

MULTIPLE ROBOTS PATH PLANNING BASED ON

REINFORCEMENT LEARNING FOR OBJECT

TRANSPORTATION

by

Sarawat Ruamngern

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Mechatronic

 Examination Committee: Prof. Manukid Parnichkun (Chairperson)

 Prof. Matthew N. Dailey

 Dr. Mongkol Ekpanyapon

 Nationality: Thai

 Previous Degree: Bachelor of Engineering in Mechanical

 Chulalongkorn University

 Bangkok, Thailand

 Scholarship Donor: His Majesty the King's Scholarships

 (Thailand)

Asian Institute of Technology

School of Engineering and Technology

Thailand

May 2022

 ii

AUTHOR’S DECLARATION

I, Sarawat Ruamngern, declare that the research work carried out for this thesis was in

accordance with the regulations of the Asian Institute of Technology. The work

presented in it are my own and has been generated by me as the result of my own

original research, and if external sources were used, such sources have been cited. It is

original and has not been submitted to any other institution to obtain another degree or

qualification. This is a true copy of the thesis, including final revisions.

Date: 5 May 2022

Name (in printed letters): Sarawat Ruamngern

Signature:

 iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my thankfulness to my advisor, Prof.

Manukid Parnichkun, for his invaluable assistance such as ideas, suggestions, and

budget supportation during the thesis process. It would be difficult to complete this

thesis without his guidance.

Secondly, I would like to express my appreciation to the members of the examination

committee, Prof. Matthew N. Dailey and Assoc.Prof. Mongkol Ekpanyapon, for their

recommendations.

In addition, I would like to extend my thankfulness to Ms. Alisa Kunapinun, the AIT

senior student in Mechatronics field. She generously provided me the ideas,

suggestions, knowledges, and computing machine. To achieve this thesis, the high-

capacity computing machine is required, and my machine could not reach that

specification for model training process. Therefore, all the training processes were

accomplished by her machine.

I also would like to show my gratitude to His Majesty the King's Scholarship of

Thailand for funding my whole master's degree and providing me the opportunity to

have a great experience in AIT.

Finally, I would like to thank my parents for their supportation and aid during my

education which make me could fully concentrate on my study.

 iv

ABSTRACT

This thesis proposed reinforcement learning method to perform the object

transportation task for multiple robots. This task consists of two main processes, path

planning and motion control task. Double deep Q-learning (DDQN) model is selected

to achieve path planning for any random environment. To increase the capability of

reinforcement learning model, semi-supervised method by A* algorithm is applied

during the training process in order to find the optimal path. For motion control task,

reinforcement learning model must control a motion of differential wheeled mobile

robot by providing actions composed of speeds of left wheel and right wheel. The

models are separately trained for two different purposes. The first agent is trained to

deal with path following task and another agent is trained to handle with point following

task. The agent of point following task is used to control the group of robots to move

with a fixed group shape. The agent which is trained in the environment without

disturbance is used in simulation. And the agent which is trained in the environment

included disturbance is applied in practice with three differential wheeled mobile

robots. Proximal policy optimization (PPO) is selected to achieve path following task

in simulation and point following task in practice. Deep deterministic policy gradient

(DDPG) is selected to complete path following task in practice. And soft actor-critic is

selected to complete point following task in simulation. Finally, the integration of

proposed reinforcement learning models can accomplish the object transportation task

for multi-robot system appropriately both in simulation and practice.

