targets’ screens. In that case, 

there is a difference in the center-deviated distances along the X-axis of the targets 

between the projected HML on the HMT ( HMT

X
Err ) and the projected PML on the PMT 

( PMT

X
Err ), as shown in Figure 3.6(a). The magnitude of the difference between HMT

X
Err

and PMT

X
Err , designated as X

Err , is defined as follows: 

 

HMT PMT

x X X
Err Err Err    (1) 

If X
Err  > 0, the rotary actuator in HCU rotates the heading of LTU to minimize 

X
Err to zero, confirming the laser beams’ perpendicularity from the LPU to the 

LTU’s targets, as illustrated in Figure 3.6(b). The LTU heading control for X
Err

minimization is achieved using a PID control with PWM signaling to the HCU, as 

illustrated in Figure 3.6(c).  
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Figure 3.6 

LTU Control Maintaining the Perpendicularity of the Lasers' Beams from the LPU to 

the LTU's Targets: (a) Before LTU Control, Non-perpendicular Lasers' Beams to 

Targets (b) After LTU Control, Perpendicular Lasers' Beams to Targets (c) LTU 

Heading Control 

PMT
XErr

HMT
XErr

 
(a) 
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(b) 

(c) 

 

3.6 Determination of Robot’s Position and Orientation 

Assuming the perpendicularity and centering of the lasers’ projections on the targets 

as described in Control Description, the robot’s position and heading in Figure 3.7 can 

be accurately determined as follows: 
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sinX r   (2) 

co sY r   (3) 

Z h  (4) 

( )H eading      (5) 

The robot’s roll (  ) and pitch (  ) tilts are calculated via sensor fusion of low-

frequency signals from a triple-axis accelerometer and high-frequency signals from a 

triple-axis gyroscope of a low-cost 6DoF IMU in the AMU through complementary 

filter (Gui et al., 2015; Ngo et al., 2017). 

Figure 3.7 

Schematic Drawing of the IMU-Coupled TLG System for the Determination of the 

Robot's Position and Heading 
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3.7 Data Flow and Communication Diagram 

In the IMU-coupled TLG system, the laser base station, the mobile unit, and the 

computer communicate data among themselves with a sampling rate of 100 ms, as 

depicted in Figure 3.8. The communication is carried out using HC-11 wireless 

transceiver modules with a frequency band of 433 MHz. For all transceiver modules, 

the RF power is set to 10 dBm with the data baud rate of 115,200 bps and the 

transmission delay time of 10 ms. The operating distance of these communication 

modules is approximately 30 m. 

Figure 3.8 

Data Flow and Communication Diagram 
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3.8 Chapter Summary 

The system in this chapter describes the mobile unit and the laser base unit. Robot 2D 

location (X, Y) comes from the distance and relative facing angles between the 

mobile and laser base units, with a condition that the LPU must always be  controlled 

to remain orthogonal to the laser targets on the LTU via PID position controller. 

Robot height (Z) is measured and controlled from an encoder at the bottom of the 

laser pole installed on the base unit. Robot attitude (heading, roll, and pitch) is 

measured via AMU mounted on the LTU of the mobile unit. Error signals and 

measurement values communicate between the modules via radio frequency (RF). 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

The experiments aim to demonstrate that the TLG system can properly operate in an 

outdoor environment within its limitations. An actual flat field and paddy field were 

designed to test for getting position and orientation error to answer the developed 

system can work or not for automatic guidance farming depend on the robot location 

and pose accuracy. Field design and system preparation are elaborated in this chapter 

along with methodology and data processing. 

4.1 Field and Measurement Design 

The distance measuring by a laser range finder is limited to 25 m because the system 

needs a range accuracy less than 2 cm under the intensity of sunlight. Therefore, the 

working field was 20 m X 20 m for both the flat and paddy area. In technical terms, 

the laser range finder cannot measure in a short-range between 0-1 m; so, the laser 

base station needs to move back for 1 m, as shown in Figure 4.1. 

