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ABSTRACT 

This thesis introduces the design, modeling, and control strategies employed in the 

development of a self-balancing unicycle robot. It investigates both classical (model-

based) and reinforcement learning (model-free) methodologies. A compact reaction-

wheel-based unicycle is carefully designed using Solidworks and produced using 3D 

printing and the integration of electronics for assembly for practical experimentation. 

the design of the proposed unicycle offers two unstable degrees of freedom 

characterized by pitch and roll, providing ground for nonlinear model control research 

in robotics. for the simulation study, a continuous control scheme is proposed, featuring 

two distinct algorithms: Linear Quadratic Regulator (LQR) in the classical domain and 

Deep Deterministic Policy Gradient (DDPG) in the deep reinforcement learning 

domain, tailored for balancing and maneuvering tasks. MATLAB is employed for 

classical control simulations, while Pybullet Physics Engine with Python interface is 

utilized for DDPG-based reinforcement learning simulations, effectively demonstrating 

the efficacy of the proposed control strategies. for discrete control, a proof-of-concept 

model based on a 2D inverted pendulum is proposed to explore self-erecting dynamics 

for unicycles. The performance of the control algorithms is rigorously assessed through 

comprehensive testing procedures, focusing on metrics such as settling time, overshoot, 

and robustness to external stimuli. Analysis of the results indicates that both methods 

demonstrate potential for balancing unicycles. However, LQR outperforms DDPG 

across various scenarios, showcasing greater robustness and stability, particularly 

concerning steady-state performance. Conversely, DDPG shows promising results and 

exploratory behavior yet the effective policy transfer to hardware is left for future 

reference. For classification, for systems with non-linear study the DRL method is 

suggested while the classical control methods are recommended for systems with a 

known dynamic, owing to their simplicity and robustness, contingent upon 

applicability. 
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CHAPTER 1  

INTRODUCTION 

1.1 Inspiration Behind this Research 

In recent years, significant advancements have been made in the realm of control 

systems, particularly with the emergence of model-free approaches like reinforcement 

learning, alongside traditional classical control methods. these advancements offer 

considerable flexibility in controlling inherently unstable systems, thereby facilitating 

their practical application in various domains.  

Concurrently, there has been a notable surge in research interest directed towards 

actuators, sensors, and embedded controllers, fueling innovation in control and 

robotics. Furthermore, the proliferation of 3D printing technology has revolutionized 

the creation of advanced testbeds, further propelling the growth of experimental 

platforms. These platforms serve as invaluable resources for the control and robotics 

community, providing a robust foundation for investigating dynamic properties and 

offering novel avenues for mechatronic solutions. Considering these developments, this 

study endeavors to explore a mechatronic platform characterized by instability and 

underactuation, specifically focusing on a unicycle robot. 

Unicycle robots offer unique challenges and opportunities in the field of robotics. the 

potential for practical applications, such as transportation search and rescue, and 

navigating through narrow paths makes them an attractive area of study. Additionally, 

the development of unicycle robots requires innovative solutions in control and sensing 

that could have broader implications for other areas of robotics. Finally, the visual 

impact of a robot balancing on a single wheel makes unicycle robots an exciting and 

captivating area of research to study both linear and non-linear effects.  

The foundational works by A. Schoonwinkle et al., laid the groundwork for 

understanding the dynamics of unicycles, drawing Inspiration from how humans 

balance while riding them. As depicted in Figure 1.1, the key components of a unicycle 

include the wheel, body, and disc. The unicycle is conceptualized as a representation of 

the lower part of the rider, with the frame serving as the balancing element. 
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Additionally, a turntable mechanism is employed to model the movements akin to those 

made by a rider, simulating the twisting motion of the torso and arms for balance. 

Figure 1.1 

Unicycle Concept (Schoonwinkle et al) 

 

 

With the introduction of innovative mechatronic solutions, this research endeavors to 

provide a platform for investigating the dynamic properties of the Wheelbot. Drawing 

upon various conceptual architectures of robotic testbeds and employing a system-level 

approach to design, this work scrutinizes critical design decisions, including the 

determination of the number of (DOFs) and the development of electromechanical 

components. Unicycle robots, in comparison to other self-balancing counterparts such 

as biped-wheel, Segway, and ballbot, offer distinct advantages. these benefits include: 

1. High mobility: the unicycle robot offers the advantage of navigating through 

narrow spaces, and rough terrain.  

2. Simple design: the design of a unicycle robot is relatively simple compared to 

other types of robots. It typically consists of a single wheel, a motor, and a few 

sensors. This makes it easy to build and maintain. 

3. Low power consumption: Unicycle robots require less power compared to other 

types of robots. The single-wheel design allows for efficient use of energy, 

making it possible for them to operate for longer periods. 

4. Versatile: Unicycle robots can be used in several applications, including search 

and rescue, surveillance, and transportation. Their high mobility and simple 

design make them a great choice for tasks that require agility and flexibility.  
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5. Cost-effective: Because of their simple design and low power consumption, 

unicycle robots are generally less expensive to build and maintain. 

6. On-board Battery: this robot could carry its battery onboard unlike other 

unicycle robots while maintaining the compact size on the go.  

1.2 Problem Statement 

Testing model-free control and model-based dynamics controls, such as reinforcement 

learning and classical learning control, on unicycle robots often poses significant 

challenges due to the substantial hardware development requirements and associated 

maintenance costs. in today's landscape, hardware development is characterized by its 

time-consuming nature, mechanical complexity, and high expenses, making it difficult 

to swiftly produce robots for research activities in university or laboratory settings. 

Consequently, there arises a pressing need to streamline efforts through compact design 

solutions and leverage 3D printing technology for the rapid prototyping of robots. 

In response to this imperative, this research advocates for the utilization of 3D printing 

technology alongside electromechanical control, enabling the creation of compact-

sized robots. Additionally, the study conducts a comparative analysis of control 

performances employing both advanced and classical control methodologies, such as 

reinforcement learning and Linear Quadratic Regulator (LQR), respectively.  

1.2.1 For Self-Balancing Part 

The Wheelbot, or unicycle, offers a versatile platform for integrating off-the-shelf 

electric motors, often requiring minimal operating space. Its wheel configuration 

typically comprises rolling wheels, which exploit friction forces for locomotion, and 

reaction wheels, capable of applying free torques or moments. Examples of such 

designs can be found in Ballbots developed by P. Fankhauser and U. Nagarajan in 2010 

and 2014, as well as Segway robots like Ascento developed by V. Kemm et al. in 2019.  

From a dynamic perspective, achieving balance with a flywheel wheel necessitates 

swift adjustments in the motor's rotational direction, potentially leading to high motor 

velocities. Consequently, utilizing an electric motor to actuate a reaction wheel entail 

addressing rate-dependent control limitations, highlighting the importance of 

investigating optimization-driven control strategies, as discussed by Xiong et al. in 

2021. On the other hand, the rotational movement of rolling wheels typically occurs at 
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lower speeds, as observed in the Ascento design. Additionally, utilizing rolling wheels 

may require addressing non-minimum phase linearized closed-loop system dynamics, 

as evidenced in prior research by P. Fankhauser and U. Nagarajan in 2010 and 2014. 

This study concentrates on employing DC motors, known for enhancing the 

maneuverability of wheeled robots like Cubli, as demonstrated by Muehlebach et al. in 

2017, and Ascento, capable of executing rapid and discontinuous dynamic maneuvers. 

These motors play a pivotal role in enabling the Wheelbot to perform agile movements 

that are subject to the discontinuity of robot dynamics. 

1.2.2 For Reaction Wheel Unicycle 

The exploration of single-wheel robotic systems necessitates the creation of compact, 

underactuated control mechanisms capable of navigating non-holonomic and rapidly 

changing environments, particularly within constrained laboratory settings. to fulfill 

these demanding criteria, this investigation confronts design hurdles by integrating a 

dual-wheel setup affixed to a rigid body, enabling ground traversal while serving as 

reaction wheels atop the structure. Previous studies have proposed diverse layouts for 

reaction wheel-equipped unicycle robots, with rotational axes arranged either in 

alignment or perpendicular to the centers of wheels. 

Unicycle robots with coaxial setup cannot control the roll degree of freedom (DOF), 

instead inducing motion in the tilting while depending on the rolling wheel to avert 

toppling. Conversely, the orthogonal setup of unicycles facilitates direct manipulation 

of both the roll and pitch DOFs. 

Hence, this study adopts an orthogonal setup to enable direct control of robots in the 

longitudinal and lateral directions. The coupling dynamics can help to tune both pitch 

and roll controllers independently. These controllers establish a fundamental 

framework for addressing more intricate research inquiries robot the yaw dynamics or 

its navigation along predetermined trajectories. Recent proposals for orthogonal-

configuration unicycles, as advanced by G.P. Neves and Angelico in 2021, employ very 

high-inertia reaction wheels to minimize flywheel wheel acceleration and mitigate the 

risk of exposing electronics to high-consuming currents at high speeds.  
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To tackle the research gaps, this investigation endeavors to develop a Wheelbot capable 

of adeptly managing substantial disturbances in both roll and pitch directions, all while 

integrating an onboard power source for maneuverability. 

1.3 Research Questions 

1. Can a proposed robot be produced at the Laboratory level for testing? 

2. Can the design of a Wheelbot robot reduce the complexity of 3D-printed parts? 

3. Would it be possible for this robot to carry its power supply while maintaining 

balance and compact size? 

4. Can this robot be controlled using the concept of the internet of Things (IoT)? 

5. Can classical control and reinforcement learning be implemented on this robot? 

1.4 Objectives of Research 

This research aims to develop compact-size, self-balancing unicycle robots with 

orthogonal configurations. the objectives of the research are: 

1. To develop a Wheelbot or unicycle robot with one rolling and one reaction 

wheel for pitch and roll control respectively. 

2. To propose the dynamic model of a unicycle robot using rigid body modeling 

and present simulation results. 

3. To investigate state estimation by using the concept of sensor fusion and design 

estimation curriculum. 

4. To design a balancing control scheme for a Wheelbot using a Linear Quadratic 

Controller (LQR) and reinforcement learning for the robot’s self-erection.  

5. To implement control algorithms in MATLAB Simulink/Python and compare 

the performance of RL vs simple LQR-based control. 

6. To present an IOT-based (wireless control) mechanism for a real robot using an 

embedded controller.  

1.5 Scope of this Work and Limitations  

1.5.1 Scope of the Study 

1. The overall robot will weigh a total of 0.8 kg.  

2. The robot has a full height of about 120mm and a width of about 100mm. 

3. The robot wheel will have a small neighborhood for balancing in an upright 

position. 
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4. The robot is meant to maneuver on both smooth acrylic glass and rubber mats. 

5. The Wheelbot motor's applied torque will be around 1 Nm to reject the impulse 

disturbance. 

The electronic specifications of the robot are well-mentioned in the appendix section of 

this report. Other specifications of the Wheelbot as per individual category are 

mentioned below: 

Table 1.1 

 Specifications of Proposed Robot 

Category Value 

Total Weight 0.7 kg 

Reaction Wheel weight 0.15 kg 

Operating time Rate of battery charge 

Supply Voltage 12 V DC 

Battery Capacity 3s 500 25C 

Nominal Motor torque 70mN.m (stall) 

 

1.5.2 Limitations of Research 

1. The electromagnetic inference (EMI) that comes from brushless motors may 

add noise/disturbance to the performance control of Wheelbot. (It may then be 

reduced using shielding – will still be tested after build-up). 

2. Increased motor noise may impair reinforcement learning control for 

performance. 

3. Hardware training using RL is difficult because of the unstable nature of the 

robot.   

4. The analysis of the nonlinear yaw dynamics in thesis calculations will exceed 

the scope of this work. 

5. The robot will not perform any other controlling schemes until and unless 

explicitly mentioned in the scope.  
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CHAPTER 2 

LITERATURE REVIEW 

This chapter of the report presents the previous work done by researchers in robotics, 

especially for the design of unicycle robots, and other mobile underactuated robots and 

algorithms designed for balancing and jumping control. Moreover, also discusses the 

control methods (like reinforcement learning and LQR) for unicycle robots. 

2.1 Overview of the Literature 

Unicycle robots inherently exhibit instability, susceptible to tipping in both the 

longitudinal and lateral directions while maintaining a heading in the yaw direction. 

Consequently, when structuring such robots, paramount consideration must be given to 

achieving equilibrium within the system, a crucial aspect of the stabilization process. 

Various techniques exist to uphold the robot in an upright orientation. 

This section delves into the exploration of balancing mechanisms employed in various 

research endeavors, elucidating the roles of motors and sensors in achieving 

stabilization for a typical unicycle robot. 

The idea of a unicycle comes from humans riding it and this control structure can be 

seen in Figure 2.1. this structure encompasses four distinct levels: 

1. Distributed information Stage: this level represents the distribution of 

information within the system, with sub-levels further categorizing and 

organizing the available information. 

2. Logical System Stage: the logical system utilizes distributed information to 

formulate logical relationships and rules governing the behavior of the unicycle. 

3. Decision Support System Stage: this level provides support for decision-making 

processes based on the logical system's output and external factors. It assists in 

determining appropriate actions or responses to dynamic changes in the 

environment or system state. 

4. Dynamic Mechanical System Stage: At the lowest level of the hierarchy, the 

dynamic mechanical system represents the physical embodiment of the 

unicycle, including its mechanical components, sensors, actuators, and 

interactions with the environment. 
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Each level of the hierarchy contributes to the overall functioning of the control system, 

with distributed information serving as the foundation upon which logical reasoning, 

decision-making, and mechanical actions are built. This hierarchical structure facilitates 

a systematic approach to understanding and controlling the complex dynamics of the 

robotic unicycle, akin to the way a human rider navigates and balances on a unicycle.  

 Figure 2.1  

Models of Unicycles from Previous Years (Sergey & Viktor, 2020, INESYS Moscow) 

 

 

Currently, there is significant global attention directed towards mobile robots, driving 

extensive research and development endeavors. This encompasses diverse areas such 

as mechanism design, control algorithms, multi-robot cooperation, and beyond. the 

operational environments of wheel robots can be broadly classified into 2D and 3D, 

each presenting distinct challenges and potential avenues for exploration. 

In two-dimensional space, mobile robots such as Automated Guided Vehicles (AGVs) 

and vacuum cleaner robots are prevalent. AGVs are extensively utilized in factory 

settings, while vacuum cleaner robots find widespread use in households. These robots 

remain in constant contact with the ground, rendering them physically stable and 

obviating the need for additional energy for balancing purposes. Research in this 

domain typically focuses on trajectory tracking, motion control, artificial intelligence 

(AI), and multi-robot cooperation. Conversely, mobile robots operating in three-
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dimensional space present a different set of challenges. these robots, such as bicycle 

robots, ball bots, unicycle robots, and jumping robots, are inherently unstable.  

Figure 2.2 illustrates several types of mobile robots functioning in three-dimensional 

space. in contrast to their two-dimensional counterparts, these robots must contend with 

dynamic balance issues and complex motion planning requirements. Research 

endeavors in this realm often concentrate on developing robust control strategies, 

dynamic stability mechanisms, and innovative locomotion techniques to navigate 

challenging terrains and environments. 

Figure 2.2  

(a) AGV (b) The Cleaner Robot (vacuum) (c) Bicycle Robot (d) Unicycle Robot (e) 

Jumping Robot (Surachat & Manukid, 2017, AIT Thailand) 

 

 

 

2.2 Mechanical Aspects of Robot Design 

2.2.1 Hardware Mechanisms for Unicycle Robot 

As previously mentioned, there are two main configurations for reaction wheel unicycle 

robots: coaxial and orthogonal to the line connecting the centers of both wheels. These 

configurations have distinct effects on the control and dynamics of the robot. Overall, 

the choice between coaxial and orthogonal configurations depends on the specific 

requirements and objectives of the robot's operation, with each configuration offering 

unique advantages and trade-offs in terms of stability, control complexity, and 

maneuverability. 
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Figure 2.3  

 A Turntable-Based Approach for Balancing Unicycle 

 

The second method employed in stabilizing unicycle robots involves mass balancing, 

which entails adjusting the robot's center of gravity. The system comprises three 

primary components: the robot's ground wheel, either pendulum or flywheel at the top, 

and the robot’s body. The stabilizer, represented by the mass of the pendulum, is 

inserted into a robot. by swinging the mass of the pendulum sideways, the robot can be 

adjusted about its pivot point. The advantage of the mass balancing approach lies in its 

simplicity and straightforward mechanism of operation, allowing for the decoupling of 

robot movement between roll and pitch motions. 

The ultimate approach to stabilize unicycle robots involves leveraging the principle of 

angular momentum. This technique encompasses two distinct sub-methods: the affixed 

flywheel and the moving flywheel. in the affixed flywheel setup, the reaction wheel 

axis aligns with the robot’s roll. by modulating the rotation speed of the flywheel, torque 

is generated to stabilize the robot. However, this method demands a robust motor to 

drive the flywheel, as it must contend with the significant inertia associated with its 

rotation. 

2.2.2 Balancing Mechanism of Different Unicycle Robots 

Previous studies have classified techniques for balancing unicycle robots into three 

primary categories: turntable, mass shifting, and angular momentum. The turntable 

approach involves utilizing a rotating platform akin to a unicycle rider's center. 

Positioned atop the robot, it can rotate fully, exerting torque to adjust the robot's 

orientation and stabilize the roll axis. However, symmetric turntables often struggle to 
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generate sufficient reaction torques for effective rotation, prompting exploration into 

asymmetric models. 