 v

CONTENTS

Page

ACKNOWLEDGMENTS iii

ABSTRACT iv

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Background of the Study 1

1.2 Statement of the Problem 3

1.3 Objectives of the Study 4

1.4 Scope and Limitation 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Multi-Robot System 5

2.2 Localization of Indoor Mobile Robot 6

2.3 Path Planning for Mobile Robot 7

2.4 Formation Control for Nonholonomic Robot 8

2.5 Reinforcement Learning (RL) with Optimization Problem 10

CHAPTER 3 METHODOLOGY 12

3.1 Overview of a System 12

3.2 Component of a System 14

3.3 Path Planning 17

3.4 Motion Control Task 32

3.5 Object Transportation 42

CHAPTER 4 SIMULATION AND EXPERIMENT RESULTS 47

4.1 Evaluate RL Model for Path Planning 47

4.2 Evaluate RL Model for Path Following Task 61

4.3 Evaluate RL Model for Point Following Task 68

4.4 Implement RL Models for Object Transportation 76

CHAPTER 5 CONCLUSION 83

REFERENCES 85

 vi

LIST OF TABLES

Tables Page

Table 3.1 Label of Pixel in Grid Map 18

Table 3.2 Action Space in Path Planning Respected the Image Coordinate 18

Table 3.3 Reward and Terminal Status in Path Planning 19

Table 3.4 The Hyperparameters of DQN Approach for Path Planning 22

Table 3.5 The Hyperparameters of DDQN Approach for Path Planning 29

Table 3.6 The Hyperparameters of PPO Approach for Path Planning 31

Table 3.7 The Hyperparameters of PPO Approach for Motion Control Task 36

Table 3.8 The Hyperparameters of DDGP Approach for Motion Control Task 38

Table 3.9 The Hyperparameters of SAC Approach for Motion Control Task 42

Table 4.1 Performance of DQN with Convolutional Layers for Path Planning 52

Table 4.2 Performance of RL Models for Path Planning 55

Table 4.3 Performance of DDQN with Semi-Supervised by A* for Path Planning 60

Table 4.4 Performance of RL Models for Path Following Task (No Disturbance) 64

Table 4.5 Performance of RL Models for Path Following Task (With Disturbance) 68

Table 4.6 Performance of RL Models for Point Following Task (No Disturbance) 72

Table 4.7 Performance of RL Models for Point Following Task 76

 (With Disturbance)

 vii

LIST OF FIGURES

Figures Page

Figure 1.1 Application Scenarios of Collaborative Robotic Manipulation 1

 (Feng et al., 2020)

Figure 1.2 Mobile Industrial Robots Carrying a Crane Bearing 2

 (Recker et al., 2020)

Figure 1.3 Flow Diagram for Mobile Robot Navigation (Patle et al., 2019) 2

Figure 1.4 Concept of Reinforcement Learning (Mazyavkina et al., 2021) 3

Figure 2.1 Two Images Viewed from Two Surveillance Cameras at Indoor 6

 (Shim & Cho, 2015)

Figure 2.2 Robot’s Path from the External Cameras Localization Method 6

 (Shim & Cho, 2015)

Figure 2.3 Classification of Mobile Robot Navigational Approaches 7

 (Patle et al., 2019)

Figure 2.4 Control Structure of Leader-Follower (Recker et al., 2020) 8

Figure 2.5 l-ψ-Control a) Notation, b) Isomorphic Diagraphs (Desai et al., 1998) 9

Figure 2.6 Cartesian Control a) Postures, b) Tracking Controller (Kanayama, 1990) 9

Figure 2.7 A Classification of Reinforcement Learning Methods 11

 (Mazyavkina et al., 2021)

Figure 3.1 Initial State of Environment in Simulation and Experiment. 12

Figure 3.2 Optimal Paths with Collision-Free from Reinforcement Learning 13

 Model

Figure 3.3 Final State of Group of Mobile Robots 14

Figure 3.4 Component of a System 15

Figure 3.5 Xiaovv Webcam 1080P HD 16

Figure 3.6 Yahboom Micro:bit Smart Robot Car and Micro:bit 16

Figure 3.7 Map in Simulation 17

Figure 3.8 Structure of Ordinary Convolution Network for Path Planning 23

Figure 3.9 Structure of Modified ResNet18 for Path Planning 24

Figure 3.10 Structure of Residual Blocks, Preserved and Not Preserved Feature 25

 Map Size

 viii

Figures Page

Figure 3.11 Structure of Bottleneck Blocks, Preserved and Not Preserved Feature 25

 Map Size

Figure 3.12 Structure of Modified ResNet50 for Path Planning 26

Figure 3.13 Structure of PPO for Path Planning 31

Figure 3.14 Displacement of Two Wheels Mobile Robot 33

Figure 3.15 Errors in Robot’s Coordinate 34

Figure 3.16 Structure of PPO for Motion Control Task 35

Figure 3.17 Structures of Policy and Q-Function of DDPG for Motion Control 38

 Task

Figure 3.18 Structures of Policy, Q-Function, and V-Function of SAC for Motion 41

 Control Task

Figure 3.19 Path Planning for Individual Robot and Group of Robots. 43

Figure 3.20 Motion Control Training Process for Path Following Task 44

Figure 3.21 Motion Control Training Process for Point Following Task 45

Figure 3.22 Real Environment for Experiment. 45

Figure 3.23 Distorted Image and Undistorted Image 46

Figure 3.24 Image with Homography Transformation, and Identification of 46

 Position

Figure 4.1 Training Result of DQN with Ordinary Convolutional Layer for Path 48

 Planning

Figure 4.2 Testing Result of DQN with Ordinary Convolutional Layer for Path 49

 Planning

Figure 4.3 Training Result of DQN with Resnet18 for Path Planning 49

Figure 4.4 Testing Result of DQN with Resnet18 for Path Planning 50

Figure 4.5 Training Result of DQN with Resnet50 for Path Planning 51

Figure 4.6 Testing Result of DQN with Resnet50 for Path Planning 51

Figure 4.7 Training Result of DDQN with Resnet50 for Path Planning 53

Figure 4.8 Testing Result of DQN with Resnet50 for Path Planning 53

Figure 4.9 Training Result of PPO with Resnet50 for Path Planning 54

Figure 4.10 Testing Result of PPO with Resnet50 for Path Planning 55

Figure 4.11 Training Result of DDQN with 25% Supervised by A* for Path 56

 Planning

 ix

Figures Page

Figure 4.12 Testing Result of DDQN with 25% Supervised by A* for Path 57

 Planning

Figure 4.13 Training Result of DDQN with 50% Supervised by A* for Path 58

 Planning

Figure 4.14 Testing Result of DDQN with 50% Supervised by A* for Path 58

 Planning

Figure 4.15 Training Result of DDQN with 75% Supervised by A* for Path 59

 Planning

Figure 4.16 Testing Result of DDQN with 75% Supervised by A* for Path 60

 Planning

Figure 4.17 Training Result of PPO Model for Path Following Task 61

 (No Disturbance)