4.1.1 Working Field and Reference Axes 

An operational area for the mobile unit is a 20 m x 21 m rectangular plain with its 

reference axes, designated as X, Y, and Z, defined concerning the laser base station, 

as depicted in Figure 3.4. The origin of the working field (0, 0, 0) is assigned as the 

LPU's position points at the laser base station. Due to the DML's low measurement 

accuracy at a close distance to the target, the working field excludes a semicircular 

area with a radius of 1 m around the laser base station.  

4.1.2 Method for System Demonstration 

The operation of a high-accuracy, position-aware robot using the IMU-coupled TLG 

system was demonstrated in an outdoor setting on a 20 m x 21 m treeless, flat field, 

and paddy field, as depicted in Figure 3.4. The robot was manually remote controlled 

to move along a predetermined path on the area from the numbered location 1 to 10, 

as shown in Figure 4.1, without exceeding the maximum speed of 1.2 m/s.  
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Figure 4.1 

Field and Designed Path for the System Demonstration and for the Determination of 

Position/Orientation Accuracy and Precision 

 
 

The robot’s heading was preassigned at the numbered locations with a designated 

arrow. At each numbered location, the robot was stopped to physically verify its 

actual position (XYZ coordinates) and angles of orientation on the field. The reported 

values from the IMU-coupled TLG system were recorded. The light intensity on the 

laser targets, HMT and PMT, was also noted at each numbered location. Furthermore, 

both systems recorded the robot’s XY position every second to generate its horizontal 

trajectory on the designed path. To validate the system’s outdoor capability in 

daylight and ensure the stringency of the statistical analysis, the system demonstration 

was repeated five to ten times at each numbered location under various light 

intensities on the field ranging from 45,000 lux to 85,000 lux during the daytime. 

The robot’s actual position and orientation ( ˆ
l

R ) at the thl  location is defined as: 
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ˆ ˆˆ ˆ ˆ ˆ ˆ( , , , , , )
l l l l l l l

R X Y Z     (6) 

 

The system’s reported (
l i

R ) position and orientation of 
thi  epoch at the thl  location is 

defined as: 

( , , , , , )
l i li li li li li li

R X Y Z     (7) 

 

The system’s average reported position and orientation ( l
R ) and the standard deviation 

( l
 ) at the thl  location are computed as follows:  

1

1 lN

l li
il

R R
N 

   (8) 

Where lN  is the total number of epochs at the thl  location. 

2

1

1
( )

1

lN

l li l
il

R R
N




 
   (9) 

The system’s position and orientation accuracy ( lA ) at each numbered location are 

reported as the absolute difference between the robot’s actual position and orientation 

( ˆ
lR ) and the system’s average reported values ( l

R ), which can be expressed as: 

ˆ
l l l

A R R   (10) 

By averaging lA from all numbered location, the overall system’s position and 

orientation accuracy ( OA
A ) can be determined as follows: 

1

1 M

OA l
l

A A
M 

   (11) 

Where M is the total number of the measured locations.  

 

The system’s position and orientation precision at each numbered location is reported 

as the standard deviation ( l ) of the measurements at that numbered location. The 
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system’s overall position and orientation precision ( OA
P ) are quantified as the 

combined standard deviation of the system’s reported location and orientation at all 

numbered locations. Since the acquired measurement at each site is independent of 

one another, the standard deviations were combined using a weighted sum of 

variance. Hence, the system’s OA
P  is expressed as: 

2

1

1

( 1)

( 1)

M

l l
l

MOA

l
l

N
P

N














 (12) 

 

4.2 Field Experiments 

A flat field and an actual paddy are prepared to demonstrate the system. Setting up 

parameters and field size is the same. The difference is only field type to compare the 

accuracy of both areas. Distance between the actual positions to ten marked points 

along the moving path is measured for ten rounds and recorded in a table. Average 

statistic applied to the raw data for each difference distance as shown in Table 4.1. 