An alternative method proposed by Majima and Kasai (2005) involves utilizing a disk 

rotating perpendicular to the wheel to apply momentum in the lateral direction, avoiding 

the need for moving weights to shift the center of gravity. While simplifying the design, 

this approach introduces additional dynamic and static effects, necessitating separate 

handling of lateral and longitudinal issues.  

Similarly, Chantarachit (2011) suggested managing lateral and longitudinal control 

independently before combining them to achieve self-balancing. This approach 

resembles an inverted pendulum with a flywheel, where the inertial of the wheel can 

balance the lateral direction, as demonstrated by Xiaogang and Yu-Feng in 2010. 

 

Figure 2.4  

Unicycle Design Proposal by Majima & Kasai in 2005 

 

 

The two classes of unicycle designs draw Inspiration from the control mechanisms 

exhibited by human riders. (Schoonwinkel, 1987) employed a comparable setup, 

modeling a human with three solid parts: the wheel to roll, Body structure, and a rotary 

turntable simulating the torso and arms of a rider. in the current work, a similar 

mechanism is proposed, taking Inspiration from Schoonwinkel's approach. This 

mechanism involves placing a supporting wheel to enable independent testing of pitch 

control. 
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Figure 2.5  

Mechanical Design Proposed by (Schoonwinkel, 1987) 

 

An alternative method for stabilization harnesses the gyroscopic principle. When a disk 

rotates around the x-axis and is tilted about the y-axis, it produces a torque about the z-

axis, a phenomenon known as gyroscopic precession. Here, the spinning wheel's 

angular momentum causes it to lag by 90 degrees to the applied torque. 

 

Figure 2.6  

Design of Unicycle Developed by (Minh-Quan & Kang-Zhi, 2005) 

 

 

The turntable-based robot design has encountered challenges due to the high-power 

demand of the turntable actuator, necessary to rotate the unicycle body. This 

requirement arises from the need for the turntable's torque to arrange a setup where the 

torque is greater than the torque between ground and the wheel of the robot.  
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An intriguing alternative to this concept is showcased in the human-ridden unicycle, 

depicted in Figure 2.7. This design is proposed by A. Kadis et al., which diverges from 

traditional turntable-based approaches. Instead of relying on the turntable to change the 

unicycle's heading, the rider adjusts the direction by twisting their torso. This innovative 

adaptation bypasses the need for a high-power turntable actuator, offering a potentially 

more efficient and intuitive control mechanism for the unicycle. 

 

Figure 2.7 

 Unicycle Robot Model by Kadis et al.,2010. 

 

 

2.3 Developments in Previous Research at Robotics Lab, AIT 

2.3.1 Balancing Control of Unicycle  

At Robotics Lab, AIT, previous research adopts the disk driver technique to generate 

torque for lateral balancing and the inverse pendulum technique for longitudinal 

balancing. Various sections of the thesis, including sensor fusion, mathematical 

modeling, and control algorithms, are explored. The focus lies on developing control 

algorithms to govern the robot's behavior. 

Both PID and LQR controllers are applied to both simulation models and real plants to 

observe the robot's response. Simulation results are obtained using Simulink in the 

Matlab program. However, a significant challenge arises in achieving lateral balancing 

in the real system due to hardware limitations. for instance, the motor's response is too 

slow compared to the command input. 
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To address this challenge, the author suggests modifications in two key areas: 

mechanical enhancements, such as increasing motor power, and algorithmic 

improvements to ensure robust control. The proposed research aims to develop a robust 

algorithm for optimal control of the Wheelbot. Notably, an exploration into 

reinforcement learning techniques has not been conducted thus far, presenting an 

opportunity for future investigation (Surachat & Manukid, 2011) 

Figure 2.8  

Unicycle Robot Developed by Surachat & Manukid, 2011, AIT, Thailand 

 

 

2.3.2 Self-Balancing Unicycle 

At Robotics Lab AIT, a recent research project has successfully utilized control 

algorithms to achieve precise control actions. in this project, a DC motor was employed 

to stabilize longitudinal motion, while a single flywheel was used for lateral 

stabilization. The researchers tackled mathematical modeling for each direction 

separately, utilizing the Euler-Lagrange equation and state space representation to 

simplify linear equations.  

Through a series of experiments, conducted independently for each direction with one 

side stabilized, the researchers achieved self-balancing capabilities. These experiments 

demonstrated that while PID control exhibited robustness, it was prone to oscillations. 

Conversely, LQR control proved to be robust and offered smoother operation. 

Challenges were encountered due to interdependencies among roll, pitch, and yaw 

angles, as well as the overweight and slow response of the motor, which posed a risk of 
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the robot falling in any direction. Moreover, the research was limited to classical control 

schemes, and the investigation into reinforcement learning control was not explored. 

The proposed research, which has already commenced, aims to address these 

challenges. It seeks to develop a control scheme where pitch and roll directions are 

coupled yet independently tunable. Additionally, the integration of self-erection 

capabilities in the proposed robot addresses the issue of falling on either side. 

Furthermore, the investigation into reinforcement learning control, combined with 

LQR, promises to identify key research gaps for parameter tuning and enhance the 

robustness of the control scheme. 

Figure 2.9 

Self-balancing Unicycle by Abhisesh & Manukid., 2012, AIT.  

 

 

2.3.3 Two Flywheel Mechanism 

In this project, a flywheel robot achieves self-balancing on the lateral axis through 

synchronous spinning of flywheels positioned on either side, while balance on the 

longitudinal axis is maintained using the inverse pendulum effect. While balancing 

lateral and longitudinal motions concurrently prevent the robot from falling, this project 

focuses on demonstrating stability in each axis separately. 

In this setup, the PID controller is implemented for both lateral and longitudinal 

motions. However, the design is mechanically intensive and complex, and the author 

acknowledges that the correct use of electronics was not deployed, resulting in 

troublesome errands. 
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In the proposed research, the aim is to enhance the design's simplicity and compactness 

while ensuring accurate and high-resolution sensing. This will be achieved through the 

utilization of high-accuracy and resolution sensor IMUs (inertial Measurement Units) 

and Gyros, thereby addressing the challenges encountered in the previous project. 

 

Figure 2.10 

Two Flywheel Robot, Pathamrajah & Manukid., 2018, AIT 

 
 

2.4 Electrical Aspects of Robot Design 

The research work done by Surachat for unicycle robot balancing has utilized the 

following scheme for electronics. 

 

Figure 2.11  

Unicycle Robot Electronics Used ET-OPTO DC Driver (Surachat & Manukid, 2011) 

 

 

In the current setup, the board has limited applications for the DC motor, with a 

maximum draw of 10 amps. However, the proposed research introduces the use of 
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STM32 controller, which offers enhanced flexibility and robustness in controlling 

brushless DC motors. 

 

Figure 2.12 

 Signal Conditioning Circuit Developed by Abhisesh 2012, AIT 

 

 

 

Figure 2.13 

 Electrical Circuit Used in Pathamrajah, Thesis, 2018, AIT 

 

 

 

The proposed electronics for this research will be similar to the board used by 

Pathamrajah, 2018 in his research work as shown. in the previous research conducted 

by Abhisesh, a custom signal conditioning board and Gyros interface were designed, 

requiring significant time and resources to implement. in contrast, the proposed 

research will utilize off-the-shelf components to develop the robot, with a primary focus 

on crucial aspects such as balancing and control. This approach streamlines the 

development process and reduces the resource-intensive nature of electronics 

implementation. 
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2.5 Related Work on Other Robots in Literature 

2.5.1 Ballbot Robot 

The first ballot was pioneered at Carnegie Mellon University in year 2006 by T.B. 

Lauwers et al., Resembling an inverted mouse ball, its drive mechanism was designed 

to mimic this structure. Standing at the height of an average human, it represented a 

significant development in robotic design. 

In 2008, another robot model was proposed at Tohoku Gakuin University, spearheaded 

by Professor Masaaki. This iteration weighed approximately 7.5 kg and stood at around 

0.5 meters in height, making it more compact and smaller than its predecessor. Unlike 

the first ballot, this robot employed a drive mechanism with wheels positioned 120 

degrees apart, minimizing the number of wheels required for locomotion. However, the 

unique orientation of its wheel position posed challenges in defining its movement and 

functionality. 

Despite these differences, both robots adopted similar concepts, including the use of 

LQR and inner PI controllers, which resonate with the proposed Wheelbot robot's 

design principles. 

 

Figure 2.14 

 Ballbot Developed by Carnegie Mellon University (CMU) 2006 
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2.5.2 Bipedal Robots – Acento and Four Bar Mechanism 

The concept of a compact wheeled bipedal robot capable of swift movement on flat 

terrain and adeptly overcoming obstacles through jumping was introduced by Victor 

Klemm et al. in 2019. Their innovation showcased a parallel elastic jumping 

mechanism constructed from topology-optimized components. This mechanism 

exhibited remarkable capabilities in balancing and executing locomotion patterns. 

Inspired by this pioneering work, the proposed thesis aims to harness the potential of 

robotics in real-world scenarios. Drawing upon the advancements demonstrated by 

Klemm et al.'s robot, the thesis seeks to explore and expand upon the applications of 

robotic technology, to improve agility in complex environments. 

 

Figure 2.5 

Ascento Robot by ETH Zurich, Autonomous System Lab, 2019 

 

An innovative design introduces a leg on wheels robot. Extensive analysis was 

conducted on the kinematics and dynamics of this robot, incorporating an LQR 

controller for balance and a fuzzy logic-based PD controller for jumping tasks. 

In the analysis, torque curves and hip joint angles were obtained through Simulink 

experiments. This comprehensive investigation sheds light on the intricate mechanics 

and control strategies necessary for achieving stable locomotion and dynamic jumping 

capabilities in the bipedal wheel-legged robot. 
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Figure 2.16 

Jumping Wheel-Legged Robot Developed  

 
 

Figure 2.17 

Fuzzy Proportion Differentiation Control  

 

 

2.5.3 Cubli Robots – 3D inverted Pendulum 

A significant portion of this research work draws Inspiration from the Cubli, a 3D 

inverted pendulum based on reaction wheels. The Cubli, measuring 15x15x15 cm, is 

equipped with three momentum-applying reaction wheels. The Cubli demonstrates the 

ability to balance on its edges.  

The nonlinear system governing Cubli’s dynamics is computed using a frequency-

based approach. Additionally, the Cubli showcases corner-balancing capabilities with 

a classical controller, and further exploration involves corner-balancing using a linear 

feedback controller. 
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Moreover, this research aims to leverage the jumping mechanism exhibited by the 

Cubli, which can jump from a resting position without external support. This 

mechanism offers valuable insights into dynamic motion and control strategies that can 

be applied to enhance the capabilities of bipedal wheel-legged robots. 

 

Figure 2.18  

CAD Model and Cubli Robot (ETH Zurich) 

 

 

 

In a recent study conducted by Mathias Hofer et al. at ETH Zurich in 2023, the 

development of the one-Wheel Cubli was introduced. This innovative design features 

just one wheel for balancing on the edges. This achievement is made possible through 

meticulous consideration of the inertia of mass, ensuring a significant disparity between 

the inertia along the tilt axis of the system.  

To maximize controllability, two inertia values ratio is optimized, and the study 

discusses sensor placement strategies aimed at minimizing variance in tilt estimates, 

contributing to innovative design. Notably, the lightweight design of the one-Wheel 

Cubli introduces challenges related to cantilever deflections, necessitating careful 

modeling and compensation. Figure 2.19 showcases the unique design of this robot, 

representing a significant advancement in the field of robotics. 
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Figure 2.19  

One Wheel Cubli (ETH Zurich, 2023) 

 

The dynamic model of this one-wheel Cubli is amazing in its nature. Thus, this work 

expects to leverage this part and incorporate the electrical and electronic components 

accordingly as shown in Figure 2.20.  

 

Figure 2.20  

One Wheel Cubli Setup for Electronics (ETH Zurich, 2023) 

 

 

The microcontroller, IMU, and actuator are the integral components of the system, all 

playing crucial roles. However, it's important to note that the motor driver is located 

offboard. for visualization, a laptop computer hosts a graphical user interface (GUI). 

Communication between the microcontroller and the motor is done using the CAN open 

protocol, while the IMUs communicate via the I2C protocol. the IMU and motor data 

are transmitted to the GUI via UART serial communication, allowing for real-time 

monitoring and control of the system's performance. 
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2.6  Intelligent Robust Control of Unicycle Robots: Artificial intelligence 

2.6.1 End-to-end Control Using Soft Computing Technology with Biomedical 

Control 

The research conducted by Sergey and Viktor (2020) delves into the utilization of soft 

computing techniques, specifically fuzzy logic control, for achieving robust control in 

unicycles. this study focused on exposing the characteristics of unicycles, which are 

non-holonomic, inherently nonlinear, globally spatially unstable, and highly 

constrained in terms of linkage. 

The proposed model, illustrated in Figure 2.21, addresses the complex dynamics and 

constraints inherent in robotic unicycles, paving the way for more effective and robust 

control strategies leveraging fuzzy logic principles. 

 

Figure 2.21  

The Logical Structure of Distributed Knowledge Representation (Dubana State 

University Russia, 2020)  
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The author has also presented the conceptual scheme for unicycle robot control about 

human-in-the-loop. The proposed research aims to leverage a biomedical system for 

controlling the unicycle robot.  

Figure 2.22  

The Conceptual Scheme of the Robotic Unicycle R & D 

 

 

The heuristic AI techniques have been further explored. 

 

Figure 2.23  

 Robust Control System Design on AI Structure 

 

 

2.6.2 Integrating RL and CL for Nonlinear System Management  

Imperial College London has investigated thoroughly the optimal control schemes and 

reinforcement learning for non-linear dynamics systems like cart poles, inverted 

pendulums, and unicycle robots. the comparison table for RL and OC is given below: 



 
 

 
 

25 

Table 2.1 

 Reinforcement Learning and Optimal Control Comparison (Doctoral Dissertation, 

Imperial College London) 

Reinforcement Learning Optimal Control  

Machine Learning  Control Engineering 

Markov Property and Bellman Bellman Optimality Principle 

Model – Free Model- Based 

Learns from Reward  Require Full Knowledge of Dynamics 

Discrete States and Actions Analytical Solution for Linear Systems  

Linear and nonlinear Systems Suitable for Linear Systems Only 

 

2.6.3 Mapping Optimal Control Problems into Reinforcement Learning (MDP) 

Framework 

The conceptual diagram in Figure 2.24 explains the integration of symbolic AI with 

closed-loop control in robotics from a third-person perspective. It illustrates how state 

features and actions, which are mapped in symbolic space, can be translated into 

continuous states and actions within the actuator space. This integration is crucial for 

the development of advanced robotic systems capable of executing complex tasks with 

high precision. The diagram is expected to include components such as Reinforcement 

Learning (RL), cost calculation, and the flow of information and control signals 

between the symbolic and actuator spaces.  

A cornerstone in the realm of decision-making frameworks, the Markov Decision 

Process (MDP) embodies a versatile structure for encapsulating the dynamics of 

stochastic environments and the decision-maker's strategic maneuvers. Defined by its 

components—states, actions, transition probabilities, and rewards—the MDP 

framework orchestrates the interplay between random events and deliberate choices. 

Agents, governed by policies dictating action selection in states, strive to optimize long-

term rewards through judicious decision sequences. Leveraging the Markov property's 

essence, which asserts that future outcomes hinge solely on the present state and action, 

MDPs navigate intricate decision landscapes with computational efficiency.  
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Figure 2.24  

 RLOC Architecture by Ekaterina, Department of Computing, Imperial College 

London, 2015 

 

2.6.4 Top-Down Classical vs RL Design Hierarchically 

The RL operates within a hierarchical structure, featuring, such as LQRs and PIDs. This 

hierarchical setup allows the algorithm to function effectively in the Symbolic Space 

and the Actuator Space. The Symbolic Space encompasses discrete actions and states 

of the symbolic level Markov Decision Process (MDP), while the Actuator Space 

includes continuous states and controls modeled over multiple time steps per episode. 

In adapting the top-down hierarchical approach of the RLOC algorithm for controlling 

the unicycle robot, a reinforcement learning agent operates at the high-level, abstract 

tier. interacting iteratively with its environment formulated as an MDP, the agent selects 

actions and observes resulting states and rewards, aiming to maximize the reward for 

the agent. in RL algorithms, Monte Carlo emerges as a natural choice for RLOC due to 

its capacity to handle semi-Markovian environments and its alignment with the episodic 

nature of tasks like pole balancing and arm reaching. Moreover, Monte Carlo's non-

bootstrapping approach retains all information about visited states without 

approximation, making it particularly suitable for episodic tasks compared to SARSA 

or Q-learning. At the low-level, the selection of closed-loop controllers is flexible, with 

the algorithm prioritizing controllers yielding the highest long-term reward, including 

LQR, PID, and H∞ controllers. 
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Figure 2.25 

PID Controller in Discrete Time Setting 

 

2.6.5 The LQR Controller 

The LQR stands out as a famous controller renowned for offering a solution for linear 

systems. Its key allure lies in its offline calculability, making it an appealing low-level 

controller. Notably, the LQR can be intelligently integrated into the domain of RL 

where applicable as linear adaptive control.  

Table 2.2 

Simulation Parameters - RLOC, iLQR Benchmark (ICL, 2015) 

Parameter Sym. Robotic Arm Cart Pole SI Unit 

RLOC num 

symbolic state 

n, 36 49 [a.u.] 