Figure 4.18 Testing Result of PPO Model for Path Following Task 62

 (No Disturbance)

Figure 4.19 Training Result of DDPG Model for Path Following Task 62

 (No Disturbance)

Figure 4.20 Testing Result of DDPG Model for Path Following Task 63

 (No Disturbance)

Figure 4.21 Training Result of DDPG Model for Path Following Task 63

 (No Disturbance)

Figure 4.22 Testing Result of SAC Model for Path Following Task 64

 (No Disturbance)

Figure 4.23 Training Result of PPO Model for Path Following Task 65

 (With Disturbance)

Figure 4.24 Testing Result of PPO Model for Path Following Task 65

 (With Disturbance)

Figure 4.25 Training Result of DDPG Model for Path Following Task 66

 (With Disturbance)

Figure 4.26 Testing Result of DDPG Model for Path Following Task 66

 (With Disturbance)

Figure 4.27 Training Result of SAC Model for Path Following Task 67

 (With Disturbance)

 x

Figures Page

Figure 4.28 Testing Result of SAC Model for Path Following Task 67

 (With Disturbance)

Figure 4.29 Training Result of PPO Model for Point Following Task 69

 (No Disturbance)

Figure 4.30 Testing Result of PPO Model for Point Following Task 69

 (No Disturbance)

Figure 4.31 Training Result of DDPG Model for Point Following Task 70

 (No Disturbance)

Figure 4.32 Testing Result of DDPG Model for Point Following Task 70

 (No Disturbance)

Figure 4.33 Training Result of SAC Model for Point Following Task 71

 (No Disturbance)

Figure 4.34 Testing Result of SAC Model for Point Following Task 71

 (No Disturbance)

Figure 4.35 Training Result of PPO Model for Point Following Task 72

 (With Disturbance)

Figure 4.36 Testing Result of PPO Model for Point Following Task 73

 (With Disturbance)

Figure 4.37 Training Result of DDPG Model for Point Following Task 74

 (With Disturbance)

Figure 4.38 Testing Result of DDPG Model for Point Following Task 74

 (With Disturbance)

Figure 4.39 Training Result of SAC Model for Point Following Task 75

 (With Disturbance)

Figure 4.40 Testing Result of SAC Model for Point Following Task 75

 (With Disturbance)

Figure 4.41 Simulation Result of Multiple Robots for Object Transportation 77

Figure 4.42 Formation Errors of Multiple Robots in Simulation 78

Figure 4.43 Experiment Result of Multiple Robots for Formation Control Task 79

Figure 4.44 Formation Errors of Multiple Robots in Experiment 80

 (Excluded the Object)

Figure 4.45 Experiment Result of Multiple Robots for Object Transportation 81

 xi

Figures Page

Figure 4.46 Formation Errors of Multiple Robots in Experiment 82

 (Included the Object)

 xii

LIST OF ABBREVIATIONS

A* = Astar

AI = Artificial Intelligent

AIT = Asian Institute of Technology

CNN = Convolution Neural Network

CPU = Central Processing Unit

DDPG = Deep Deterministic Policy Gradient

DDQN = Double Deep Q-learning Network

DQN = Deep Q-learning Network

GA = Genetic Algorithm

GPU = Graphic Processing Unit

MDP = Markov decision process

MIR = Mobile Industrial Robot

ML = Machine Learning

MRs = Multi-Robot system

NN = Neural Network

OS = Operation System

RAM = Random Access Memory

RL = Reinforcement Learning

PID = Proportional-Integral-Derivative

PPO = Proximal Policy Optimization

SAC = Soft Actor-Critic

 1

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

In many cases, it is obviously that multi-robot cooperation can perform complex tasks

more effectively than one single powerful robot for tasks that impossible for one robot

to accomplish. In industrial application, assembling task, transporting task, painting

task, packaging task, and welding task usually require flexibility to perform (see Figure

1.1). Hence, the cooperation of multi-robot system has been developed with many

techniques for increasing efficiency and enhancing flexibility in industrial application.

Figure 1.1

Application Scenarios of Collaborative Robotic Manipulation (Feng et al., 2020)

The fundamental of multi-robot system is to distribute subtasks to individual robots and

allow them to handle the tasks to solve the complex problem. The multi-robot system

(MRs) is very cost effective when compared to one single powerful robot. The

comfortable of multi-robot system makes them popular widely in various application.