The most experimental data shown in this section comes from the flat field except in 

Figure 4.5. 

 

4.2.1 Flat Field Experiments 

For the determination of the robot's actual position and orientation, the system's 

accuracy, and the light intensity on the HMT and the PMT at each numbered location 

were physically verified and reported, as summarized in Table 4.1.  
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Table 4.1 

The Actual Position and Orientation of the Skid-Steering Robot Physically Verified at 

Each Numbered Location on the Field 

Location 
( l ) 

Distance from 
the laser base 
station (cm) 

Average light 
intensity on 
HMT and 
PMT (lux) 

ˆ
lX (cm) l̂Y

(cm) 
ˆ

lZ (cm) ˆl  (º) 
l̂  (º) 

l̂  (º) 

1 1,000 9,266 -1,000 0 0 0 -2 -1 

2 1,415 9,416 -1,000 1,000 -1 0 -2 -1 

3 2,237 16,462 -1,000 2,000 -2 90 0 -3 

4 2,023 9,108 -300 2,000 -1 180 2 2 

5 1,045 8,847 -300 1,000 0 180 1 1 

6 300 16,563 -300 0 0 90 0 1 

7 300 8,918 300 0 1 0 -1 -1 

8 2,023 16,752 300 2,000 0 90 -1 0 

9 2,237 9,374 1,000 2,000 0 180 0 -2 

10 1,000 5,874 1,000 0 2 -90 1 -1 

 

After multiple measurements at each numbered location, the robot’s average XYZ 

coordinates, headings, and attitudes with the computed local accuracy reported by the 

IMU-coupled TLG system are shown in Table 4.2.  
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Table 4.2 

Average XYZ Coordinates, Headings, and Attitudes of the Robot at Each Numbered Location Reported by the IMU-Coupled TLG System with 

Computed Local ( lA ) and Overall ( OAA ) Accuracy 

Location  
( l ) 

X (cm) Y (cm) Z (cm) Heading (º) Roll (º) Pitch (º) 

lX  X
lA  lY  Y

lA  lZ  Z
lA  l  

lA  
l  

lA  
l  lA  

1 -1,000.67 0.67 0.67 0.67 0.11 0.11 -0.78 0.78 0.33 2.33 0.44 1.44 

2 -1,000.78 0.78 1,000.78 0.78 0.00 1.00 0.11 0.11 -0.56 1.44 0.11 1.11 

3 -1,001.33 1.33 2,002.00 2.00 -1.22 0.78 89.00 1.00 -0.89 0.89 -3.00 0.00 

4 -301.11 1.11 2,002.67 2.67 -0.78 0.22 179.22 0.78 2.44 0.44 2.33 0.33 

5 -300.67 0.67 1,001.67 1.67 0.44 0.44 180.00 0.00 0.78 0.22 0.44 0.56 

6 -300.33 0.33 0.44 0.44 0.78 0.78 91.33 1.33 0.00 0.00 0.00 1.00 

7 300.44 0.44 0.56 0.56 1.56 0.56 1.67 1.67 -0.78 0.22 -0.89 0.11 

8 301.11 1.11 2,001.44 1.44 0.33 0.33 88.78 1.22 -0.22 0.78 0.67 0.67 

9 1,001.78 1.78 2,001.67 1.67 1.67 1.67 178.89 1.11 1.33 1.33 -1.44 0.56 

10 1,001.00 1.00 1.78 1.78 2.00 0.00 -89.00 1.00 1.11 0.11 0.78 1.78 

Overall 
Accuracy 

X
OAA = 0.92 cm Y

OAA  = 1.37 cm 
Z
OAA  = 0.59 cm 

OAA  = 0.90º 
OAA  = 0.78º 

OAA  = 0.76º 



 

56 
 

The overall accuracies for X, Y, Z,  ,  , and  reported by the IMU-coupled TLG 

system are within 0.92 cm, 1.37 cm, 0.59 cm, 0.90º, 0.78º, and 0.76º, respectively. 