RLOC num LQR 

controllers 

na 5 10 [a.u.] 

iLQR initial control ilqr {-1,0,1} {-1,0,1} [N ml. [N] 

 

The best comparison is presented in the graph below where several controllers have 

been implemented to compare the reinforcement learning optimal control-based 

performance. 
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Figure 2.26 

RLOC Performance vs Cart Pole System (Number of Controllers Implemented) 

 

 

 

2.6.6 Machine Learning on Unicycle Robots 

University of Toronto, Canada has explored the transfer learning between unicycle 

robots to improve the performance of control systems in cases when accurate models 

of the system or the environment are not given. It has shown two non-linear, unicycle 

robots and derived analytical error bounds for the linearized robot models and 

experiments with the Pioneer 3-AT robot.  

Figure 2.27 

Transfer Learning Framework for Unicycle Robots (University of Toronto, Canada, 

2016) 
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The target comparison can be shown in figure 29 where the extracted model for an 

unknown system has been implemented on another unicycle robot. The two unicycle 

robots move in an outward spiral. The TL objective aligns the red trajectory to the 

blue.  

Figure 2.28  

RL Framework for Unicycle Robots (University of Toronto, Canada, 2016) 

 

 

 

This research shows the quality of alignment-based transfer learning using machine 

learning concepts for linearized unicycle robot models with proportional feedback 

control. Two linearized unicycle models, each with a different controller gain, follow 

the spiral trajectory which shows the advantage of machine learning controller 

implementation. However, this research aims to leverage the reinforcement learning 

optimal control as a model-free algorithm design with a low-level controller called LQR 

and will compare the performance over classical control methods.  
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CHAPTER 3 

METHODOLOGY 

In the development of the unicycle robot, the paramount objective is to engineer a 

design that ensures optimal stability from a mechanical standpoint. However, the reality 

of real-life scenarios often entails challenges in achieving perfection in design. 

Therefore, significant emphasis has been placed on refining the design and ensuring its 

reproducibility, particularly for laboratory applications. 

The methodology employed in this research unfolds across three distinct tracks: real 

robot design, simulation work for the unicycle, and stand-up dynamics concept. The 

simulation track is further delineated into MATLAB simulation for classical control 

and PyBullet simulation for reinforcement learning. The primary aim of the simulation 

work is to showcase the efficacy of control approaches for achieving balance, both in 

MATLAB and Pybullet environments. These simulation findings are then integrated 

with real-robot design considerations to validate the feasibility of algorithms and 

establish a testing platform for the unicycle robot. Additionally, stand-up dynamics 

experiments are conducted to elucidate the concept of jump-up maneuvers akin to the 

renowned robot Cubli.  

In essence, the amalgamation of these methodologies is meticulously coupled, 

rigorously tested, and systematically presented within the scope of this thesis to 

comprehensively address the challenges associated with unicycle robot design and 

control. 

3.1 The Flow Chart of this Methodology  

The methodology framework flow for this work is presented below.  
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Figure 3.1 

 Comprehensive Workflow of Methodology for Research Work 

 

 

 

3.2 Dimension Settings for Unicycle Robot 

The dimension parameters of the robot have been meticulously selected to facilitate the 

development of both simulation and real-robot models. The envisioned robot is 

designed to be compact and under-actuated, featuring two wheels in its configuration. 

Specifically, one of the wheels serves as the reaction wheel, while the other functions 
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as the rolling wheel that maintains contact with the ground. This strategic design allows 

for optimal balance and maneuverability, aligning with the objectives of the project. 

3.2.1 Height of Robot for Wheel Inertia 

The height of the robot holds significant importance in ensuring its maneuverability 

within laboratory settings or on a testbench. This consideration is approached from a 

technical standpoint, considering factors such as wheel size and its effect on inertia, as 

well as the torque changes induced by variations in angular velocity (w). 

To maximize inertia and minimize the impact on motor torque caused by changes in 

angular velocity, careful consideration is given to the size and positioning of the wheels 

relative to the robot's rotation axis. The orthogonal configuration of the robot serves as 

a reference, highlighting the need for the wheel diameter to be substantial enough to 

maximize inertia while also being sufficiently distant from the rotation axis. 

Through thorough analysis, the optimum height of the robot is determined to be 

120mm, with a corresponding wheel diameter of D = 95mm. This configuration strikes 

a balance between inertia optimization and practical considerations, ensuring effective 

maneuverability and control of the robot within the intended operational environment. 

3.2.2 Geometry of Robot Body and Chassis 

For demonstration purposes of stand-up dynamics and real-robot design/MATLAB, 

two geometries were designed. Considering only stand-up dynamics, the symmetrical 

configuration of the robot is desired by setting exact parameters of Lengths L1, and L2 

around 62mm and the robot’s width at 85mm. on the other hand, for development 

purposes, the robot structure is chosen as a one-frame body accommodating both 

actuator motors for ground and reaction wheel where the chassis full height is 95mm 

and width 57mm providing optimum adjustments for chosen electronics and hardware.  

3.3 Modeling of Jump-up Dynamics for Demonstration 

To demonstrate the proof-of-concept (POC), the dynamics of jumping up were 

developed to illustrate the unicycle robot's ability to self-balance from an initial falling 

position. this idea draws Inspiration from the renowned robot CUBLI, leveraging its 

jumping mechanism to autonomously reorient itself from various initial orientations, 

ultimately stabilizing on its edges. 
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It's imperative to note that for jump-up dynamics to be effective, the unicycle's design 

must exhibit symmetry. Consequently, the dimensions of the ground and reaction 

wheels are identical on both sides of the robot. When the robot experiences a fall, only 

one wheel is required to contact the ground to generate sufficient acceleration, while 

the other wheels remain elevated. To facilitate this, the robot's structure is encapsulated 

within a cube-shaped bracket, ensuring uniformity and stability. 

The conceptual modeling of this approach is depicted below, showcasing the strategic 

arrangement and design considerations implemented to achieve effective jump-up 

dynamics. 

 

Figure 3.2 

Stand-up or Jump-up Dynamic Symmetric Concept Model for POC only 

 

 

From a technical standpoint, the robot is engineered to function akin to a CUBLI robot, 

employing a mechanism where one wheel is accelerated until the moment the other 

wheel, typically the rolling wheel, makes successful contact with the ground. This 

process is analogous to the action of the CUBLI robot jumping to its edges to achieve 

balance. in the case of unicycle robots, maintaining an upright equilibrium position is 

paramount. 

To model the robot's behavior, this setup can be conceptualized as a 2D inverse 

pendulum with the reaction wheel, as illustrated in Figure 3.3. This representation 
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shows the dynamics of the robot's motion and the design of control strategies aimed at 

achieving stable equilibrium during the jump-up process. by simulating this 

configuration, insights can be gained into the effectiveness of the proposed mechanism 

in facilitating self-balancing and stability of the unicycle robot. 

 

Figure 3.3 

 Unicycle as 2D inverse Reaction Wheel Pendulum 

 

 

The assumption was made to show that the robot should be self-positioned by first 

accelerating around point C1 and then stand-up at point C2.  

 

the modeling resorts to Ganzalo and Nahuel's work on a reaction wheel-balanced 

inverted pendulum. The dynamics of jump-up require the maximum torque of the 

motors. Starting with the equation of motion of the pendulum as follows: 

 

Iθ̈ = kmgL ⋅  s i nθ − b ⋅ θ̇ − τc                1 

 

Where motion equation for the reaction wheel can be: 

 

Iω̇ = Tc                        2 

 

the relative velocity relation between the pendulum arm and reaction wheel is given 

by: 

 

ωI = ϑ̇ + ωr                        3 
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Where WI represents the inertial properties and Wr denotes the reaction wheel. While 

providing a detailed description of the inverse pendulum model is beyond the scope of 

this section, interested readers are encouraged to refer to (Ganzalo & Nuhuel, 2018) for 

comprehensive insights. 

 

Equating the equations further in terms of the state space model, we can express: 

 

𝑑

𝑑𝑡
 [𝑑𝑜𝑡(𝜃 )

𝜔
] = [

𝑄𝑔(𝜃𝑖)−𝑄𝑤(𝑤)

𝐼𝑡𝑜𝑡𝑎𝑙

 
𝑄𝑤(𝑤)

𝐼𝑤

]                  4 

 

Where the w is wheel rate, Qg is gravitational torque, Qw is the torque of motors and 

rotational axis inertia 𝐼𝑤, and total rotational inertia is 𝐼𝑡𝑜𝑡𝑎𝑙 as derived concerning the 

contact point C.  As per figure 3.3, the max torque required for the motor to do the 

jump-up action is equal to  

 

𝑇3 = 𝐿3 ∗ 𝑚𝑡𝑜𝑡𝑎𝑙 ∗ 𝑔                 5 

Before deriving the mathematical modeling, it is important to set the layout for the 

proposed mechanical design of a robot.  

 

3.4 Mechanical and Electrical Design with 3D Prototyping 

The CAD model of the robot is meticulously crafted using Solidworks, a sophisticated 

CAD design software renowned for its interactive features and versatility. To 

materialize the design, CURA 3D slicing software is employed for slicing and preparing 

the parts, utilizing ABS material for robustness and durability. 

Two distinct designs of the unicycle robot were initially proposed, each undergoing 

iterative improvements to refine the final vision. The design of the unicycle 

encompasses various components, with the majority falling into two primary 

categories: chassis design and reaction wheel design. these components are intricately 

integrated to ensure optimal functionality and performance of the robot.AD model of 

this robot is designed in Solidworks, a professional CAD design software that offers 
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interactive features and CURA 3D slicing software is used to print the parts with ABS 

material. Two designs of the unicycle robot were proposed and further improved in the 

vision. The design of a unicycle consists of various parts, but the majority can be 

divided into two categories. Chassis design and reaction wheel design.  

3.4.1 Initial Design and 3D Prototype. 

The initial design of the unicycle was designed and assembled using various parts and 

the full design is presented in Fig below.  

 

Figure 3.4 

 Initial 3D CAD of Unicycle Robot with Description of Electronics 

 

Figure 3.5 

3D Printed Parts for Unicycle Robot Captured on 3D Printed Bed. 
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All the CAD designs of the unicycle robot were 3D printed using PLA material. Special 

care is recommended to print the 3D models. for this thesis, the CAD model is designed 

in such a way that it is 3D printable. All the settings for 3D printing are done using the 

fine option, with a shell thickness of 1.15 of nozzle size of 0.4mm. 

Figure 3.6 

Assembled Robot with Electronics (Front and Side View) 

 

Figure 3.7 

Assembled Robot with Electronics. 

 

The Bill of materials for the first version of the robot is as follows:  
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 Table 3.1 

Bill of Materials for Unicycle 

Item. No Name Purpose 

1 GM2804H-100T Brushless Motors Actuator for Pitch & Roll 

2 AS5600 Magnetic Encoder Precise control of motors 

3 HC-05 Wireless Module IoT control 

4 BGC 3.1 control Board Control of hardware 

5 MPU-5050 IMU State estimation 

6 M1.6 M2 M2.5 Screws set Reaction wheel, assembly 

7 HJ 3S 11.1V 500mah LiPo battery Power source 

8 Rubber O-ring Ground wheel damping 

9 10/10 M-to-M, M-to-F wires Connections 

10 Bootloader USB Firmware update 

 

3.4.2 Challenges in Initial Design and Improvement  

During the control of the robot, an issue arose when the BLDC (Brushless Direct 

Current) motor started to heat up excessively, leading to buckling of the PLA 

(Polylactic Acid) material. To address this challenge, a strategic decision was made to 

replace the BLDC 2480-100T 2.8-Watt motors with Nidec-24H404H160 motors 

equipped with built-in encoders. These motors boast higher power output, with 11 watts 

and a stall torque of 70 mN.m, ensuring improved performance and reliability in terms 

of robot control. The upgraded motors successfully mitigated the heating issues and 

provided optimal functionality during operation. 
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Figure 3.8  

Actuator Improvements in the Second Version of Unicycle 

 

 

Furthermore, to enhance the control system of the robot, the Arduino-based gimbal 

controller BGC 3.1 was substituted with the STM 32F103 by STM Electronics. This 

strategic replacement was made to overcome the limitations posed by the Arduino 

software, which restricted the utilization of advanced programming frameworks. The 

new STM 32F103 board offered an advanced version of the ARM KEIL software 

specifically tailored for embedded system applications. Moreover, it featured a 

complementary LCD screen that displayed crucial parameters during the balancing 

process, providing real-time feedback for improved control and monitoring of the 

robot's operations. 

Figure 3.9  

Electronics Controller Board Improvements in Unicycle Robot 

 

 

In response to the challenges encountered during the assembly of the robot's initial 

version, significant improvements were implemented in the subsequent iteration. one 

of the key enhancements involved redesigning the chassis frame to create a single 

unified structure, streamlining the assembly process, and minimizing the efforts 
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required. Additionally, this unified frame was fabricated using ABS material, chosen 

for its superior heat resistance properties compared to PLA material, ensuring enhanced 

durability and performance. 

Furthermore, to optimize the design and functionality of the reaction wheel assembly, 

a decision was made to utilize CNC manufacturing. This approach not only reduced the 

reliance on additional screws but also helped in minimizing the overall weight of the 

assembly compared to the first version. By integrating these improvements, the 

assembly process became more efficient, and the resulting robot exhibited improved 

robustness and reliability. 

 

Figure 3.10 

Design Improvements in Unicycle. 

 

3.5 Second CAD Design and 3D Prototype 

in the updated version of the robot, significant efforts were made to simplify the 

manufacturing process and enhance the structural integrity. one notable improvement 

was the reduction in the number of 3D printed parts, achieved by redesigning the frame 

to form a single cohesive body. This approach not only streamlined the assembly 

process but also contributed to a more robust and durable overall structure. 
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Figure 3.11 

Improved Version 2 Design with one Bracket and CNC Manufactured Reaction 

Wheel. 

 

  

Furthermore, a decision was made to manufacture the reaction wheel using CNC 

turning machinery in the workshop, as depicted in the accompanying figure. this 

machining technique offered several advantages over 3D printing, including superior 

precision and material strength. By adopting these manufacturing enhancements, the 

new version of the robot boasted improved reliability and performance with a reduced 

number of 3D printed parts as the frame was designed as one part of the body. 

Moreover, the reaction wheel was manufactured using a CNC turning machine at the 

workshop instead of 3D printed as shown in Figure 3.12 below. 

Figure 3.12 

 CNC Manufacturing of Reaction Wheel (Left) and Final version (Right) 
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To accommodate the required motor size and ground wheel dimensions, a novel 

mechanism was devised utilizing a belt-and-pulley system to drive the wheel from the 

actuator, as illustrated in Figure 3.9. This innovative design allowed for efficient power 

transmission while maintaining a compact footprint, ensuring optimal performance of 

the robot. 

 

Figure 3.13 

Unicycle Robot Assembled Front and Side View 

 

 

To ensure effective balancing functionality, specific measures were implemented to 

control pitch and roll movements independently. for pitch control, a small bracket was 

meticulously designed to prevent the robot from moving forward and backward, 

enabling precise control over its pitch angle. Additionally, supporting wheels were 

incorporated to facilitate roll control, thereby preventing lateral movement of the robot 

while the roll angle was being independently controlled.  

These design enhancements significantly contributed to the robot's stability and 

maneuverability during balancing operations necessary for a robot to perform balancing 

functions effectively therefore for pitch control a small bracket was designed to prevent 

the robot from moving forward and backward so that it can be controlled independently. 

Additionally supporting wheels were also designed for roll control to prevent robots 

from moving left and right during the independent control of roll angle.  
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Figure 3.14 

Unicycle with Supporting Bracket (Pitch Control) and Supporting Wheel (Roll 

Control). 

 

 

In the electronics setup of the unicycle robot, an STM32 board was utilized in 

conjunction with an LCD. this choice of board conferred numerous advantages over 

conventional Arduino boards, including enhanced processing power and a wider range 

of functionalities. Additionally, a LiPo battery was selected to power the robot, 

providing extended operating time compared to traditional battery options. these 

electronic components were carefully chosen to optimize the performance and 

efficiency of the unicycle robot's control system. 

 

Figure 3.15 

Electronics of Proposed Unicycle STM32 Electronics Board (Left, Red Bracket) & 

LCD Display (Green Bracket) and Battery (Right, Blue Bracket) for Unicycle 
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Figure 3.16 

 LiPo Battery Charger. 

 

 

Table 3.2 

 Bill of Materials for Improved Version 

Item. No Name Purpose 

1 Nidec-24H Brushless Motors Actuator for Pitch & Roll 

2 integrated Wireless Control Module IoT control 

3 STM32 Board with LCD Control of hardware 

4 onboard- IMU Unit State estimation 

5 M1.6 M2 M2.5 Screws set Assembly 

6 3S 500mah LiPo Battery Power source 

7 Small Wheel x 3 units Ground wheels 

8 10/10 M-to-M, M-to-F wires Connections 

9 Belt and Pulley  Ground wheel drive 

10 1x 3D Print Frame ABS Material Hosting hardware 

 

3.6 Unicycle Robot Dynamic Modeling 

In deriving the system model for the unicycle robot, various methods are available for 

dynamic modeling, including the Newton method and the Euler-Lagrange method. for 

this research, the Euler-Lagrange method was selected due to its advantages over the 

Newton method. Unlike the Newton method, the Euler-Lagrange method offers a more 

robust modeling process that incorporates energy. Additionally, the Euler-Lagrange 
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method removes the need for redundant forces and torques, reducing the likelihood of 

errors in the model. These factors make it a preferred choice for accurately capturing 

the dynamics of the unicycle robot.  