In contrast, multi-robot system requires a lot of setting or tunning for deployment and

has high possibility to collision to each other as well.

This thesis focuses on path planning with formation forming of multiple mobile robots

for object transportation. Formation forming of group of mobile robots is often used to

extend the capability of a single mobile robot to break down and distribute the complex

task into smaller subtasks (see Figure 1.2). The connectivity of these mobile robots

 2

enables them to carry out the task simpler than one capability robot. Moreover,

formation forming increase the flexibility of overall system to adapt with complexed

and customized of large objects.

Figure 1.2

Mobile Industrial Robots Carrying a Crane Bearing (Recker et al., 2020)

For object transportation by multi-robot system, one important problem is path planning

for group of mobile robots. There is various research proposed efficient path planning

algorithm to establish path and movement that allow mobile robots to reach the goal

autonomously and safety in working environment with collision-free (Patle et al., 2019)

(see Figure 1.3). Most approach try to generate optimal path for navigating a mobile

robot to move from initial location to final location by avoiding static and dynamic

obstacles presented in the environment.

Figure 1.3

Flow Diagram for Mobile Robot Navigation (Patle et al., 2019)

 3

At present, there are several studies proposed machine learning approach in order to

solve path planning problem. Reinforcement learning (RL) algorithm is one of the most

popular methods in machine learning approach which be proposed to solve path

planning problem for mobile robot navigation (Sartoretti et al., 2019) (Wang et al.,

2020). Reinforcement learning method proposes an automatically search of agent for

optimization problem by training an agent in self-supervised. To apply reinforcement

learning method, we design the model of problem as a sequential of decision-making

process. Then the agent can interact to the environment by performing actions

sequentially to find the optimal solution (see Figure 1.4). Markov decision process

(MDP) provides a mathematical framework for the model in this type of problem

(Mazyavkina et al., 2021).

Figure 1.4

Concept of Reinforcement Learning (Mazyavkina et al., 2021)

1.2 Statement of the Problem

There are various algorithms have been proposed for solving path planning problem.

Recently, one of interesting emerging trend to solve this optimization problem is

machine learning approach. To increase automatically learning capability and making-

decision of robots, reinforcement learning method is one branch of machine learning

that allow agent to learn autonomously how to accomplish any task even the

environment has changed with less setting or tunning parameters when compared to

traditional methods.

 4

When considering the object transportation for multi-robot system, it is interesting to

explore how reinforcement learning approach handles to this problem. Therefore, this

thesis proposed reinforcement learning models to perform path planning and motion

control task for multi-robot system. In this thesis, the agent which is trained to solve

path planning problem must find the optimal path with obstacles avoidance for

individual robots from initial positions to loading positions. It also find the optimal path

for the group of robots from loading point to the delivery point. Another agent which is

trained for motion control task must control the movement of multiple robots to follow

their paths appropriately. The integration of these agents is used to perform the object

transportation task. The performance of reinforcement learning method is evaluated

both in simulation and practice.

1.3 Objectives of the Study

The main objective of this thesis is to develop reinforcement learning models to solve

the object transportation problem for multi-robot system. To achieve the objective, the

following sub-objectives are required.

1. Develop path planning model based on reinforcement learning method.

2. Develop motion control model for differential wheeled mobile robot based on

reinforcement learning method.

3. Develop three differential wheeled mobile robots to implement the models in

practice.

1.4 Scope and Limitation

The scopes of this thesis are listed as following:

1. Reinforcement learning method is used for path planning.

2. Reinforcement learning method is used for motion control task.

3. Three differential-wheeled mobile robots are developed to evaluate the

performance of reinforcement learning models in practice.

4. Translation and rotation of mobile robot limited in cartesian plane (𝑋, 𝑌, 𝜃).

5. The working area is enveloped within 1.2 x 2.0 square meter.

6. The performance of reinforcement learning models will be compared among

value-based method and policy-based method.

 5

CHAPTER 2

LITERATURE REVIEW

There are several published papers involved with the multi-robot cooperation. As

mentioned in the previous chapter, this thesis focuses on optimal path planning with

formation forming for object transportation. Therefore, in this chapter, the related

literatures will be reviewed separated into following sections such that 1) multi-robot

system 2) localization of indoor mobile robot, 3) path planning for mobile robot, 4)

formation control for nonholonomic robot, 5) reinforcement learning with optimization

problem.

2.1 Multi-Robot System

There is a review of research in multi-robot system. Goh & Tjahjono (2006) mentioned

that multi-robot system has potential to solve vast application of complex tasks in

different domain. Much research has been proposed coordination algorithm inspired

from small living organisms such as birds, fishes, or insects. The algorithm can divide

into leader-follower or leaderless approaches. Certain communication is appropriate in

a situation that real time response is not necessary such as path planning, formation

forming. The communication between multi-agents is suitable for the situation when it

required immediate reaction such as obstacle detection, collision avoidance.

The architecture of multi-robot system is very importance according to applications.