The local maximum errors and standard deviations at each numbered location 

reported by the IMU-coupled TLG system are presented in Table 4.3.  
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Table 4.3 

Maximum Errors and Standard Deviations of XYZ Coordinates, Headings, and Attitudes of the Robot Reported by the IMU-Coupled TLG 

System with Computed Overall Precision ( OAP ) 

 

Location  

( l ) 

X (cm) Y (cm) Z (cm) Heading (º) Roll (º) Pitch (º) 

Absolute 
Maximum 

Error 

X
l  

Absolute 
Maximum 

Error 

Y
l  

Absolute 
Maximum 

Error 

Z
l  

Absolute 
Maximum 

Error r l
  

Absolute 
Maximum 

Error l
  

Absolute 
Maximum 

Error l
  

1 2.00 0.87 2.00 0.71 1.00 0.60 3.00 1.39 2.00 0.87 2.20 0.88 

2 3.00 1.09 2.00 0.67 2.00 0.71 1.00 0.60 2.00 0.73 2.00 0.60 

3 3.00 1.00 4.00 1.12 1.00 0.44 2.00 1.00 2.00 0.78 1.00 0.50 

4 2.00 0.60 4.00 0.87 1.00 0.44 3.00 1.20 1.00 0.53 1.00 0.50 

5 2.00 0.71 2.00 0.50 1.00 0.53 0.00 0.00 1.00 0.44 1.00 0.53 

6 1.00 0.50 1.00 0.53 2.00 0.83 3.00 1.12 0.00 0.00 1.00 0.00 

7 1.00 0.53 1.00 0.53 1.00 0.73 3.00 1.00 1.00 0.67 1.00 0.33 

8 2.00 0.78 2.00 0.53 2.00 1.12 3.00 0.83 3.00 1.09 2.00 0.71 

9 3.00 0.67 3.00 0.71 2.00 0.50 2.00 0.93 2.00 0.50 2.00 0.73 

10 2.00 0.50 2.00 0.44 1.00 0.50 2.00 0.87 2.00 0.93 2.00 0.67 

Overall 
Maximum 

Error 
3.00 cm 4.00 cm 2.00 cm 3.00º 3.00º 2.20º 

Overall 
Precision 

X
OAP  = 0.75 cm Y

OAP  = 0.69 cm Z
OAP  = 0.67 cm 

OAP
 = 0.96º OAP  = 0.71º 

OAP  = 0.59º 
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The overall precisions for X, Y, Z,  ,  , and  reported by the IMU-coupled TLG 

system are within 0.75 cm, 0.69 cm, 0.67 cm, 0.96º, 0.71º, and 0.59º, respectively. 

The overall maximum errors for X, Y, Z,  ,  , and  reported by the IMU-coupled 

TLG system are 3.00 cm, 4.00 cm, 2.00 cm, 3.00º, 3.00º, and 2.20º, respectively. 

Overall maximum error, accuracy, and precision of the robot's position and 

orientation reported by the IMU-coupled TLG system are summarized in Table 4.4.  

Table 4.4 

Summary of Overall Maximum Error, Accuracy, and Precision of the Robot's Position 

and Orientation Reported by the IMU-Coupled TLG System 

Summary 
IMU-coupled laser-guided system  

X (cm) Y (cm) Z (cm) Heading Roll Pitch 

Overall Maximum Error 3.00  4.00 2.00 3.00º 3.00º 2.20º 

Overall Accuracy ( OA
A ) 0.92 1.37 0.59 0.90º 0.78º 0.76º 

Overall Precision ( OA
P ) 0.75 0.69 0.67 0.96º 0.71º 0.59º 

 

Moreover, a multipass, horizontal trajectory of the robot generated by real-time XY 

position tracking via the IMU-coupled TLG system is depicted in Figure 4.2. Hence, 

the localization and the horizontal path tracking of the IMU-coupled TLG system 

were found to be highly accurate and precise all along the designed path.  
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Figure 4.2 