3.6.1 Assumptions for Modeling 

The following assumptions were made during the modeling process: 

1. The Unicycle robot is considered a three-link robot, wheel, reaction wheel, and 

chassis of the robot. 

2. The unicycle is a rigid body. 

3. The unicycle robot is symmetrical in sagittal and coronal planes. 

4. The unicycle robot stays in contact with the flat ground surfaces. 

5. The slippage between the wheel and the ground surface is zero.  

 

3.6.2 Defined Coordinate System for Robot 

The dynamic equations for the proposed unicycle robot can be derived analogously to 

the pendulum-based unicycle, as discussed in detail by Yohanes Daud and Abdullah 

(2015). Hence, similar configurations of the unicycle robot were considered, with the 

lateral pendulum replaced by a reaction wheel, as illustrated in the figure below. 

 

Figure 3.17  

Concept Modeling for Reaction-Wheel Unicycle. 

 

 

the coordinate frame system of this robot is mentioned in Fig 3.12 and is defined as: 

▪ x, y, contact points between the rolling wheel and surface. 

▪ 𝑞4, 𝑞5 : ground wheel angle, and reaction wheel angle respectively.  

▪ 𝑞1, 𝑞2 , 𝑞3: roll, pitch angle, and yaw respectively. 
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▪ 𝑇𝑤 𝑎𝑛𝑑 𝑇𝑝 are the torques input by the ground wheel motor and reaction wheel 

motor respectively.  

 

3.6.3 Dynamic Model of an Actuator  

To comprehend the behavior of the chosen Nidec-24H actuators, the dynamic model of 

the motor is derived to understand startup, acceleration, and vibration phenomena. This 

is accomplished by employing the concept of kinetic energy along with voltage-current 

relations for the mechanical and electrical circuits, respectively, as depicted in Fig 3.18 

below. 

Figure 3.18 

Electrical Circuit of Motor Control 

 

The control of motor and angular speed (w) and rotor angle (Ө) are represented in one 

equation below: 

𝑇𝑀𝑇𝐸
𝜕2𝑤

𝑑𝑡2 + 𝑇𝑀
𝜕𝑤

𝑑𝑡
+ 𝜔 =

𝑉

𝐾𝐸
             6 

𝑇𝑀 = 𝐶𝑅𝑎 =
𝐽𝑅𝑎

𝐾𝐸
2                  7 

𝑇𝐸 =
𝐿𝑎

𝑅𝑎
                     8 

in dynamic equation , 𝜔 = 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑝𝑒𝑒𝑑  , 𝑉 = 𝑣𝑜𝑙𝑡𝑎𝑔𝑒,  

𝐿𝑎 = 𝑤𝑖𝑛𝑑𝑖𝑛𝑔 𝑖𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒, 𝑅𝑎 = 𝑤𝑖𝑛𝑑𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝐾𝑒

= 𝐵𝑎𝑐𝑘 − 𝑒𝑚𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

 

The full control of this model is represented by the following block diagram.  
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Figure 3.19 

Block Diagram for Control of Nidec Actuator (Courtesy of Nidec Corporation) 

 

 

Figure 3.20 

 Definitions of Frames and Coordinate System for Unicycle Robot. 

 

 

 

3.6.4 Constraints for Robot 

When there is no slip the velocity of the ground wheel at the contact point concerning 

the coordinate system (inertial) is zero. This relationship can be shown in the equation 

below. 

𝑉(𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑜𝑖𝑛𝑡) = [ 
𝑥′ − 𝑟𝑤𝑞4′ cos(𝑞3)

𝑦′ − 𝑟𝑤𝑞4′ sin(𝑞3)

𝑧′

] = [ 0 0 0 ]𝑡             9 
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Hence the motion of the unicycle robot satisfies the following constraints which are 

non-holonomic.  

 

𝑥′ =  𝑟𝑤𝑞4′ cos(𝑞3)                       10 

𝑥′ = 𝑟𝑤𝑞4′ sin(𝑞3)                       11 

𝑧′ = 0                            12 

3.6.5 Lagrange Method for Modeling 

To drive the Lagrangian we have difference of energies as follows. 

 

𝐿 = 𝐾. 𝐸(𝑡𝑜𝑡𝑎𝑙) − 𝑃. 𝐸(𝑡𝑜𝑡𝑎𝑙)                   13 

 

To give the proper illustration for Lagrange method system can be represented in 

equation 14. 

 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞.𝑖) −
𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖 + ∑  𝜆 𝑘 𝑎 𝑘𝑖

𝑛
𝑘=1                  14 

 

L = Lagrangian of the system a 

qi = is the coordinate, 

Qi = force,  

m = the number of coordinates,  

n = is the number of constraints, 

𝜆𝑘𝑎𝑘𝑖  = product is a Lagrangian multiplier and kinematic constraints  

 

For final dynamic modeling, it is required to derive the models for the wheel, chassis, 

and reaction wheel for the position, velocity, and angular velocity respectively.  

 Position Vectors for Unicycle. The model for the position vector can be 

derived Using homogenous transformation matrices with respect to the inertial frame 

system. 

for Ground Wheel: 

 

 



 
 

 
 

49 

Figure 3.21 

Ground Wheel Contact and Definition. 

 

Using the notations defined in Figure 3.20 set of matrices are as follows: 

𝑇 = [ 

1 0 0 0

0 cos(𝑞1) − sin(𝑞1) 0

0 sin(𝑞1) cos(𝑞1) 0
0 0 0 1

] ∗ [

1 0 0 0

0 1 0 0
0 0 1 𝑟𝑤
0 0 0 1

]𝑤2
𝑐𝑝

          15 

 

This resulted in the following. 

 

𝑇 = [ 

1 0 0 0

0 cos(𝑞1) − sin(𝑞1) −𝑟𝑤𝑠𝑖𝑛(𝑞1)

0 sin(𝑞1) cos(𝑞1) 𝑟𝑤𝑐𝑜𝑠(𝑞1)
0 0 0 1

]𝑤2
𝑐𝑝

             16 

 

Now from contact point to inertial frame of reference  

 

𝑇 = [ 

cos(𝑞3) − sin(𝑞3) 0 𝑥

sin(𝑞3) cos(𝑞3) 0 −𝑦
0 0 1 0
0 0 0 1

]𝑐𝑝
𝑔

                 17 

 

From wheel frame to inertial frame given as  

𝑇 =𝑤2
𝑔

 𝑇 ∗ 𝑐𝑝
𝑔

𝑇𝑤2
𝑐𝑝

                        18 
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𝑇 =𝑤2
𝑔

 [

cos(𝑞3) 𝑡12𝑤2

𝑔
𝑡13𝑤2

𝑔
𝑡14𝑤2

𝑔

sin(𝑞3) 𝑡22𝑤2

𝑔
𝑡23𝑤2

𝑔
𝑡24𝑤2

𝑔

0 sin(𝑞1) cos(𝑞1) 𝑟𝑤𝑐𝑜𝑠(𝑞1)
0 0 0 1

]           19 

 

in above matrix where: 

 

𝑡12𝑤2
𝑔

= − 𝑠𝑖𝑛(𝑞3) 𝑐𝑜𝑠(𝑞1)                     20 

 

𝑡13𝑤2
𝑔

= 𝑠𝑖𝑛(𝑞3) 𝑐𝑜𝑠 𝑞1                       21 

 

𝑡14𝑤2
𝑔

= 𝑥 + 𝑟𝑤 𝑠𝑖𝑛(𝑞3) 𝑠𝑖𝑛(𝑞1)                        22 

 

𝑡22𝑤2
𝑔

= 𝑐𝑜𝑠(𝑞3) 𝑐𝑜𝑠(𝑞1)                      23 

 

𝑡23𝑤2
𝑔

= − 𝑐𝑜𝑠(𝑞3) 𝑠𝑖𝑛(𝑞1)                      24  

 

𝑡24𝑤2
𝑔

=  𝑦 − 𝑟𝑤 𝑠𝑖𝑛(𝑞3) 𝑠𝑖𝑛(𝑞1)                   25 

  

Now in the frame of reference, the position of the ground wheel’s COG can be 

represented by  

 

𝑤2 𝑃𝑤 = [0 0 0 1]𝑇                     26 

 

𝑃 =𝑤
𝑔

 𝑇 ∗ 𝑤2
𝑔

𝑃𝑤
𝑤2                        27 

 

𝑃 =𝑤
𝑔

 [

𝑥 + 𝑟𝑤 𝑠𝑖𝑛(𝑞1)sin (𝑞3)

𝑦 − 𝑟𝑤 sin(𝑞1) cos(𝑞3)

𝑟𝑤 cos(𝑞1)
1

]                  28 

 

For the chassis of the Unicycle Robot, we have the following configurations. 
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Figure 3.22 

 Body/Chassis Frame Definition and Angles. 

 

Using Fig 3.21 and 3.22 the frame transformation using a homogenous matrix is given 

by: 

𝑇 = [ 

cos(𝑞2) 0 sin(q2) 0

0 1 0 0
− sin(𝑞2) 0 cos(𝑞2) 0

0 0 0 1

] [

1 0 0 0

0 1 0 0
0 0 1 𝑙𝑐
0 0 0 1

]𝑐
𝑝

            29 

 

for chassis COM, and its transformation concerning frame 𝑤2 is as follows.  

𝑇 = [ 

cos(𝑞2) 0 sin(𝑞2) 𝑙𝑐 sin(𝑞2)
0 1 0 0

− sin(𝑞2) 0 cos(𝑞2) 𝑙𝑐 cos(𝑞2)
0 0 0 1

]𝑐
𝑤2               30 

 

From chassis frame to inertial frame given as  

𝑇 =𝑐
𝑔

 𝑇 ∗ 𝑤2
𝑔

𝑇𝑐
𝑤2                        31 

 

𝑇 =𝑐
𝑔

 [

𝑡11𝑐
𝑔 𝑡12𝑐

𝑔 𝑡13𝑐
𝑔 𝑡14𝑐

𝑔

𝑡21𝑐
𝑔 𝑡22𝑐

𝑔 𝑡23𝑐
𝑔 𝑡24𝑐

𝑔

−cos(𝑞1) sin(𝑞2) sin(𝑞1) cos(𝑞1) cos(𝑞2) 𝑡34𝑐
𝑔

0 0 0 1

]       32 
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in above matrix where: 

𝑡11𝑐
𝑔

= 𝑐𝑜𝑠(𝑞2) 𝑐𝑜𝑠(𝑞3) − 𝑠𝑖𝑛(𝑞1) 𝑠𝑖𝑛(𝑞2) 𝑠𝑖𝑛(𝑞3)               33 

 

𝑡12𝑐
𝑔

= − 𝑐𝑜𝑠 (𝑞1) 𝑠𝑖𝑛(𝑞3)                     34 

 

𝑡13𝑐
𝑔

= 𝑠𝑖𝑛(𝑞2) 𝑐𝑜𝑠(𝑞3) + 𝑠𝑖𝑛(𝑞1) 𝑐𝑜𝑠(𝑞2) 𝑠𝑖𝑛(𝑞3)              35 

 

𝑡14𝑐
𝑔

= 𝑥 + 𝑟𝑤 𝑠𝑖𝑛(𝑞3) 𝑠𝑖𝑛(𝑞1) + 𝑙𝑐 𝑠𝑖𝑛(𝑞2) 𝑐𝑜𝑠(𝑞3)  + 𝑙𝑐 𝑠𝑖𝑛(𝑞1) 𝑐𝑜𝑠(𝑞2) 𝑠𝑖𝑛(𝑞3)      36 

 

𝑡21𝑐
𝑔

= 𝑐𝑜𝑠(𝑞2) 𝑠𝑖𝑛(𝑞3) + 𝑠𝑖𝑛(𝑞1) 𝑠𝑖𝑛(𝑞2) 𝑐𝑜𝑠(𝑞3)               37 

 

𝑡22𝑐
𝑔

= 𝑐𝑜𝑠(𝑞3) 𝑐𝑜𝑠(𝑞1)                       38 

 

𝑡23𝑐
𝑔

= 𝑠𝑖𝑛(𝑞2) 𝑠𝑖𝑛(𝑞3) − 𝑠𝑖𝑛(𝑞1) 𝑐𝑜𝑠(𝑞2) 𝑐𝑜𝑠(𝑞3)              39 

 

𝑡24𝑐
𝑔

= 𝑦 − 𝑟𝑤 𝑐𝑜𝑠(𝑞3) 𝑠𝑖𝑛(𝑞1) + 𝑙𝑐 𝑠𝑖𝑛(𝑞2) 𝑠𝑖𝑛(𝑞1)  − 𝑙𝑐 𝑠𝑖𝑛(𝑞1) 𝑐𝑜𝑠(𝑞2) 𝑐𝑜𝑠(𝑞3)     40 

 

𝑡34𝑐
𝑔

= 𝑟𝑤 𝑐𝑜𝑠(𝑞1) + 𝑙𝑐 𝑐𝑜𝑠(𝑞1) 𝑐𝑜𝑠(𝑞2) .                  41 

 

Now in frame of reference, the position Chasis’s COG can be represented in the 

inertial frame by  

 

𝑐 𝑃𝑐 = [0 0 0 1]𝑇                     42 

 

𝑃 =𝑐
𝑔

 𝑇 ∗ 𝑐
𝑔

𝑃𝑐
𝑐                         43 

 

𝑃 =𝑐
𝑔

 [

𝑥 + 𝑟𝑤 𝑠𝑖𝑛(𝑞1) 𝑠𝑖𝑛(𝑞3) + 𝑙𝑐 𝑐𝑜𝑠(𝑞2) 𝑠𝑖𝑛(𝑞1) 𝑠𝑖𝑛(𝑞3) + 𝑙𝑐 𝑠𝑖𝑛(𝑞2) cos (𝑞3)

𝑦 − 𝑟𝑤 𝑠𝑖𝑛(𝑞1) 𝑐𝑜𝑠(𝑞3) −  𝑙𝑐 𝑐𝑜𝑠(𝑞2) 𝑠𝑖𝑛(𝑞1) 𝑠𝑖𝑛(𝑞3) + 𝑙𝑐 𝑠𝑖𝑛(𝑞2) 𝑠𝑖𝑛(𝑞3)

𝑟𝑤 𝑐𝑜𝑠(𝑞1) + 𝑙𝑐 𝑐𝑜𝑠(𝑞2) 𝑐𝑜𝑠(𝑞3)
1

]
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                            44 

for Reaction Wheel of Unicycle: 

 
Figure 3.23 

Definition of Reaction Wheel Coordinate System (Grey) 

 

𝑇 = [ 

1 0 0 0

0 cos(𝑞5) − sin(𝑞5) 0

0 sin(𝑞5) cos(𝑞5) 0
0 0 0 1

] [

1 0 0 0

0 1 0 0
0 0 1 𝑙𝑐𝑝
0 0 0 1

] [

1 0 0 0

0 1 0 0
0 0 1 𝑙𝑝
0 0 0 1

]𝑤2
𝑐𝑝

     45 

 

𝑇 = [ 

1 0 0 0

0 cos(𝑞5) − sin(𝑞5) −𝑙𝑝 ∗ sin(𝑞5)

0 sin(𝑞5) cos(𝑞5) 𝑙𝑐𝑝 + 𝑙𝑝 ∗ cos(𝑞5)
0 0 0 1

]𝑤2
𝑐𝑝

          46 

 

From wheel frame to inertial frame given as  

𝑇 =𝑝
𝑔

 𝑇 ∗ 𝑐
𝑔

𝑇𝑝
𝑐                          47 

 

𝑇 =𝑤2
𝑔

 

[
 
 
 
cos(𝑞3) 𝑡12𝑝

𝑔 𝑡13𝑝
𝑔 𝑡14𝑝

𝑔

sin(𝑞3) 𝑡22𝑝
𝑔 𝑡23𝑝

𝑔 𝑡24𝑝
𝑔

0 𝑡32𝑝
𝑔 𝑡33𝑝

𝑔 𝑡34𝑝
𝑔

0 0 0 1 ]
 
 
 
                 

 48 
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in above matrix where: 

𝑡12𝑝
𝑔

= − 𝑠𝑖𝑛(𝑞3) 𝑐𝑜𝑠(𝑞1) 𝑐𝑜𝑠(𝑞5 ) + 𝑐𝑜𝑠(𝑞3) 𝑠𝑖𝑛(𝑞2) 𝑠𝑖𝑛(𝑞5 ) +

𝑠𝑖𝑛(𝑞3) 𝑠𝑖𝑛(𝑞1) 𝑐𝑜𝑠(𝑞2) 𝑠𝑖𝑛(𝑞5 ),                   49 

 

𝑡13𝑝
𝑔

= 𝑠𝑖𝑛(𝑞3) 𝑐𝑜𝑠(𝑞1) 𝑠𝑖𝑛(𝑞5 ) + 𝑐𝑜𝑠(𝑞3) 𝑠𝑖𝑛(𝑞2) 𝑐𝑜𝑠(𝑞5 ) + 𝑠𝑖𝑛(𝑞3) 𝑠𝑖𝑛(𝑞1) 𝑐𝑜𝑠(𝑞2) 𝑐𝑜𝑠(𝑞5 ), 

                            50 

 

𝑡14𝑝
𝑔

=  𝑙𝑝 𝑠𝑖𝑛(𝑞3) 𝑐𝑜𝑠(𝑞1) 𝑠𝑖𝑛(𝑞5 ) +  (𝑙𝑐𝑝 +  𝑙𝑝 𝑐𝑜𝑠(𝑞5 ))(𝑐𝑜𝑠(𝑞3) 𝑠𝑖𝑛(𝑞2) +

𝑠𝑖𝑛(𝑞3) 𝑠𝑖𝑛(𝑞1) 𝑐𝑜𝑠(𝑞2)) +  𝑙𝑐 𝑠𝑖𝑛(𝑞2) 𝑐𝑜𝑠(𝑞3) +  𝑙𝑐 𝑐𝑜𝑠(𝑞2) 𝑠𝑖𝑛(𝑞3) 𝑠𝑖𝑛(𝑞1) +  𝑥 +