The architecture of control system can be separated into centralized or decentralized.

In centralized architecture, there is only single agent provide command and supervise

to the other agents to perform the cooperative tasks. This type of architecture has highly

efficient when control a small group of robots (Khoshnevis & Bekey, 1998). In

centralized architecture, However, this type of architecture is difficult to handle with

large number of robots system. On the other hand, decentralized architectures do not

have a leader agent that commands the overall system. This architecture applies

behavior-based control over multiple robots instead. Decentralized architecture treats

all agents equally and respect each agent to take control itself individually.

 6

2.2 Localization of Indoor Mobile Robot

Localization is a technique which necessary for mobile robots to know their current

position and use this data to generate their next movement. Most localization technique

provide the robot, a measurement sensor that allow mobile robot getting environment

information. However, those technique require high cost as they use much equipment.

The mobile robot became expensive and complicate body structure. Several research of

localization carry out this problem by using external sensors getting the environment

information. Shim & Cho (2015) proposed alternative technique to localize the indoor

mobile robot by using two surveillance cameras. They applied HSV range technique

for the images from different perspective in order to remove the object’s shadow. And

using homography technique to create two-dimensional map with object information

(see Figures 2.2, 2.3)

Figure 2.1

Two Images Viewed from Two Surveillance Cameras at Indoor (Shim & Cho, 2015)

Figure 2.2

Robot’s Path from the External Cameras Localization Method (Shim & Cho, 2015).

 7

2.3 Path Planning for Mobile Robot

Currently, many researchers developed and proposed several techniques to perform a

mobile robot navigation. The strategy of navigation can be classified to global

navigation and local navigation based on required information of environment for path

planning. (Patle et al., 2019). For global navigation, overall information of environment

is required for the mobile robot such as current position, goal position, or obstacle

position. In global navigation, many path planning algorithms based on classical

approach are developed such as artificial potential field (APF), roadmap approach

(RA), and cell decomposition (CD). In contrast, local navigation is concerned where

the mobile robot handle with the unknow or partial known environment. The path

planning algorithm for local navigation is based on reactive approach such as neural

network (NN), fuzzy logic (FL), genetic algorithm (GA) etc., (see Figure 2.7).

Figure 2.3

Classification of Mobile Robot Navigational Approaches (Patle et al., 2019)

One of the most well-known searching methods for path planning problem is A*

algorithm. This algorithm can be applied on grid map or topological configuration space

(Duchon et al., 2014). This algorithm finds the shortest path by applying heuristic

searching. In A* algorithm, each cell of the configuration space is evaluated by the loss

value:

 8

 𝑓(𝑣) = ℎ(𝑣) + 𝑔(𝑣) (2.1)

Where 𝑓(𝑣) is the loss value that will be evaluated for each adjacent cell connected to

the current cell, ℎ(𝑣) is Euclidean distance or heuristic distance between the current

cell and the goal state, and 𝑔(𝑣) is the length of the path from the initial state to the

current state according to the selected sequence of cells. The cell which has the lowest

loss value will be chosen as the next cell in the sequence. This algorithm continuously

searches and evaluates the cell until it reaches the goal state in order to obtain the lowest

loss value.

2.4 Formation Control for Nonholonomic Robot

Formation control is a one of application for multi-robot cooperation, use to extend

capability of a single robot. Multi-robot formation control increases flexibility of the

overall system and adaptability for object transportation. Multi-robot formation control

can be separated into holonomic and nonholonomic robot. This thesis focuses on

formation control for nonholonomic mobile robot which is more complex and more

practical in industrial usability. Recker et al. (2020) presented a comparison and

evaluation of leader-follower based formation control approach for mobile robots

within transportation process (see Figure 2.4).

Figure 2.4

Control Structure of Leader-Follower (Recker et al., 2020)

 9

Desai et al. (1998) presented the l-ψ-control law (l.c.). Within this control law, the

mobile robot’s state is considered both the distance and the angle between a leader and

the follower. According to this state representation of the mobile robots, the linear

velocity and angular velocity of a follower are obtained by the linearization method

(see Figure 2.5).

Figure 2.5

l-ψ-Control a) Notation, b) Isomorphic Diagraphs (Desai et al., 1998)

Kanayama, (1990) presented the cartesian control (c.c.) which the robot’s state is

represented in the cartesian state (x, y, 𝜃) for all members in a formation. the linear

control velocities and angular control velocities of a particular following robots are

calculated by Lyapunov stabilizing the error dynamics of the mobile robot (see Figure

2.6).

Figure 2.6

Cartesian Control a) Postures, b) Tracking Controller (Kanayama, 1990)

 10

2.5 Reinforcement Learning (RL) with Optimization Problem

Optimization problems are involved with finding optimal value among different

possibility choices. In mobile robot path planning problem, finding the shortest path

among all available paths is concerned. Reinforcement learning is one of the emerging

trends to solve optimization problem by training a machine learning algorithm.