Multipass Trajectories (Solid Green Line) of the Skid-Steering Robot on the Designed 

Path (Dotted Red Line) Generated by the Real-Time Position Tracking of the IMU-

Coupled TLG System in a Flat Field 

1 
m

 
 

Since the XYZ and heading measurements by the IMU-coupled TLG system solely 

rely on HML and PML detection accuracy on the HMT and PMT, the laser beam 

divergence due to its travel distance and sunlight interference could deteriorate the 

overall accuracy and precision. The local XYZ/heading accuracy and precision at 

each numbered location were plotted against the mobile unit’s distance from the laser 

base station and the average light intensity on the laser targets. The local 

XYZ/heading accuracy and precision versus the robot’s distance from the laser base at 

each numbered location are illustrated in Figure 4.3(a)-4.3(d) and Figure 4.3(e)-

4.3(h), respectively.  
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Figure 4.3 

The Local Accuracy ( ) and Precision ( ) of the Robot's XYZ Coordinates and Heading 

Reported by the IMU-Coupled TLG System at the Numbered Locations versus the 

Mobile Unit's Distance from the Laser Base Station 

 

 

 

 

 

 

 

 
 

Within the given field size, no correlation between the IMU-coupled TLG system’s 

overall accuracy and precision and the mobile unit’s distance from the laser base 

station was established. The local XYZ/heading accuracy and precision versus the 
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average light intensity on the laser targets at each numbered location are depicted in 

Figure 4.4(a)-4.4(d) and Figure 4.4(e)-4.4(h), respectively. If not exceeding 20,000 

lux, the varying light intensity on the laser targets during the daytime did not 

significantly affect the system’s overall accuracy and precision.  
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Figure 4.4 

The Local Accuracy ( lA ) and Precision ( l ) of the Robot's XYZ Coordinates and 

Heading Reported by the IMU-Coupled TLG System at the Numbered Locations 

versus the Average Light Intensity on the HMT and PMT 
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4.2.2 Paddy Field Experiments 

The actual paddy field testing is designed to demonstrate the system worked on a 

rough surface. The experiment was repeated in a dry paddy field in Ratchaburi 

province, Thailand, with the same conditions as flat-field testing. The result in Figure 

4.5 presents a position plot for multipass trajectories moving in the paddy field. The 

overall position accuracy is 1.72 cm, and the heading error is 1.0 deg. The position 

error is not significant compare with the position error of flat field testing in Figure 

4.4. From Figure 4.5, between point 10 to point 7, there was an uneven area that led to 

many mistakes in that area. 

Figure 4.5 

Multipass Trajectories (Solid Green Line) of the Skid-Steering Robot on the Designed 

Path (Dotted Red Line) Generated by the Real-Time Position Tracking of the IMU-

Coupled TLG System in a Paddy Field 

1 
m
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4.3 Result and Discussions 

The overall localization performance and the total cost of the IMU-coupled TLG 

system are compared to those of the commercially available GNSS-INS systems, 

namely NovAtel PwrPak7D-E2 and Trimble BX992. The performance comparison 

criteria are lateral accuracy ( LAT

OA
A ) and heading accuracy ( OA

A ). The lateral accuracy 

of the IMU-coupled TLG system is computed from the overall XYZ accuracies ( X

OA
A  

and Y

OA
A  as shown in Table 4.4) using the equations as follows: 

2 2( ) ( )LAT X Y

OA OA OA
A A A   (13) 

The comparison of the IMU-coupled TLG system with the NovAtel PwrPak7D-E2 

and Trimble BX992 is summarized in Table 4.5. The lateral and heading accuracies of 

NovAtel PwrPak7D-E2 and Trimble BX992 are based on the best performance 

claimed by their system specifications. The lateral accuracies of the IMU-coupled 