 𝑟𝑤 𝑠𝑖𝑛(𝑞3) 𝑠𝑖𝑛(𝑞1),                            

                            51 

𝑡22𝑝
𝑔

= 𝑐𝑜𝑠(𝑞3) 𝑐𝑜𝑠(𝑞1) 𝑐𝑜𝑠(𝑞5 ) + 𝑠𝑖𝑛(𝑞3) 𝑠𝑖𝑛(𝑞2) 𝑠𝑖𝑛(𝑞5 ) − 𝑐𝑜𝑠(𝑞3) 𝑠𝑖𝑛(𝑞1) 𝑐𝑜𝑠(𝑞2) 𝑠𝑖𝑛(𝑞5 ), 

                             

                               52 

𝑡23𝑝
𝑔

= − 𝑐𝑜𝑠(𝑞3) 𝑐𝑜𝑠(𝑞1) 𝑠𝑖𝑛(𝑞5 ) + 𝑠𝑖𝑛(𝑞3) 𝑠𝑖𝑛(𝑞2) 𝑐𝑜𝑠(𝑞5 ) −

𝑐𝑜𝑠(𝑞3) 𝑠𝑖𝑛(𝑞1) 𝑐𝑜𝑠(𝑞2) 𝑐𝑜𝑠(𝑞5 ),                   53 

 

𝑡𝑝
𝑔

24 =   −𝑙𝑝 cos(𝑞3) cos(𝑞1) sin(𝛾) + (𝑙𝑐𝑝 +  𝑙𝑝 cos(𝛾))(sin(𝑞3) sin(𝛽)) 

 − cos (𝑞3) sin (𝑞1) cos (𝛽))  +  𝑙𝑐 sin (𝛽)sin (𝑞3)  −  𝑙𝑐 cos (𝛽) cos (𝑞3) sin (𝑞1) 

 + 𝑦 −  𝑟𝑤 cos(𝑞3) sin(𝑞1),                     54 

 

𝑡32𝑝
𝑔

= 𝑠𝑖𝑛(𝑞1) 𝑐𝑜𝑠(𝑞5 ) + 𝑐𝑜𝑠(𝑞1) 𝑐𝑜𝑠(𝑞2) 𝑠𝑖𝑛(𝑞5),             55 

 

𝑡33 =  − 𝑠𝑖𝑛(𝑞1) 𝑠𝑖𝑛(𝑞5 ) + 𝑐𝑜𝑠(𝑞1) 𝑐𝑜𝑠(𝑞2) 𝑐𝑜𝑠(𝑞5 ) ,𝑝
𝑔              56 

 

𝑡33 𝑝
𝑔

= −𝑙𝑝 𝑠𝑖𝑛(𝑞1) 𝑠𝑖𝑛(𝑞5 ) + (𝑙𝑐𝑝 +  𝑙𝑝 𝑐𝑜𝑠(𝑞5 )) 𝑐𝑜𝑠(𝑞1) 𝑐𝑜𝑠(𝑞2) +  𝑙𝑐 𝑐𝑜𝑠(𝑞2) 𝑐𝑜𝑠(𝑞1) +

 𝑟𝑤 𝑐𝑜𝑠(𝑞1),                         57 

 

Now in frame of reference, the position of the reaction wheel’s COG can be 

represented by  
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𝑝 𝑃
𝑝
= [0 0 0 1]𝑇                     58 

 

𝑃 =𝑝
𝑔

 𝑇 ∗ 𝑝
𝑔

𝑃𝑝
𝑝                         59 

 

𝑃 =𝑝
𝑔

 

[
 
 
 
 

𝑃𝑝1
𝑔

𝑃𝑝2
𝑔

𝑃𝑝3
𝑔

1 ]
 
 
 
 

                        60 

 

𝑃 =𝑝1
𝑔

 𝑥 +  𝑟𝑤 sin(𝑞1) ∗ sin(𝑞3) + (𝑙𝑐 +  𝑙𝑐𝑝) cos(𝑞2) ∗ sin(𝑞1) sin(𝑞3) + (𝑙𝑐 +

 𝑙𝑐𝑝) sin(𝑞2) ∗ cos(𝑞3) +  𝑙𝑝 cos(𝑞5 ) cos(𝑞2) sin(𝑞1) sin(𝑞3) +  𝑙𝑝 cos(𝑞5 ) sin(𝑞2) cos(𝑞3) +

 𝑙𝑝 sin(𝑞5 ) cos(𝑞1) sin(𝑞3),                      61 

 

𝑃 =    𝑝2
𝑔

𝑦 −  𝑟𝑤 sin(𝑞1) cos(𝑞3) − (𝑙𝑐 +  𝑙𝑐𝑝) cos(𝑞2) ∗ sin(𝑞1) cos(𝑞3) + (𝑙𝑐 +

 𝑙𝑐𝑝) sin(𝑞2) ∗ sin(𝑞3) −  𝑙𝑝 cos(𝑞5 ) cos(𝑞2) sin(𝑞1) cos(𝑞3) +  𝑙𝑝 cos(𝑞5 ) sin(𝑞2) sin(𝑞3) −

 𝑙𝑝 sin(𝑞5 ) cos(𝑞1) ∗ cos(𝑞3),                    62 

 

𝑃 =   𝑝3
𝑔

𝑟𝑤 cos(𝑞1) + (𝑙𝑐 +  𝑙𝑐𝑝) cos(𝑞2) ∗ cos(𝑞1) +  𝑙𝑝 cos(𝑞5 ) ∗ cos(𝑞2) cos(𝑞1) −

 𝑙𝑝 sin(𝑞5) sin(𝑞1).                           63 

  

 

  Linear Velocity Vectors for Unicycle. Now moving forward with 

same modeling for linear velocity for ground wheel, body, and reaction wheel. This can 

be derived from equation 25, 45, 57.  

for Ground Wheel Velocity Vector: 

 

The position vector for ground wheel we have 

𝑃 =𝑤
𝑔

 [

𝑥 + 𝑟𝑤 𝑠𝑖𝑛(𝑞1)sin (𝑞3)

𝑦 − 𝑟𝑤 sin(𝑞1) cos(𝑞3)

𝑟𝑤 cos(𝑞1)
1

]                  64 
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𝑉𝑤 =
𝜕𝑃𝑤

𝑑𝑡
                            65 

for Chassis Linear Velocity Vector: 

Similarly, the position vector for chassis we have 

𝑃 =𝑐
𝑔

  [

𝑥 + 𝑟𝑤 𝑠𝑖𝑛(𝑞1) sin(𝑞3) + 𝑙𝑐 cos(𝑞2) sin(𝑞1) ∗ sin(𝑞3) + 𝑙𝑐 sin(𝑞2) ∗ cos (𝑞3)

𝑦 − 𝑟𝑤 sin(𝑞1) cos(𝑞3) −  𝑙𝑐 cos(𝑞2) sin(𝑞1) ∗ sin(𝑞3) + 𝑙𝑐 sin(𝑞2) ∗ sin(𝑞3)

𝑟𝑤 cos(𝑞1) + 𝑙𝑐 cos(𝑞2) ∗ cos(𝑞1)
1

]

                             

                            66 

𝑉𝑐 =
𝜕𝑃𝑐

𝑑𝑡
                                  67 

 

for Reaction Wheel Velocity Vector: 

for reaction wheel using equation 60 we have:   

𝑉𝑤 =
𝜕𝑃𝑝

𝑑𝑡
                           68 

The full derivation for these vectors has been done in MATLAB as the calculations 

are very complex in this manner and repository is attached with this report.  

 Angular Velocity Vectors for Unicycle. From the frame assignment, 

the angular velocity for this unicycle parts (ground wheel, chassis, and reaction wheel) 

can be represented in terms of frames 𝒘𝟐, C, and P respectively and this turns the 

matrices for all three parts of unicycle into diagonal matrices.  

Ground Wheel Angular Velocity: 

this vector consists of wheel velocity, angular velocity (lean), and turning velocity in 

terms of 𝜔,  𝑞1, and 𝑞3.  

Ω𝑤 = [
0

𝑞4.

0
] + [

𝑞1.

0
0

] +  𝑇𝑔
𝑤2  𝑥 [

0
0

𝑞3.
]                69 

         

Ω𝑤 = [
0

𝑞4.

0
] + [

𝑞1
0
0

] +  𝑇𝑤2
𝑔 −1 𝑥 [

0
0

𝑞3.
]                 70 
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Ω𝑤 = [

𝑞1.

𝑞4. + 𝑞3. sin(𝑞1)

𝑞3. cos(𝑞1)
]                     71 

 

Angular Velocity of Chassis of Unicycle: 

The chassis angular velocity vector consists of two lean angular velocities (time rate 

q1 β) and turning velocity q3.  

Ω𝑐 = [
0
𝑞2.

0
] + 𝑇 𝑥 𝑤2

𝑐 [
𝑞1.

0
0

] +  𝑇𝑔
𝑐  𝑥 [

0
0
𝑞3.

]                72 

 

Ω𝑐 = [
0
𝑞2.

0
] + 𝑇−1 𝑥 𝑐

𝑤2 [
𝑞1.

0
0

] +  𝑇−1
𝑐
𝑔

 𝑥 [
0
0
𝑞3.

]               73 

 

Ω𝑐 = [
𝑞1. ∗  cos(𝑞2) − 𝑞3. ∗  cos(𝑞1) ∗ sin(𝑞2)

𝑞2. + 𝑞3. sin(𝑞1)

𝑞1. sin (𝑞2) + 𝑞3. cos(𝑞1) ∗ cos(𝑞2)
]               74 

 

Reaction Wheel Angular Velocity: 

the reaction wheel velocity vector consists of lean angular (time rate q1), longitudinal 

velocity (time rate of β) and reaction wheel angular velocity (time rate of ϒ).  

Ω𝑝 = [
𝑞5.

0
0

] + 𝑇 𝑥 𝑐
𝑝 [

0.

𝑞2.

0
] +  𝑇𝑤2

𝑝  𝑥 [
𝑞1.

0
0

] + 𝑇𝑔
𝑝  𝑥 [

0
0
𝑞3.

]            75 

   

Ω𝑝 = [
𝑞5.

0
0

] + 𝑇−1 𝑥 𝑝
𝑐 [

0.

𝑞2.

0
] +  𝑇−1

𝑝
𝑤2  𝑥 [

𝑞1.

0
0

] + 𝑇−1
𝑝
𝑔

 𝑥 [
0
0
𝑞3.

]          76 

 

Ω𝑝 = 

[
𝑞5. +  𝑞1. cos(𝑞2) − 𝑞3. cos(𝑞1) sin(𝑞2)

𝑞2. cos(𝑞5) + 𝑞1. sin(𝑞2) sin(𝑞5) + 𝑞3. sin(𝑞1) cos(𝑞5) + 𝑞3. cos(𝑞1) cos(𝑞2) sin(𝑞5)

− 𝑞2. cos(𝑞5) + 𝑞1. sin(𝑞2) sin(𝑞5) − 𝑞3. sin(𝑞1) cos(𝑞5) + 𝑞3. cos(𝑞1) cos(𝑞2) cos(𝑞5)
]     

77  
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 Kinetic and Potential Energies for Unicycle. Using the above 

calculations for the ground wheel, chassis, and reaction wheel for position, linear, and 

angular velocities, the energies of the robot parts can be expressed in standard 

mechanics.  

the Kinetic and Potential Energy for Ground Wheel: 

the kinetic energy is: 

 𝑇𝑤 = 
1

2 
 𝑚𝑤𝑉𝑤

𝑇 𝑉𝑤 +   
1

2 
 Ω𝑤

𝑇   𝐼𝑤Ω𝑤                 78 

 

the potential energy is: 

𝑃𝑤 = 𝑚𝑤 𝑔 𝑃𝑤∗                        79 

 

Pw* is the height of COM of wheel.  

 Kinetic and Potential Energy for Chassis: 

the kinetic energy is: 

 𝑇𝑐 = 
1

2 
 𝑚𝑐𝑉𝑐

𝑇  𝑉𝑐 +   
1

2 
 Ω𝑐

𝑇  𝐼𝑐Ω𝑐                   80 

 

the potential energy is: 

𝑃𝑐 = 𝑚𝑐 𝑔 𝑃𝑐∗                        81 

 

Pc* is the height of COM of the chassis.  

the Kinetic and Potential Energy for Reaction Wheel: 

the kinetic energy is: 

 𝑇𝑝 = 
1

2 
 𝑚𝑝𝑉𝑝

𝑇 𝑉𝑝 +   
1

2 
 Ω𝑝

𝑇  𝐼𝑝Ω𝑝                  82 

 

the potential energy is: 

𝑃𝑝 = 𝑚𝑝 𝑔 𝑃𝑝∗                        83 

Pp* is the height of COM of the reaction wheel.  

 

 Total Energy of the Unicycle Robot. The total energy is the summation 

of all three components for unicycle.   
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𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑝 + 𝑇𝑐 + 𝑇𝑤                      84 

 

and similarly, the potential energy of the unicycle 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑝 + 𝑃𝑐 + 𝑃𝑤                      85 

 

Now using energy values, the Lagrangian equation can be solved. the coordinates that 

are defined for this unicycle are m = 7, and constraints (kinematic) are n = 2. The 

computations are solved using MATLAB ODE solver however variables can be seen 

in the table below. 

 

Table 3.3 

Lagrange Equation’s Variables 

 

S. No qi  Qi  q1i  q2i  

1 x 0 1 0 

2 y 0 0 1 

3 q4 Tw -rwcos(q3) -rwsin(q3) 

4 q1 0 0 0 

5 q2 -Tw 0 0 

6 q5 Tp 0 0 

7 q3 0 0 0 

 

the equation for Lagrange is given by: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑦.
) − 

𝜕𝐿

𝜕𝑦 
= 𝜆2                     86 

 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜃.
) − 

𝜕𝐿

𝜕𝜃 
= 𝑇𝑤 − 𝑟𝑤 𝑐𝑜𝑠(𝑞3)𝜆1 − 𝑟𝑤 𝑠𝑖𝑛(𝑞3) 𝜆2          87 

 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞2.) − 
𝜕𝐿

𝜕𝑞2 
= −𝑇𝑤                    88 
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𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞1.) − 
𝜕𝐿

𝜕𝑞1 
=  0                      89 

 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞5.) − 
𝜕𝐿

𝜕𝑞5 
= 𝑇𝑝                     90 

  

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞3.) − 
𝜕𝐿

𝜕𝑞3 
=  0                      91 

 

To calculate the dynamics, all the values were fed into MATLAB ODE solver for the 

four equations from 82-87.  

 

the Ground Wheel Dynamics: 

𝑚11𝑞1.. + 𝑚12𝑞5.. + 𝑚13𝑞3..+ 𝑚14𝑞4.. + 𝑐11𝑞2.2 + 𝑐12𝑞5.2 + 𝑐13𝑞3.2 +

𝑐14𝑞1.2 𝑞3. + 𝑐15𝑞5.𝑞2. + 𝑐16𝑞3.𝑞2. + 𝑐17𝑞5.𝑞3. = 𝑇𝑤         92 

 

Chassis Dynamics in Longitudinal Direction: 

𝑚21𝑞1.. + 𝑚22𝑞2.. + 𝑚23𝑞3..+ 𝑚24𝑞4.. + 𝑐21𝑞1.2 + 𝑐22𝑞3.2 + 𝑐23𝑞1.𝑞5 +

𝑐24𝑞1.𝑞3. + + 𝑐25𝑞5.𝑞2. + 𝑐26𝑞5.𝑞3. + 𝑐27𝑞5.𝑞4. + 𝑢21 =  −𝑇𝑤      93 

 

Chassis Dynamics in Lateral Direction: 

𝑚31𝑞1.. + 𝑚32𝑞2.. + 𝑚33𝑞5..+ 𝑚34𝑞3.. + 𝑐31𝑞2.2 + 𝑐32𝑞5.2 + 𝑐33𝑞3.2 +

𝑐34𝑞1.𝑞2. + + 𝑐35𝑞5.𝑞1. + 𝑐36𝑞2.𝑞3. + 𝑐37𝑞2.𝑞3. + 𝑐38𝑞5.𝑞3. + 𝑐39𝑞4.𝑞3. =  0 94  

Reaction Wheel Dynamics: 

𝑚41𝑞1.. +  𝑚42𝑞5..+ 𝑚43𝑞3.. + 𝑚44𝑞4.. +  𝑐41𝑞1.2 + 𝑐42𝑞2.2 + 𝑐43𝑞3.2 +

𝑐44𝑞1.𝑞2. + + 𝑐45𝑞3.𝑞1. + 𝑐46𝑞2.𝑞3. + 𝑐47𝑞4.𝑞3. + 𝑢41 =  𝑇𝑝      95 

Turning Dynamic, the interesting findings through this model can be seen in turning 

dynamics where dynamics of the yaw are coupled. this yaw direction is controlled by 

coordinated control of ground wheel and reaction wheel indirectly as the direct 

control of yaw is not possible in this orthogonal configuration of the unicycle.  
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𝑚51𝑞1.. + 𝑚52𝑞2.. +  𝑚53𝑞5..+ 𝑚54𝑞3.. + 𝑚55𝑞4.. +  𝑐51𝑞1.2 + 𝑐52𝑞2.2 +

 𝑐53𝑞5.2 + 𝑐54𝑞1.𝑞2. + 𝑐55𝑞5.𝑞1. + 𝑐56𝑞1.𝑞3. + 𝑐57𝑞4.𝑞1. + 𝑐58𝑞2.𝑞5. + 𝑐59𝑞2.𝑞3. +

𝑐510𝑞5.𝑞3. + 𝑐511𝑞4.𝑞3.  =  0                  96 

 

the coefficient in equations 88-92 m, c is mentioned in the MATLAB file attached. 