Mazyavkina et al. (2021) presented a survey of recent applying of reinforcement

learning framework to solve optimization problem. To apply reinforcement learning

method, we design the model of problem as a sequential of decision-making process.

Then the agent can interact to the environment by performing actions sequentially to

find the optimal solution. Markov decision process (MDP) is the important

mathematical framework use to model this type of problems (Richard Bellman, 1957).

Markov decision process (MDP) can define as 𝑀 = ⟨𝑆, 𝐴, 𝑅, 𝑇, 𝛾, 𝐻⟩, when

• S is state space for optimization problem

• A is action space represent addition or changing in the solution (e.g., changing order

of nodes in path)

• R is reward function mapping of states and actions. Rewards define the chosen action

in particular state to improve a solution.

• T is transition function which control dynamic changing from one state to another

state according to action.

• 𝛾 is scalar discount factor encouraging the agent to account for short-term rewards.

• H is horizon determining the length of the episode.

In Markov decision process (MDP), the goal of agents’ action is to find a policy

function 𝜋(𝑠) that map state into action. Solving optimization problem is finding

optimal policy 𝜋∗ that maximize the accumulate rewards.

 𝜋∗ = argmax 𝔼[∑ 𝛾 𝑅(𝑠 , 𝑎)] (2.2)

For reinforcement learning algorithm that utilizes Markov decision process in order to

searches for the optimal policy, it can be separated into two main categories, model-

based methods, and model-free methods, (see Figure 2.13). Model-based methods

normally apply in the situation where the transition functions are available or can be

acquired from the environment. The agent can utilize the transition function when

 11

making decisions. Monte-Carlo tree search (MCTS) algorithm is included in this

method as well. Whereas model-free methods deal with the environment without the

availability of the transition function. The experiences during training process are

collected in the agent’s memory which can be utilized later in learning step. Moreover,

model-free methods can be divided into value-based methods and policy-based

methods. In case of value-based methods, a value function is approximated. A value

function is used to evaluate the policy’s quality for all available state-action pairs in the

given environment. On the other hand, policy-based methods approximate the policy

directly. In addition, there are actor–critic methods that is a combination between value-

based method and policy-based method.

Figure 2.7

A Classification of Reinforcement Learning Methods (Mazyavkina et al., 2021)

 12

CHAPTER 3

METHODOLOGY

3.1 Overview of a System

This thesis proposed path planning based on reinforcement learning (RL) algorithm for

object transportation in multi-robot system. The platform is set which area is enveloped

by 1.2 x 2.0 square meter include various sizes of static obstacles (see Figure 3.1). The

obstacles and robots are placed in arbitrary positions inside map’s area. Loading

position and delivery position are randomly assigned and be shown only in the program

display. Single external camera with computer vision technique is required to obtain

the information from environment by considering of the cheapest budget option.

Figure 3.1

Initial State of Environment in Simulation and Experiment.

The object transportation task for multiple robots can be separated into four subtasks.

First subtask is to create the optimal path with obstacle avoidance from initial position

to the loading position (see Figure 3.2). In this case, just one webcam is used to obtain

the information of environment. This information is transformed into observation for

RL model in order to generate path for each mobile robot. For second subtask, another

RL model is used to control the motion of each mobile robot to follow the planned path

properly. This RL model used the distance error between robot’s position and the

current waypoint of planned path as an input, then RL model estimates the actions

 13

composed of left wheel speed and right wheel speed in order to control robot’s

movement.

Figure 3.2

Optimal Paths with Collision-Free from Reinforcement Learning Model

a) Path Planning to Loading Point

b) Path Planning to Delivery Point

After all mobile robots have reached their specified loading positions, the object will

be transferred to the group of robots appropriately. The center of robot’s formation is

considered as a virtual position which represent as a virtual leader of a group of robots.

In third subtask, the reinforcement learning for path planning takes responsibility to

generate path for the virtual leader from loading position to delivery position (see

Figure 3.2). Last subtask is to control all mobile robots to follow the virtual leader and

maintain the formation properly until reaching the delivery position. The virtual leader

is controlled by PID control in order to follow the planned path. In each time step, the

reference points of all mobile robots are updated by calculating from their specified

distance refer to the virtual robot. The RL model, which is trained to handle the point

 14

following task, takes responsibility to control robot’s speeds by using the distance error

between updated reference point and current robot position as an observation. The

object transportation task will be completed when all mobile robots along with the

object have reached the delivery position properly (see Figure 3.3).

Figure 3.3

Final State of Group of Mobile Robots

3.2 Component of a System

The platform of a system consists of three main components, computing machine,

sensing equipment, and mobile robot. The sensing equipment is used to sense the

information of environment. Computing machine is used to train reinforcement learning

model and navigate the mobile robot. Mobile robot receives the command from the

server then move accordingly to the speed in command until reaching the goal position

(see Figure 3.4). In simulation, only computing machine is used for implementation.