TLG system (on flat field), NovAtel PwrPak7D-E2, and Trimble BX992 are 1.68 cm, 

1.00 cm, 5.00 cm, respectively. The heading accuracies of the IMU-coupled TLG 

system (on flat field), NovAtel PwrPak7D-E2, and Trimble BX992 are 0.90º, 0.05º, 

and 0.09º, respectively. This shows that the localization performance of the IMU-

coupled TLG system is comparable to those of the commercially available GNSS-INS 

systems. Furthermore, while the GNSS-INS systems are limited only for an open, 

outdoor environment under optimal open-sky conditions, the IMU-coupled TLG 

system can operate in both indoor and outdoor settings with the only outdoor 

limitations of rainy weather and maximum light intensity of 20,000 lux (at PMT). 
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Table 4.5 

 Comparison of Lateral/Heading Accuracy and Total Cost of the IMU-Coupled TLG 

System to the Commercially Available GNSS-INS Systems, NovAtel PwrPak7D-E2 

and Trimble BX992 

 

4.4 Chapter Summary 

The total cost of the IMU-coupled TLG system is approximately $950 in USD, while 

those of NovAtel PwrPak7D-E2 and Trimble BX992 are approximately $11,000 in 

USD and $6,000 in USD, respectively. The costs of the NovAtel PwrPak7D-E2 and 

Trimble BX992 are based on the actual online prices in February 2021, which may 

vary depending on the location. Also, there is an additional yearly cost for GNSS 

correction services, i.e., for this instance, TerraStar for NovAtel GNSS receivers and 

Trimble-RTX for Trimble receivers. The prices and availability of the GNSS 

correction services may vary depending on the geographical location. If the GNSS 

correction service is unavailable in the desired area of operation, a separate GNSS 

base is required, which may add up to $12,000 in USD into the total cost of the 

GNSS-INS system.  This can be concluded that the total cost of the IMU-coupled 

TLG system is at least five times less expensive compared to the commercially 

available GNSS-INS systems in the current market. The IMU-coupled TLG system 

comes with enough position and orientation accuracy for agriculture factories. 

 

Overall Accuracy IMU-coupled TLG NovAtel PwrPak7D-E2 Trimble BX992 

Lateral ( LAT

OA
A ) 1.68 cm 1.00 cm 5.00 cm 

Heading ( OA
A ) 0.90º 0.05º 0.09º 

Total Cost (USD) ~$950 ~$11,000 ~$6,000 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary and Conclusion 

The experimental results of the flat field and the paddy field showed similar 

localization performance; only the highest position error between points 10 and 7 in 

Figure 4.5 comes from an uneven surface on the paddy field. The repeated robot’s 

position and orientation measurements on a 20 x 21 m flat, open area, the IMU-

coupled TLG system with a total cost of only $950 in USD can achieve the lateral and 

heading accuracy of 1.68 cm and 0.90º in the flat field and 1.72 cm and 1.0º in the 

paddy field, respectively. The lateral and heading accuracy performances are 

comparable to those of commercially available GNSS-INS localization systems 

(updated in 2021). The multipass horizontal path tracking also confirmed the high 

accuracy and precision of the IMU-coupled TLG system. Furthermore, the IMU-

coupled TLG system reliably performed various light intensities on the laser targets 

under 20,000 lux without any noticeable deterioration in localization accuracy and 

precision. Hence, this novel IMU-coupled TLG system presents a new promising 

solution as a low-cost, high-accuracy alternative for automatic machinery in farms 

and agricultural industries.  

 

5.2 Recommendation for Future Research 

To apply the localization system in a paddy field for commercial or self-farm use, 

some improvements want to modify as follow: 

 Replace the camera sensor behind the laser target with an RGB light sensor 

array to reduce the target size and improve sensor sensibility and accuracy. 

 Add an auto-leveling system for the laser base unit. The added auto-leveling 

unit helps the system find the ground plane quickly. 

 Make a trailer to carry the system anywhere. 

 Redesign the case cover to protect moisture. 

 Adding a solar cell system to supply most equipment. 

 Mark the reference points to the paddy fields for easy installation and convert 

relative position to absolute position. 
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