The dynamic model is seen as a nonlinear model for the unicycle robot. Therefore, 

model simplification is done.  

3.6.6  Simplification of the Unicycle Model 

The Unicycle robot model is simplified using pseudo linearization around the upright 

equilibrium position of the unicycle robot. All the dynamics were solved in MATLAB 

and the model equations are presented here. for linearization, the following conditions 

are met: 

𝑞1 =  𝑞2 = 𝑞5 = 00
                       97 

𝑞1. = 𝑞2. = 𝑞5. = 00/𝑠𝑒𝑐                    98 

 

Procedure, 

1. The 𝑞1 (𝑟𝑜𝑙𝑙 𝑎𝑛𝑔𝑙𝑒), 𝑞2 (𝑝𝑖𝑡𝑐ℎ 𝑎𝑛𝑔𝑙𝑒) 𝑎𝑛𝑑 𝑞5 (𝑓𝑙𝑦 − 𝑤ℎ𝑒𝑒𝑙 𝑎𝑛𝑔𝑙𝑒) sines 

angles are approximated. 

for example,  

𝑆𝑖𝑛(𝑞1) =  𝑆𝑖𝑛(𝑞2) = 𝑆𝑖𝑛(𝑞5) ≅  𝑞1, 𝑞2, 𝑞5 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦         99 

     Similarly, all the cosines’ angles are approximated to 1.  

𝐶𝑜𝑠(𝑞1) =  𝐶𝑜𝑠(𝑞2) = 𝐶𝑜𝑠(𝑞5) ≅  1                100 

2. By neglecting the higher order terms of the dynamic model of unicycles along 

with their coefficient parameters m, c, and u.  

 

After simplification, the resulting dynamics are as follows 

 

Linearized Ground Wheel Dynamics: 

𝜖1𝑟𝑤𝑞2.. + (𝐼𝑤2 + 𝜖3𝑟𝑤 + 𝜖1𝑟𝑤 )𝑞1𝑞3.. + 𝜖2𝑟𝑤 𝑞5𝑞3.. + (𝐼𝑤2 + 𝜖3𝑟𝑤)𝑞4.. −

𝜖1𝑟𝑤 𝑞2𝑞3.2 + ( 𝐼𝑤2 + 2𝜖3𝑟𝑤 + 2𝜖1𝑟𝑤)𝑞1.𝑞3. + 2𝜖2𝑟𝑤 𝑞5.𝑞3. = 𝜏𝑤       101 
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Linearized Chassis Longitudinal Dynamics: 

𝑞2..(𝐼𝑐2 + 𝐼𝑝2 + 𝜌1) + (𝐼𝑐2 + 𝐼𝑝2 + 𝜌1 + 𝜖1𝑟𝑤 )𝑞1𝑞3..) + (𝜎3 +  𝜌3)𝑞5𝑞3.. +

𝜖1𝑟𝑤 𝑞4.. − ( 𝜎4 +  𝜌1)𝑞2𝑞3.2 + (𝐼𝑐1 + 𝜎2 + 𝐼𝑝1 + 𝜎3 +  2𝜌1 + 2𝜌1 + 2𝜖1𝑟𝑤)𝑞1.𝑞3. +

(𝐼𝑝1 + 𝜎3 +  2𝜌1)𝑞5.𝑞3. − 𝜖1𝑔𝑞2 = − 𝜏𝑤                 102 

 

Linearized Chassis Lateral Dynamics: 

𝑞1..(𝐼𝑤1 + 𝐼𝑝1 + 𝐼𝑐1 + 𝜌1 + 𝜖3𝑟𝑤 + 2𝜖1𝑟𝑤) + (𝐼𝑝1 + 𝜌3 + 𝜖2𝑟𝑤 )𝑞5..) −

(𝜎4 + 𝜖1𝑟𝑤 + 𝜌1)𝑞2𝑞3.. − (𝜎1 + 𝜎3 + 𝜎2 + 𝜖3𝑟𝑤 + 𝜌1 + 𝜖1𝑟𝑤)𝑞1𝑞3.2  −

( 𝜎3 +  𝜌3 + 𝜖2𝑟𝑤)𝑞5𝑞3.2 − 𝑞2.𝑞3.(𝐼𝑐1 + 𝜎2 + 𝐼𝑝1 + 𝜎3 +  2𝜌1 + 2𝜖1𝑟𝑤) − 𝑞1.𝑞3. +

(𝐼𝑤2 + 𝜖3𝑟𝑤 + 𝜖1𝑟𝑤 ) 𝑞3.𝑞4.) − (𝜖1 + 𝜖3)𝑔𝑞1 − 𝜖2𝑔𝑞5 =  0         103 

 

Linearized Reaction Wheel Dynamics: 

(𝐼𝑝1 + 𝜌3 + 𝜖2𝑟𝑤 )𝑞1..) + (𝐼𝑝1 + 𝜖2𝐼𝑝)𝑞5.. − (𝐼𝑝1 + 𝜌3)𝑞2𝑞3.. − (𝜎3 + 𝜖2𝑟𝑤 +

 𝜌3)𝑞1𝑞3.2 − (𝐼𝑝1 + 2𝜌3 + 𝜎3)𝑞2.𝑞3. − 𝜖2𝑟𝑤𝑞3.𝑞4. − 𝜖2𝑔𝑞5 − 𝜖2𝑔𝑞1 =   𝜏𝑝      

                            104 

Linearized Turning Dynamics: 

−( 𝜎4 +  𝜌1 + 𝜖1𝑟𝑤)𝑞2𝑞1. . + (𝐼𝑐2 + 𝐼𝑝2 + 𝜌1 + 𝜖1𝑟𝑤)𝑞1𝑞2.. + (𝜎3 +  𝜌3)𝑞5𝑞2.. −

(𝐼𝑝1 + 𝜌3)𝑞2𝑞5.. + (𝐼𝑤3 + 𝜖1𝑟𝑤 + 𝜖3𝑟𝑤)𝑞1𝑞4.. + 𝜖2𝑟𝑤𝑞5𝑞4.. + 𝐼𝑤2𝑞1.𝑞4. +

𝜖1𝑟𝑤𝑞3.𝑞4. 𝑞2 =  0                       105 

The values for variables used in equations are mentioned below. 

𝜖1 = 𝑚𝑐𝑙𝑐 + 𝑚𝑝 (𝑙𝑐 + 𝑙𝑐𝑝 + 𝑙𝑝)                   106 

𝜖2 = 𝑚𝑝𝑙𝑝                          107 

𝜖3 = (𝑚𝑤 + 𝑚𝑐 + 𝑚𝑝)𝑟𝑤                    108 

𝜌1 = 𝑚𝑐𝑙𝑐
2 + 𝑚𝑝 (𝑙𝑐 + 𝑙𝑐𝑝 + 𝑙𝑝)

2
                  109 

𝜌2 = 𝑚𝑝𝑙𝑝
2                          110 

𝜌3 = 𝑚𝑝 (𝑙𝑐 + 𝑙𝑐𝑝 + 𝑙𝑝)𝑙𝑝                    111 

𝜎1 = 𝐼𝑤2 − 𝐼𝑤3                         112 

𝜎2 = 𝐼𝑐2 − 𝐼𝑐3                        113 

𝜎3 = 𝐼𝑝2 − 𝐼𝑝3                        114 

𝜎4 = 𝐼𝑐1 − 𝐼𝑐3 + 𝐼𝑝1 − 𝐼𝑝3                     115 
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The simplified model has more non-linear characteristics concerning q3, 𝑞4, and their 

first and second derivatives.  

3.7   State Estimation Model  

In this robot, a gyroscope is used in the inertial measurement unit (IMU) whose 

location is known as can be seen in Fig 3.4.  Therefore, tilt estimation and rate 

estimation are done using an accelerometer and gyroscope respectively.  

3.7.1 Definition of Model Parameters 

𝑞1: 𝑅𝑜𝑙𝑙 𝑎𝑛𝑔𝑙𝑒 

𝑞2: 𝑃𝑖𝑡𝑐ℎ 𝑎𝑛𝑔𝑙𝑒 

𝑞3: 𝑦𝑎𝑤 𝑎𝑛𝑔𝑙𝑒 

𝑞4: 𝑔𝑟𝑜𝑢𝑛𝑑 𝑤ℎ𝑒𝑒𝑙 𝑎𝑛𝑔𝑙𝑒 

𝑞5: 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑤ℎ𝑒𝑒𝑙 𝑎𝑛𝑔𝑙𝑒 

𝑞𝑛
~ = 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛  

 

Figure 3.24 

Unicycle Pose and Variable Assignments 

 

The Euler rate estimates for roll, pitch and yaw angles are transformed into body frames 

concerning inertial frame. Here the body frame is represented by {B} and inertial frame 

by {i}.  

3.7.2 Using Gyroscope 

𝜔𝑖
𝐵 = 𝑅𝐵𝑖 ∗  𝑊𝑖

𝑖                         116 
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From the sensor data previous tilt estimates are extracted mathematically as follows 

 

𝑞1 
~(𝑘 − 1), 𝑞2 

~(𝑘 − 1) 𝑖𝑛𝑡𝑜 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑟𝑎𝑚𝑒 {𝐼} 

 

The detailed implementation can be found in MATLAB code. However, after 

transformation the final version from average body rates to Euler rates is mentioned 

here.  

 

 [

𝑞1,𝑔
.

𝑞2,𝑔
.

𝑞3,𝑔
.

] = [𝑅2
𝑇𝑒1 𝑒2 𝑅2

𝑇𝑅1
𝑇𝑒3]−1 ∑

𝜔𝑖
𝐵 (𝑘)

4

4
𝑘=1                117 

 

Here 

 

[𝑅2
𝑇𝑒1 𝑒2 𝑅2

𝑇𝑅1
𝑇𝑒3]−1 = [

cos(𝑞
2
) 0 sin(𝑞

2
)

0 1 0
− cos(𝑞

1
) ∗ sin(𝑞

2
) sin(𝑞

1
) cos(𝑞

1
) ∗ cos(𝑞

2
)

]   

                       118 

3.7.3 Tilt Estimation Using Accelerometer  

For tilt estimation, two main approaches were explored: Kalman filters and extended 

Kalman filters, as mentioned by V. Klemm (2019) and L. Hertig (2013), and the non-

accelerated pivot point method, as expressed by D'andrea (2018). in Kalman filtering, 

the approximation model relies on local approximations and is susceptible to errors in 

dynamic and noise parameters. Conversely, the pivot point method has been widely 

employed in various robots, as documented by M. Gajamohan (2013) and M. 

Muelhlebah (2017). Therefore, this approach was chosen as it provides an optimal 

solution when the kinematic model is known. The actuators used for this robot are 

equipped with encoders, enabling estimation via encoder readings. 

 

in an inertial Measurement Unit (IMU), the accelerometer measurement at location \( 

𝑃𝑎𝑐𝑐 , for example, of the 𝑖𝑡ℎ sensor with respect to the body frame {B}, is represented 

by: 

 

𝑚𝑖
𝐵 = 𝑝.. − 𝐵𝑔 + 𝑛𝑖

𝐵
𝑖
𝐵                      119 
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Here for this research work, the center of wheel is considered as pivot point as shown 

figure 3.25. 

 

Figure 3.25 

Unicycle with Pivot Point 

 

The estimation routine implemented in MATLAB resulted in the following final 

expression and methodology for tilt-estimates is extrapolated from Cubli robot to 

Unicycle robot as mentioned in research paper by (D’andrea and Muehlebach, 2018).  

𝑞1 = arctan( 
𝑔~

2 
𝐵

√𝑔~2
1 

𝐵
+𝑔~2

3 

𝐵
                    120 

𝑞2 = arctan( −
𝑔~

1 
𝐵

𝑔~
3 
𝐵)                       121 

Acceleration estimation is performed through encoder measurements in MATLAB, 

followed by sensor fusion techniques using complementary filtering for final data 

implementation. The fusion process combines gyroscope rate estimates and 

accelerometer tilt estimates according to a predetermined scheme, with a fusion 

parameter q1 set to 0.02. 

[
𝑞1

~

𝑞2
~] =  𝛼 [ 

𝑞1𝐴

𝑞2𝐴
] + (1 −  𝛼) [  

𝑞1𝑔

𝑞2𝑔
]                 122 

The complementary filter research work implemented in this robot is Inspired by (R.G. 

Brown and Hwang.,2014) work where the discrete filter combines low-frequent and 

high-frequent parts from the accelerometer and gyroscope for tilt estimate respectively.  
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3.8  Controller Design for Unicycle 

3.8.1 LQR Control 

In the classical control domain, a linear quadratic regulator (LQR) is designed since it 

is known to be the well-established controller for unstable robots (P. Fankhauser et 

al.,2010 and J. Lee & S. Han.,2013 and V.Klemm et al., 2019). Above linearized 

dynamics for unicycle robots are used and the state-space model of the bicycle is 

represented below. The definition of variables is mentioned in the state estimation 

section of this chapter.  

Substituting system matrices for multiplication as follows 

 

𝑥 . = 𝐴𝑥 + 𝐵𝑢                        123 

Control law here: 

𝑢 =  −𝐾 ∗ 𝑥                        124 

to obtain the optimal gain: 

𝐾 = 𝑅−1𝐵′𝑃                        125 

 

and the Ricotti equation is used to get the value of P matrix. 

𝐴′𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵′𝑃 + 𝑄 = 0                 126 

 

Here {Q, R} are chosen in MATLAB with system response time 10msec and obtained 

gains K1, K2.  

{[

𝑞1

𝑞1
.

𝑞5

𝑞5
.

]} = [𝑄1 ]                        127 

{[

𝑞2

𝑞2
.

𝑞4

𝑞4
.

]} = [𝑄2 ]                       128 

 

𝑑

𝑑𝑡
[
𝑄1

𝑄2
] = [

𝐴1 0
0 𝐴2

] [
𝑄1

𝑄2
] + [

𝐵1 0
0 𝐵2

] [
𝑈1

𝑈2
]               129 

 

For the unicycle robot, the estimator values for U1 and U2 are coupled with the 

controller through the IMU calibration routine before the controller starts operating. It 
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is widely acknowledged that yaw dynamics, represented by q3 here, are not controllable 

using LQR, which is why they are omitted from consideration.  

Upon analyzing the system's response in MATLAB, it was observed that the 

coordinated control of both the ground and reaction wheels resulted in turning behavior 

for the unicycle. in dynamic system modeling, numerous coupling terms are calculated, 

which are then mapped with other states. As mentioned earlier in this section, diagonal 

matrices for the two controllers for this unicycle were obtained as diagonal matrices 

using MATLAB. The results from these computations are discussed in Chapter 4. 

3.9  Reinforcement Learning Controller and Selection Criteria 

In the model-free domain, the reinforcement learning controller is designed in PyBullet 

using Python programming. The typical flow of control consists of an agent (robot), the 

environment, and the action the agent takes. It is mentioned below: 

 

Figure 3.26 

 Unicycle Robot in Reinforcement Learning Framework. 

 

for unicycle robots, various other algorithms were tried like Q-learning, Double Q-

learning (DQN), Proximal Policy Optimization (PPO) and Deep Deterministic Policy 

Gradient (DDPG). they were several reasons to choose the DDPG algorithm out of 

other start-of-the-art like PPO: 

1.  DDPG utilizes experience replay, a technique that stores past experiences in a 

replay buffer and samples from it during training. This mechanism helps break 

correlations between consecutive samples and stabilizes the learning process for 

unicycles. Experience replay can be particularly advantageous in environments 
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with complex dynamics or sparse rewards, facilitating more efficient learning 

compared to PPO (Mnih et al., 2015). 

2. DDPG learns the deterministic policy as compared to stochastic policy of PPO. 

the deterministic policy can be beneficial in situations where deterministic 

behavior is desired. for example, maintaining specific poses in the case of 

unicycle robots. Tasks that require precise and predictable actions can benefit 

from DDPG’s deterministic nature, leading to stability and reliability in 

decision-making for balancing controls (T.P. et al., 2016). 

3. DDPG is widely used and proven effective for continuous control tasks, such as 

robotics applications while the same case exists for PPO at the expense of 

carefully tuning hyperparameters for optimal performance.  

Therefore, considering all the facts, DDPG emerged as natural choice for this work and 

has been tailored for this unicycle robot.   

3.9.1 Deep Deterministic Policy Gradient (DDPG) Algorithm 

The algorithm chosen for this unicycle is the DDPG, which simultaneously learns the 

Q-function and the policy. It is assumed that the reader possesses a basic understanding 

of reinforcement learning processes to comprehend this section of the report. the 

approach of the DDPG algorithm is somewhat akin to Q-learning, where the optimal 

action-value function Q*(s,a) is determined for any given state and action using the 

following expression derived from the Bellman equation. 