However, all components are operated together when reinforcement learning models

are implemented in real environment.

 15

Figure 3.4

Component of a System

Computing Machine

The first machine is a laptop. The specification of this laptop is an Intel Core I7-9750H

CPU, a NVIDIA GeForce RTX 2060Ti GPU, 16 gigabytes of RAM, and Windows 11

OS. This laptop is used to create all programs such as RL models, environments for

training and testing in simulation, program for communication between server (laptop)

and client (mobile robots), and training RL models for motion control task.

The second machine is a desktop. The specification of this desktop is an Intel Core I9-

10900F CPU, a NVIDIA GeForce RTX 2080Ti GPU, 32 gigabytes of RAM, and

Ubuntu 20.04 OS. This desktop is used to train the RL models for path planning with

is consume large amounts of compute capability.

Sensing Equipment

Xiaovv webcam 1080P HD is used in this thesis to capture images and record videos

of overall environment from the top view with image size 1080x1920 pixels (see Figure

3.5).

 16

Figure 3.5

Xiaovv Webcam 1080P HD

Mobile Robot

Yahboom Micro:bit smart robot car is selected to implement the RL models for object

transportation in practice. Micro:bit is a build-in microcontroller for general purpose.

And Yahboom smart robot car is a two wheels build-in mobile robot which controlled

by Micro:bit (see Figure 3.6). This build-in robot car has a compact body and light

weight. Thus, it is suitable to implement in a limited area. Micro:bit has a function to

broadcast a radio message to other Micro:bit that is programed to be the same radio

group. Therefore, one Micro:bit is used to receive the command speeds from the server,

then broadcast to all mobile robots wirelessly in order to control the robot’s speed in

real time.

Figure 3.6

Yahboom Micro:bit Smart Robot Car and Micro:bit

 17

3.3 Path Planning

Path planning is the main task for this thesis. Before mobile robot can do any task such

as load carriage, object rearrangement, object catching, work assembly, or map making,

it must move to desired location and path planning is required firstly. There are several

traditional approaches to handle with path planning. A* algorithm is one of the most

popular approaches which searches for optimal available path with collision-free from

start position to goal position. In this thesis, A* is used to supervise reinforcement

learning model for path planning as well.

This thesis aims to create and improve reinforcement learning model which handle to

path planning for any random environment optimally. Environment for training the RL

model is created in python program which the agent can move in a grid map step by

step. Due to the dimension of map is H1200 x W2000 square millimeter in height and

width respectively. When consideration the compute capacity of available machine

during training process, the map is decreased the dimension with ratio 50:1 in

simulation. Thus, the map in simulation is created with sized H24 x W40 pixels. There

are three static obstacles with random size between 2 to 4 pixels. They are placed in

random position that doesn’t overlap to each other. The initial position of robot and

goal position are assigned randomly on available pixel within map’s area. The distance

between start position and goal position should not be lower than 32 pixel (see Figure

3.7).

Figure 3.7

Map in Simulation

 18

When the map is created, the start and goal positions are assigned as a single point. And

the obstacles are offset with the robot’s radius. The different labels are assigned to each

grid cell according to different object types as you can see in table 3.1. In each step,

agent can move to any adjacent cell in eight directions (see Table 3.2).

Table 3.1

Label of Pixel in Grid Map

Object Label

Free space 0

Obstacle -1

Goal Position 1

Robot Position 2

Table 3.2

Action Space in Path Planning Respected the Image Coordinate

Action Number Direction

0 Up-left

1 Up

2 Up-right

3 Left

4 Right

5 Down-left

6 Down

7 Down-right

The state of RL model is created by considering the current position of agent at the

center. It is a cropped cells from grid map in size of H43xW75 pixels, so agent can see

all obstacles and goal position wherever it is in the grid map. the pixels which are

cropped outside the grid map’ area is filled with label -1 same as obstacle’s label. Then

the cropped grid map is scaled up with ratio 1:4 and be stacked with the last four states.

 19

Hence, agent could recognize the robot’s motion in the last four steps and has a better

decision-making for a next movement.

For the reward and terminal status are determined as see in table 3.3. In path planning,

the agent is expected to learn how to move closer to the goal position until it can reach

the goal position. The maximum length of episode is defined at 1000 step. In each step,

agent learns how to find the optimal action that it could obtain maximum total reward

at the end of the episode. The reward is calculated according to showing in table 3.3. It

used the previous distance between robot’s position and goal position subtracted by the

new distance between robot’ position and goal then subtract by the moving distance. If

the robot moves to the direction that overlap to the static obstacle’s areas, agent will be

returned to its previous position and receive -3 scores as a punishment for this step. If

agent can reach the goal’s position, it receives 0 score and terminal status became

‘True’, then the episode has ended. It is obviously that the maximum reward per step is

0 score, and the minimum reward is -3 scores per step. Therefore, the main objective of

this RL agent is to accomplishment the path planning with less negative score per

episode as possible.