 

𝑎 ∗ (𝑠) = arg 𝑚𝑎𝑥𝑎 𝑄
∗(𝑠, 𝑎)                   130 

 

The unicycle control is a continuous action space problem therefore, function Q*(s,a) 

should be differentiable with regard to action. So, the gradient-based learning rule is 

developed. The algorithm development process is divided into two parts. Learning the 

Q-function and learning the policy for the unicycle.  

 

3.9.2 Q-Learning for DDPG 

Q-learning starts with Bellman equation and can be written for the optimal action-

value function (OAVF), Q*(s,a) like below (OpenAI:Spinningup) 

𝑄∗(𝑠, 𝑎) =  𝐸𝑠~𝑃 [ 𝑟 (𝑠, 𝑎) +  𝛾 max 𝑎′𝑄∗(𝑠′, 𝑎′)]            131 
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In this context, the Bellman equation should be satisfied by the optimal Q-value 

function, meaning that the transition of tuple (state-action pairs) does not significantly 

affect it. This is due to the inclusion of a replay buffer, which retains past experiences, 

and the adjustment of actions taken by the unicycle as it transitions from one state to 

another through the Q-function with mean-squared Bellman error (MSBE). 

Additionally, Q-learning incorporates target networks using a neural network approach. 

 

𝑟 +  𝛾 (1 − 𝑑) max 𝑎′𝑄(𝑠′, 𝑎′)                   132 

When MSBE loss is minimized, Q-network can be more likely to represent as target 

network. DDPG overcomes the problem of computing the maximum over actions in the 

target network by utilizing the target policy network which can maximize Q(target). 

Hence the approach used in DDPG with MSBE, and stochastic gradient descent is as 

follows: 

𝐿(𝜙, 𝐷) =  𝐸𝑥𝑝𝑡(𝑠,,𝑎,𝑟,𝑠′,𝑑)~𝐷[(𝑄𝜙(𝑠, 𝑎) − (𝑟 +  𝛾(1 − 𝑑)𝑄𝜙𝑡𝑎𝑟𝑔 (𝑠′, 𝜇𝜃𝑡𝑎𝑟𝑔(𝑠′)))
2

] 

                            133 

𝜇𝜃𝑡𝑎𝑟𝑔 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑜𝑙𝑖𝑐𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

 

3.9.3 Policy Learning of DDPG 

The deterministic policy is learned which maximizes the 𝑄𝜙(𝑠, 𝑎). for continuous 

action space it is written: 

 

𝑚𝑎𝑥𝜃𝐸𝑠~𝐷[𝑄∅ (𝑠, 𝜇𝜃(𝑠))]                    134 

For implementation, the author resorted to deterministic policy gradient algorithm 

approach implemented by (Silver et al.2014) and pseudo code is presented below. 
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Figure 3.27 

Pseudo Code for DDPG 
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CHAPTER 4 

RESULTS AND DISCUSSION 

This chapter encompasses the discussion of results and their interpretation, covering 

both simulation and experimental studies. Initially, the results were validated through 

simulations conducted for classical control in MATLAB and for reinforcement learning 

using the Bullet Physics engine. Subsequently, real-time control was achieved using 

custom-designed hardware. 

 

4.1 Classical Control in MATLAB 

4.1.1 The Dynamics Modeling & Lagrangian 

In the initial phase, the implementation of these dynamics in MATLAB necessitated 

the utilization of data extracted from the CAD model of the unicycle. Consequently, 

crucial physical dimension parameters of the unicycle were derived from the CAD 

software Solidworks, offering essential data for accurate calculations. 

4.1.2 MATLAB Coding Procedure 

 
Table 4.1 

 Unicycle Parameters Extracted from CAD Model. 

Unicycle’s 

Symbol 

Description Value & Unit 

𝑚𝑤 Ground wheel mass 0.015 kg 

𝑚𝑐 Mass of chassis 0.150 kg 

𝑚𝑟 Mass of reaction wheel 0.13 kg 

𝑟𝑤 
Radius of the wheel 0.095m  

𝑙𝑐 
Distance between COM of ground wheel and 

chassis 

0.052 m 

𝑙𝑐𝑝 
Distance between COM of reaction wheel 

and chassis 

0.052 m 

𝑙𝑝 
Distance between COM of reaction wheel 

and joint of reaction wheel 

0.00 m 

𝑔 
Gravity acceleration 9.81 𝑚/𝑠𝑒𝑐2  
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In MATLAB one may find the file Unicycleconfig.m. The configuration is followed by 

the non-linear model definition and pseudo-linearization around the upright equilibrium 

position. Utilizing the MATLAB symbolic toolbox all the defined modeling was 

written in MATLAB code and linearized. the snippet from MATLAB code is attached 

(for full detail please refer to file unicycle_dynamics.m). 

Figure 4.1 

MATLAB Code Snippet for Dynamics 

 

 

The implementation of the Lagrangian was done concerning energy and states. to assess 

the states and trajectory, the roll, pitch, and yaw states were collected and depicted in 

the results, as illustrated in Figure 4.2. The varying states of the robot corresponded to 

the desired trajectory, indicating satisfactory performance. 

 

Figure 4.2  

Unicycle States and Trajectory from the Dynamics 
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The center of gravity for joints over time is checked for ground wheel, chassis and 

reaction wheel. 

Figure 4.3 

Joint Positions of Unicycle Over Time 

 

 

The results for Lagrangian energy for this study prove that the derived model is correct, 

and the system conserves the energy. for example, this unicycle robot system exhibits 

smooth and bounded energy fluctuations over time. Some fluctuations are seen due to 

factors like friction drag and control inputs for this model.  

 

Figure 4.4 

Change in System Energy for Unicycle 
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The analytical results from the MATLAB validated the modeling and then to show the 

actual robot control in MATLAB, these results were further extended into the Simulink 

for controller design and state estimation.  

4.2 Robot Stand-up Dynamics Proof-of-Concept.  

Considering the unicycle as symmetric, where both wheels can function as either rolling 

or reaction wheels, the mathematical model adopts a 2D inverse pendulum approach. 

Inspired by the renowned robot CUBLI, known for self-erecting onto its edges, the 

possibility of extending this capability to a unicycle robot is explored. However, 

transforming this concept into tangible hardware requires substantial resources, 

custom-designed software, and electronics to achieve simulated results.  

The dynamics of the robot's self-erection maneuvers are depicted in Figure 4.5. During 

self-erection, one wheel accelerates until it contacts the ground. the dimensions of the 

robot are selected to minimize motor torque during stand-up. the cube-shaped center 

assembly facilitates self-erection by rotating around two points (C1 and C2).  

The dynamics of stand-up mimic those of a 2D inverse reaction wheel pendulum, 

considering gravitational torque, motor torque, rotational inertia, and system inertia. 

Moreover, the image illustrates how sliding contact points reduce the required torque 

for self-erection. Overall, it highlights the intricate process of the robot balancing 

torques and optimizing motor performance during self-erection. 

 

Figure 4.5 

2D Reaction Wheel Concept Development  
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4.3 MATLAB Simulink Procedure 

4.3.1 SIMSCAPE Model of Unicycle in MATLAB 

The information provided in Table 4.1 served as the foundation for constructing the 

model in Simscape within MATLAB. Simscape is a powerful tool within the MATLAB 

environment, enabling the creation of models for physical systems that seamlessly 

integrate with the Simulink environment. Utilizing block diagrams for actuators, body 

frame, and wheel, a Simscape model was developed. While the complete details of the 

model design are available in the accompanying file.  

 

Figure 4.6  

Simscape Model of Unicycle 

 

 

Figure 4.7 

Physical Mode Shown in MATLAB 
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4.3.2 SIMULINK Configurations in MATLAB 

 Reference Scenario for Unicycle. To facilitate the operation of the 

Simscape model within MATLAB, several components are essential, including 

reference inputs, state estimation routines, and controller designs. As a preliminary step, 

a zero-state balancing reference is generated. The input comprises an 8x1 vector 

encompassing roll, pitch, wheel angle, reaction wheel angle, and their respective 

derivatives. initially, this reference corresponds to vectors of zeros for all states.  

for the Simscape model in MATLAB, the need for reference, state estimation routines, 

and controller design is required. Therefore, first, a zero-state balancing reference is 

created, and the input is of an 8x1 vector consisting of roll, pitch, wheel angle, reaction 

wheel angle, and their derivatives respectively. initially, this reference is nothing but 

states of all zero vectors. 

Figure 4.8 

Reference Balancing Scenario 

 

 

 

 State Estimation Routine. The theory behind the state estimation 

routine for this unicycle has been discussed in Chapter 3 and the same implementation 

is done in Simulink. The body rates are converted into Euler coordinates and used for 

tilt and ray roll estimation using accelerometer and gyroscope respectively. All the 

states are real-time states coming from the dynamics of the unicycle to the state-

estimation block these states are 14 in number: 
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Figure 4.9 

States From Robot Dynamics for Estimation Routine 

 

 

These states from the model are fed into custom-designed estimation blocks in 

Simulink. Firstly, the random IMU data’s perturbation is done with gaussian noise to 

show the IMU simulation as if it is the real system. This simulated IMU rates were 

combined with pivot point acceleration in inertial frame. 

 

Figure 4.10 

IMU-based and Estimated Acceleration of Pivot Point (Center of Ground wheel) 

 

 

The final estimates for roll and pitch angle referenced from inertial to body frames are 

represented below. 

For Roll angle, we have the following results. 
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Figure 4.11 

Estimate Routine for Roll angle. 

 

 

For pitch angle, we have the following results.  

 

Figure 4.12 

 Estimate Routine for Pitch angle. 

 

 

After the robot has enough information about its states. Only the real-time observable 

states were fed into the LQR controller. these states are the same as reference scenarios 

states.  
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Figure 4.13 

State Estimation Routine in MATLAB 

 

 

The state estimation information is important for role and pitch control. Here the yaw 

dynamics are not implemented since as per the configuration of the unicycle, Yaw 

control is out of the scope of this project. 

 

Figure 4.14 

State Estimation Values input to Pitch and Roll 
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 Linear Quadratic Controller (LQR) Design. To regulate the system, a 

linear quadratic control (LQR) is formulated, and the corresponding gains are 

computed. The outcomes obtained from MATLAB are illustrated in Figure 4.7. 

Through iterative adjustments, the semi-definite weighting matrices for the pitch and 

roll controllers in the LQR are meticulously selected. This process yields a diagonal 

matrix, as depicted below. 

 

Figure 4.15 

MATLAB code snippet for LQR Controller 

 

 

For Pitch Control: 

 

𝑄𝑝 = [

100 0 0 0
0 1𝑋10−10 0 0
0 0 0.00001 0
0 0 0 10

]                135 

 

𝑅𝑝 =  [1000]                       136 

 

the final gains for pitch controller are: 

 

𝐾𝑝 =  [−1.1779 −0.1177 −2.5929 ∗ 10−5 −0.0259 ]       137 

 

Feedforward term for pitch controller: 

 

𝑀𝑝 =  [−2.0965 ∗ 10−4 2.0965 ∗ 10−4 −0.0183 −0.0183 ]      138 
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for Roll Control: 

 

𝑄𝑟 = [

100 0 0 0
0 0.01 0 0
0 0 0.1 0
0 0 0 0.1

]                   139 

 

𝑅𝑟 =  [1000]                        140 

 

the final gains for roll controller found: 

 

𝐾𝑟 =  [−9.2484 −1.0910 −0.0083 −0.0107 ]           141 

 

𝑀𝑟 =  [−3.9414 ∗ 10−6 −3.9414 ∗ 10−6 −0.0111 −0.0111 ]      142 

 

Linear quadratic controller is implemented in Simulink as discussed in the controller 

section of this chapter. It is designed to control the pitch and roll angle of the unicycle 

report which can be seen in Fig 4.16. 

 

Figure 4.16  

LQR Model in Simulink 
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Figure 4.17 shows that unicycles can handle sufficient disturbances in the lateral 

direction. 

 

Figure 4.17 

Testing of Roll Control and with Disturbances 

 

 

Figure 4.18 

 Reaction Wheel Control and Rate 

 

 

The coordinated control of roll and pitch is presented in Figure 4.19 where along with 

disturbances unicycle gets in equilibrium under 12 sec settling time.  
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Figure 4.19 

 Roll and Pitch Control with Disturbances Before Integration. 

 

 

The discrete-time integrator block in Simulink can create a purely discrete model and 

state-space realization of the system in terms of output equations. for a given step of 

samples, the Simulink integration mode updates the system states as per the following 

scheme. 

𝑦(𝑛) 𝑎𝑛𝑑 𝑥 (𝑛 + 1)  

Where y is output, x is input, and n is the number of given steps for the LQR controller. 

The results are presented in Figure 4.19 along with the MATLAB video.  

 

Figure 4.20 

Roll and Pitch Control with Disturbances After Discrete-Time Integrator. 

(https://www.youtube.com/watch?v=fFfvmddeXDI) 

 

 

https://www.youtube.com/watch?v=fFfvmddeXDI)
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 Tracking for Controller. The real-time dynamics of the robot are 

tracked using the controller tracker designed by feeding the observed reference states 

and states from the dynamics of the unicycle robot.  

Figure 4.21 

Controller Tracking Scheme for Unicycle in MATLAB Simulink 

 

To check the error, a feedback system is implemented for controller tracking. the real 

states of the unicycle are observed with respective to reference states explained above 

and results are presented in Figure 4.22. 

 

Figure 4.22 

Real-States VS Reference States Controller Tracking 
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From system dynamics, reaction wheel and rolling wheel rates are extracted and as per 

selected actuator torque is presented in Figure 4.23. 

 

Figure 4.23 

Reaction and Ground Wheel Actuator Torque with Disturbance. 

 

 

4.4 Testing on Real-Hardware Unicycle 

The findings were confirmed through MATLAB simulations and subsequently 

validated via real-time control on the custom-designed unicycle robot employing the 

LQR controller. This involved the initial assembly of the hardware as detailed in 

Chapter 3, with the outcomes presented below. 

Figure 4.24 

 Unicycle Hardware Pitch Control Real-Time Results from App 

  (https://youtube.com/shorts/SgrMcSsnuIk?feature=share) 

 

https://youtube.com/shorts/SgrMcSsnuIk?feature=share


 
 

 
 

86 

For Pitch Control, the real-time implementation on hardware (unicycle robot) is done 

to validate the required modeling and control. The unicycle is balanced and 

maneuverable independent of pitch control. The peaks shown in Figure 4.24 are the 

disturbances introduced in the video link. The supporting wheel is attached to balance 

the robot’s pitch angle.  

For roll control, it is successfully balanced and supporting bracket was placed to prevent 

unicycle moving forward and backward. Peaks shown in Figure 4.25 are the 

disturbances introduced shown in video link.  

Figure 4.25 

Unicycle Hardware Roll Control 

(https://youtube.com/shorts/58sFqxdgJ6k?feature=share) 

 

 

4.4.1 Combined Pitch and Roll Control 

Firstly, the LQR was independently designed for pitch and roll control and then 

combined to check the coordinated control of both lateral and longitudinal motion of 

the unicycle. Sufficient disturbances are also introduced as can be seen in the video.  

  

https://youtube.com/shorts/58sFqxdgJ6k?feature=share
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Figure 4.26 

Unicycle Hardware Coordinated Control of Roll & Pitch Control 

(https://youtube.com/shorts/vjdEADPw-SM?feature=share) 

 

 

4.5 Unicycle Control Using Deep Reinforcement Learning 

In Chapter 3, the methodology details the development of the final algorithm employed, 

namely DDPG (Deep Deterministic Policy Gradient), specifically tailored for use on 

unicycle robots. Additionally, other algorithms such as (DQN) and DDQN were 

implemented and evaluated. However, it was determined that DDPG exhibited the best 

performance for balancing the unicycle robot effectively. 

 

4.5.1 Overview for the System: 

As previously discussed, unicycles comprise three rigid bodies: the reaction wheel, 

chassis, and ground wheel. Like classical control, the same assumptions were applied 

for RL control, eliminating the need for system modeling. Instead, the system was 

simulated using a Physics Engine called Pybullet. the program's explanation is outlined 

as follows: 

  

https://youtube.com/shorts/vjdEADPw-SM?feature=share
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Figure 4.27  

DRL Implementation Scheme in Python Environment 

 

 

4.5.2 Unicycle Robot Model Creation in Python 

Expanding upon the detailed description provided, the `unicycle_robot.py` file, 

accessible via the provided GitHub repository, offers comprehensive insights into the 

code structure and functionality of the unicycle class. This file contains meticulously 

annotated sections, guiding users through the implementation details and logic behind 

the unicycle model within the Pybullet simulation environment. Users can leverage this 

resource to gain a deeper understanding of the underlying mechanics and behaviors of 

the simulated robot. 

Furthermore, Figure 4.26 serves as a visual aid, showcasing the rendered representation 

of the unicycle model within the Pybullet simulation environment. This image provides 

a concrete visualization of the simulated robot, offering researchers and enthusiasts 

alike a glimpse into its design and characteristics. 

Additionally, the development of specialized indicators for monitoring the ground 

wheel and reaction wheel movements adds a layer of practicality to the simulation 

setup. By visualizing the effects of applied torque on these components, researchers can 

better analyze the system's response to different control inputs and environmental 

conditions. Overall, the combination of detailed code explanations, visual 
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representations, and monitoring capabilities enhances the accessibility and utility of the 

simulation platform for studying unicycle robot dynamics and control strategies. 

 

Figure 4.28 

Unicycle Robot Model Created in Pybullet. 

 

 

The key parameters for implemented mode l and scheme are presented in this table.  

 

Table 4.2 

Deep Learning Algorithm Parameters 

Hyperparameters and Implementation Scheme Descriptions 

Environment Pybullet unicycle balancing 

State Space Coordinates + quaternion 

Action Space torques 

Actor-Network 2-Layer FC, tanh, linear 

Critic Network 2-Layer FC, tanh, ReLU 

Target Network Update τ=0.001 

Actor Learning Rate 1𝑒 − 4 

Critic Learning Rate 1𝑒 − 3 

the Discount Factor (γ) 0.99 
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4.5.3 Results from Balancing Control 

The policy gradient method used in reinforcement learning control is to optimize the 

policies concerning reward function. When the unicycle interacts with the environment 

designed in Pybullet, this creates the optimal policy. The controller performance for 

pitch and roll control is presented in Fig 4.28 along with the simulation video.  

Figure 4.29  

DRL Controller Performance for Pitch (q1) and Roll (q2) Control 

(https://www.youtube.com/watch?v=C4y_fMJTPMQ) 

 

 

4.6 Controller Performance Comparison (CC vs DRL) 

It has been observed that both controller methods effectively balanced the unicycle in 

the upright equilibrium position, even when subjected to impulse disturbances in lateral 

and longitudinal directions. to comprehensively evaluate the performance of these two 

methods, this work proposes two testing techniques aimed at assessing the robustness 

of the controllers: 

 

1.  Performance Matrix Test for Overshoot and Stabilization Time: this test aims to 

measure the maximum overshoot and the time required for the unicycle to stabilize 

from its zero state. By quantifying these parameters, we can assess the effectiveness 

of each controller in stabilizing the unicycle.  

 

2.  Test for Response to External Stimulus: this test is designed to evaluate the 

robustness of the unicycle controller in response to external impulses. By subjecting 

the unicycle to various external stimuli, we can determine its maximum threshold 

https://www.youtube.com/watch?v=C4y_fMJTPMQ
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for sustaining such disturbances. This test provides insights into the resilience of 

the controller under real-world conditions.  

 

By conducting these tests, we can gain a comprehensive understanding of the 

performance of both controller methods and make informed comparisons between 

them. 

4.6.1 Test 1: Performance Matrix Test – Overshoot and Stabilization Time 

To evaluate the performance of classical control (LQR) and DRL control (DDPG), the 

initial posture test is performed on a non-linear model with minimum disturbances to 

get the steady-state position for robot [𝑞10, 𝑞20] in simulation. This scenario is as close 

to as the unicycle in practice is fixed from two sides with the help of threads or strings 

before turning ON the controller simulation. When robots start falling once the strings 

are cut, the controller gets activated with a velocity set at 3(deg/sec).  So, the initial test 

state is: 

 

𝑆0 = [0 0 𝑞1
. 𝑞2

. 𝑞1 𝑞1]                  143 

 

𝑞1
. = [0, 𝑊𝑖 +  𝑁1] 

𝑞2
.  =  [0, 𝑊𝑖 +  𝑁2] 

𝑞1 = [𝑞10 –  𝑁3, 𝑊𝑖 +  𝑁3] 

𝑞2 = [𝑞20–  𝑁4, 𝑊𝑖 +  𝑁4] 

 

robot [𝑞10, 𝑞20] = [roll, pitch initial position] 

 

N1 – N4 is small threshold value in angle kept at 0.3 [deg].  

 

The tested DOF is done as per equation 119 and resulting angular velocities are 

recorded. Due to large stabilization interval of roll angle the performance is evaluated 

at roll angle = 6 deg.  
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Figure 4.30 

LQR Vs DDPG Stabilization From initial Pitch = 12 Deg 

 

Table 4.3 

Tests Result for Stabilization and Overshoot of LQR Vs DDPG 

The conclusion for the time of stabilization and overshoot is presented in the table.  

initial angle [deg] Controller Stabilization time 

[ts in sec] 

Overshoot Mp 

[deg] 

𝑞10 = 7 LQR 1.01 4.70 

𝑞10 = 7 DDPG 1.83 8.20 

𝑞20 = 12 LQR 0.74 2.74 

𝑞20 = 12 DDPG 1.12 1.70 

 

Using LQR from initial posture when learning sideward roll angle is: 

𝑞10 = 7 𝑑𝑒𝑔 

  

[𝑠] 
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Table 4.4 

Stabilization of Unicycle from Initial Posture When Roll Angle Is 7 Deg with LQR 

Test No Unicycle 

Stabilized 
𝑞1 [deg] 𝑞1

.  [deg/sec] 𝑞2 

[deg] 

𝑞2
. [deg/sec] 

1 Yes 7.12 3.186 0.0435 1.041 

2 Yes 7.11 2.063 0.0624 0.775 

3 Yes 7.07 2.740 -0.150 -0.962 

4 No 7.01 3.211 -0.253 -0.260 

5 Yes 7.05 2.34 -0.125 0.746 

  

Using DDPG from initial posture when learning sideward roll angle is: 

𝑞10 = 7 𝑑𝑒𝑔 

Table 4.5 

Stabilization of Unicycle from Initial Posture When Roll Angle Is 7 Deg with DDPG 

Test No Unicycle 

Stabilized 
𝑞1 [deg] 𝑞1

.  

[deg/sec] 

𝑞2 [deg] 𝑞2
. [deg/sec] 

1 Yes 7.11 3.340 -0.265 -0.358 

2 No 7.02 3.839 -0.408 -1.663 

3 Yes 7.15 3.012 -0.091 0.365 

4 Yes 7.10 3.438 -0.046 0.716 

5 No 7.01 3.285 -0.049 0.264 

 

Using LQR from initial posture when learning forward Pitch angle is: 

𝑞20 = 12 𝑑𝑒𝑔 
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Table 4.6 

Stabilization of Unicycle from Initial Posture When Pitch Angle Is 12 Deg for LQR 

Test No Unicycle 

Stabilized 
𝑞1 [deg] 𝑞1

.  

[deg/sec] 

𝑞2 [deg] 𝑞2
. [deg/sec] 

1 Yes 12.22 3.067 -0.005 1.314 

2 No 12.96 3.191 -0.392 -0.662 

3 No 12.16 4.062 -0.064 -1.743 

4 Yes 12.24 4.109 -0.575 -4.089 

5 No 12.91 4.325 -0.037 -1.039 

 

Using DDPG from initial posture when learning forward Pitch angle is: 

𝑞20 = 12 𝑑𝑒𝑔 

 

Table 4.7 

 Stabilization of Unicycle from Initial Posture at Pitch Angle Is 12 Deg for DDPG 

Test No Unicycle 

Stabilized 
𝑞1 [deg] 𝑞1

.  

[deg/sec] 

𝑞2 [deg] 𝑞2
. [deg/sec] 

1 Yes 12.96 3.844 0.303 -2.43 

2 Yes 12.29 4.813 -0.091 -1.12 

3 No 12.023 3.512 -0.123 0.272 

4 Yes 12.10 3.224 -0.123 3.224 

5 No 12.27 3.887 -0.275 -2.142 

 

4.6.2 Test 2: Test for Response to External Stimuli 

This test can be applied by subjecting the unicycle to quantified impulse responses both 

through simulation and in real-time operation. one method involves simulating the 

impulse response in a controlled environment, while the other entails conducting 

physical experiments using a mechanism such as a ball hanging from a ceiling.  
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in the practical setup, the ball serves as the impulse source, which can be conceptualized 

as a rate of momentum transfer (Reza N. Jazar, 2011). The test setup for the practical 

case is illustrated in Fig 4.31. When the ball strikes the unicycle robot at a specific time, 

it imparts an impulse to the system, which can be quantified using the impulse function. 

This impulse function can be used to evaluate the unicycle's response to external stimuli 

and determine its ability to withstand such disturbances. Through careful analysis of 

the system's response to these impulses, valuable insights into the robustness and 

resilience of the controller can be obtained. 

 

𝐽𝑚 = ∫ 𝐹𝑑𝑡 ≈ 𝑝 = 𝑚𝑏𝑣2  = 𝑚𝑏𝑣1
𝑡2

𝑡1
                 144 

 

The impulse ( 𝐽𝑚) resulting from the impact of the ball can be calculated based on the 

momentum ( 𝑝 ), where ( 𝑚𝑏) represents the mass of the ball hitting the unicycle at 

time ( 𝑡1), with velocities ( 𝑣1) and ( 𝑣2) from initial to final positions, respectively.  

 

The typical velocity at impact can be determined using the law of conservation of 

energy. According to this law, when the ball possesses no velocity before dropping 

from a height ( ℎ ), the velocity at impact can be calculated as:  

 

[ 𝑣 =  √{2𝑔ℎ}]                       145 

Where, ( 𝑔 ) is the acceleration due to gravity. 

This calculation enables the determination of the velocity of the ball at the moment of 

impact, which is crucial for assessing the magnitude of the impulse imparted to the 

unicycle.: 

 

𝑚𝑏𝑔ℎ  =
1

2
(𝑚𝑏𝑣1

2)                      146 

 

The test is executed following a procedure akin to the initial posture setup, whereby the 

control algorithm is triggered upon the ball's impact on the robot, accompanied by a set 

angular velocity of 3 degrees per second.  
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In the simulation study, additional inputs in the form of external stimuli are introduced 

to the system to enhance its versatility and robustness. this incorporation of 

supplementary inputs is seamlessly integrated into MATLAB's Simulink environment, 

as illustrated in Figure 4.30. Through this configuration, researchers can simulate a 

wide range of scenarios, thereby facilitating a comprehensive assessment of the 

unicycle robot's behavior and performance under diverse external conditions. Such 

simulations enable researchers to study the system's response to various stimuli, 

providing valuable insights into its dynamics and control strategies. 

Figure 4.31  

Test Setup on Proposed Unicycle for External Stimuli. 

 

 

for reinforcement study, the linear force is considered at time t, and the impulse is 

calculated as follows.  

𝐽𝑖𝑚𝑝𝑙𝑢𝑠𝑒 = 𝐹𝑖 ∗ Q3𝑡                         147 

  

F1 

Y 

Z 

X 
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Figure 4.32 

Impulse Stimuli in MATLAB Simulink 

 

The combined results from MATLAB and Python indicate that the LQR controller 

exhibits greater resilience to impulse forces in the pitch direction compared to the 

DDPG algorithm. However, in the roll direction, both controllers demonstrate a similar 

capability in handling impulse forces, with comparable magnitudes. the findings are 

summarized in the table below: the results are shown in Table below.  

Table 4.8 

 Test on External Stimuli Response for LQR Vs DDPG 

Controller Sustained Pitch Impulse [Ns] Sustained Roll Impulse [Ns] 

LQR 0.48 0.37 

DDPG 0.19 0.2 
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Figure 4.33 

Matlab (LQR – Left Image) vs Python (DDPG – Right Image) Response to Impulses 

 

4.7  Discussion for Results and Comparative Analysis of RL Vs CC 

Firstly, it's crucial to recognize that the performance of these controllers is intricately 

tied to the fine-tuning of their parameters and weight matrices. Even slight variations 

in these configurations can lead to significantly different outcomes for each controller. 

Addressing the challenges of implementation, it becomes evident that applying the 

DDPG controller on hardware presents notable difficulties, primarily due to the 

inherent instability of the unicycle robot. This instability poses a significant hurdle, 

leading to unexpected behaviors, especially in the longitudinal direction, where the 

DDPG controller may converge to local optima, resulting in unforeseen responses. 

However, there are noteworthy observations regarding DDPG's behavior. While it may 

exhibit unpredictability in certain scenarios, particularly longitudinal movements, it 

tends to adopt a more conservative approach in lateral stabilization. This cautious stance 

results in the stabilization of the system with smaller maximum pitch angles, offering a 

level of stability in lateral movements. 

In terms of performance metrics, it's important to consider both the speed of 

stabilization and the degree of overshoot. LQR typically achieves faster stabilization, 

whereas DDPG displays less overshot. However, the longer settling time observed with 

DDPG can be attributed to the inherent exploration-exploitation trade-off characteristic 

of reinforcement learning algorithms. DDPG's need to explore the action space to learn 

optimal policies often results in suboptimal control actions during the learning phase, 

prolonging the stabilization process. 
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Successful training with DDPG hinges on the robust definition of state spaces. Without 

clearly defined boundaries for these spaces, the performance of the controller cannot be 

guaranteed. Nevertheless, DDPG offers notable advantages, such as utilizing 

experience buffers and off-policy learning, setting it apart from other reinforcement 

learning methods like PPO. 

In practical terms, the choice between LQR and DDPG depends on various factors, 

including the desired performance metrics and the constraints imposed by the hardware 

architecture. While DDPG may demand higher computational resources, its ability to 

learn directly from sensor data without the need for explicit system modeling can be 

advantageous. Ultimately, the decision between classical control algorithms and 

reinforcement learning approaches must be carefully considered based on specific 

requirements and system constraints.  
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CHAPTER 5 

CONCLUSION AND FUTURE RECOMMENDATION 

5.1 Thesis Conclusion 

In conclusion, this thesis has made significant contributions to the field of robotics, 

particularly in the design and control of unicycle robots. The research presented two 

distinct versions of the unicycle robot design, emphasizing optimization and component 

selection to achieve a practical laboratory-scale robot.  

The control schemes devised for this project were divided into continuous and discrete 

control categories. for continuous control tasks such as balancing and maneuvering, two 

approaches were explored: the classical control-based Linear Quadratic Regulator 

(LQR) and the reinforcement learning-based (DDPG). Both controllers were tested 

extensively in MATLAB and Pybullet simulations, with successful transfer of the 

simulated training scheme to physical hardware, demonstrating effective balancing and 

control capabilities. 

In addition to continuous control, the thesis also proposed a proof-of-concept model for 

discrete control tasks, such as stand-up or jump-up dynamics, using a 2D inverted 

pendulum approach. This model offers unique features akin to the Cubli robot, further 

expanding the test platform for both linear and non-linear control strategies. 

Furthermore, two comprehensive testing procedures were developed to evaluate the 

performance of the controllers: the performance matrix and response to external stimuli. 

the performance matrix analysis provided insights into settling time and overshoot for 

both LQR and DDPG controllers, while the response to external stimuli demonstrated 

the robustness of the unicycle robot against impulse disturbances in simulation and real-

world scenarios. 

Overall, the results indicate that the LQR controller outperformed DDPG in most 

dynamic scenarios where hardware limitations were not a factor, exhibiting greater 

robustness to external stimuli. These findings offer valuable guidance for future 

research and serve as a reference point for comparing the capabilities of classical and 

reinforcement learning control methods in similar robotic systems. 
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5.2 Future Recommendations 

Looking ahead, while the proposed unicycle robot demonstrated successful balancing 

and maneuvering capabilities in both pitch and roll directions using classical and 

reinforcement learning (RL) control schemes, there remains room for improvement, 

particularly in the RL domain. one key area for future development lies in enhancing 

the process of transferring learned policies from simulation to real-world hardware. 

To address this challenge, a two-step approach can be adopted. Firstly, the 

reinforcement learning algorithm can be trained extensively in simulation 

environments, allowing for rapid exploration, and learning without the constraints of 

physical hardware. Once a satisfactory policy is obtained in simulation, the second step 

involves fine-tuning and adaptation of the learned policy on the actual hardware 

platform. This iterative process of simulation-based training followed by real-world 

fine-tuning can help bridge the gap between virtual and physical environments, 

enabling more seamless deployment of RL-based control strategies on real robotic 

systems. 

Moreover, future research endeavors could explore the integration of both continuous 

and discrete control hardware designs within the same robotic platform. by combining 

the advantages of continuous control for tasks such as balancing and maneuvering with 

the capabilities of discrete control for specialized tasks like stand-up or jump-up 

dynamics, a more versatile and adaptable robotic system can be realized. this hybrid 

approach could offer enhanced performance and flexibility across a wider range of 

applications and operating conditions. 

Overall, the proposed recommendations aim to further advance the capabilities of 

unicycle robots, paving the way for more efficient and robust control strategies that can 

be seamlessly deployed on real-world hardware platforms. By leveraging the strengths 

of simulation-based training and integrating both continuous and discrete control 

designs, future developments in this field hold great promise for achieving even greater 

levels of autonomy and functionality in robotic systems. 

In the current orthogonal setup of a reaction wheel unicycle robot, the focus has 

predominantly centered on the independent control of pitch (longitudinal) and roll 

(lateral) directions, as evidenced by simulation results. Consequently, the treatment of 

yaw dynamics has been deferred for future consideration. This decision is sensible for 
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several reasons. Firstly, addressing yaw dynamics would introduce additional 

complexity beyond the current scope of research and development efforts. The 

introduction of yaw control would necessitate the development of sophisticated control 

strategies to ensure stability, potentially adding further layers of complexity to the 

system. It's essential to ensure the robot remains within the linear region (if linear 

controller is concerned) when leaning for particularly yaw dynamics. By prioritizing 

lateral dynamics control initially, researchers can lay a solid foundation for future 

investigations into yaw dynamics by introducing curvature control along with leaning 

angle of the robot to control. Future research could explore further possibilities to 

maximize the robot's potential as an advancement of this work, which already provides 

comprehensive reinforcement learning implementation.  
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APPENDIX 

PROJECT FILES AND CODES   

1. For the Solidworks CAD File – the link is: 

(https://github.com/nabeeljadoon/Unicycle_DesignCAD/tree/main) 

2. For LQR: All the MATLAB files and Codes are on GitHub      

(https://github.com/nabeeljadoon/Unicycle-Balancing-Control/tree/main) 

3. For DDPG: Python Code is also uploaded on GitHub  

 (https://github.com/nabeeljadoon/Unicycle-Balancing-Using-DRL) 
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