Table 3.3

Reward and Terminal Status in Path Planning

Criteria Reward Terminal

Reach the goal 0 True

Hit obstacle -3 False

Other 𝑅 False

Where 𝑅 = ∆𝑠 − ∆𝑠 − ∆𝑑

 ∆𝑠 is a previous distance between robot’s position and goal

 ∆𝑠 is a current distance between robot’s position and goal

 ∆𝑑 is a moving distance in this step

Due to the obstacles, start position, and goal position are randomly generated in each

episode independently, so it is hard to compare the reward in episode by episode

 20

directly. Moving average reward of last 100 episodes is applied to find the model’s

parameters during a training period. To reach this thesis’ objective in order to find the

reinforcement learning model for path planning, there are three steps for the experiment

as list below.

1. Evaluate convolutional layers.

2. Evaluate reinforcement learning algorithms.

3. Explore an effect of semi-supervised with A* algorithm to reinforcement

learning model.

Deep Q-Learning (DQN)

To test the first assumption above, deep Q-learning network is selected as an initial

reinforcement learning model because DQN is one of the most popular and well-known

RL models to handle with the environment that has discreate actions. DQN is improved

from Q-learning algorithms by use a neural network to approximate the Q-value

function instead of using Q-table (Huang, Y. 2020). The state is given as the input in

the neural network and Q-value of all possible actions is generated as an output. The

state generate in this simulation is grid map sized H24xW40 pixels, and the state is

changed in every step respect to the current position of an agent. Thus, it is too difficult

to limit the number of states in Q-table with Q-learning techniques. DQN could solve

this problem by using convolution network to generate the feature map representing the

information of the state in each step then feed to neural networks with ReLU activation

function to approximate all possible Q-values. This DQN model select the action

respect to epsilon greedy value. The epsilon value starts from 1 and decreasing every

step by decay parameter. In every step, the model generates a random float from 0 to 1,

if the random float more than current epsilon value, model send the random action. In

the other hand, if the random float less than current epsilon value, the model provides

the action which has maximum Q-value. During the training process, the network’s

parameters are updated by mean square error (MSE) between Q-value from the current

model and the target Q-value. The pseudo-code of DQN model is shown in algorithm1.

 21

Algorithm 1 Deep Q-learning with experience replay

Initialize experience replay memory D to capacity K

Initialize network Q with random weights

Initialize the Agent to interact with the environment

for episode = 1, M do

 𝜖 ← setting new epsilon with 𝜖-decay

 With probability 𝜖 select the random action 𝑎

 Otherwise select 𝑎 = 𝑚𝑎𝑥 𝑄(𝑠 , 𝑎; 𝜃)

 Agent takes action 𝑎 and observe reward 𝑟 and state 𝑠

 Store transition (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) in D

 If enough experience in D then

 Sample random minibatch N of transitions (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) from D

 Compute target Q-value:

 𝑄∗ = 𝑟 + 𝛾𝑚𝑎𝑥 𝑄(𝑠 , 𝑎 ; 𝜃)(1 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)

 Calculate the loss ℒ = ∑ (𝑄(𝑠 , 𝑎) − 𝑄∗)

 Update Q using a gradient descent algorithm by minimize the loss ℒ

 Set 𝑠 ← 𝑠

 end

end

The hyperparameters of DQN approach which are determined for training process are

shown in table 3.4.

 22

Table 3.4

The Hyperparameters of DQN Approach for Path Planning

hyperparameter Setting Value

Episode number 10,000

Max step 1,000

Learning rate (𝛼) 0.001

Discount factor (𝛾) 0.99

𝜖-start 1.0

𝜖-min 0.01

𝜖-decay 0.99999

Memory capacity (K) 5000

Minibatch (N) 64

Convolution neural networks (CNN) is a type of artificial neural network used in image

recognition and processing that is specifically designed to process pixel data. The layers

of a CNN consist of an input layer, an output layer and a hidden layer that includes

multiple convolutional layers, pooling layers, fully connected layers and normalization

layers. The removal of limitations and increase in efficiency for image processing

results in a system that is far more effective, simpler to trains limited for image

processing. In order to find an appropriate convolutional layer for this thesis’ state, three

different convolutional layers are selected to test the performance consisted of ordinary

convolutional layer, ResNet18, and ResNet50.

 23

Ordinary Convolutional Network

Figure 3.8

Structure of Ordinary Convolution Network for Path Planning

Ordinary Convolution Network of this thesis consists of five convolutional layers with

ReLU activation function and four fully connected layers with ReLU activation

function. The last layer is a linear layer which approximates the Q-values (see Figure

3.8). The network takes state sized 4x172x300 as an input, the convolutional layer

transforms the input into a feature map then feed to fully connected layer. Finally, the

network generates eight Q-values.

ResNet

The ResNet Convolution Neural Network was first described in the ResNet paper (He

et al., 2016). It is the popular as a baseline model today. Before the rise of ResNet, there

were many difficulties when building very deep neural networks. Normalization

technique could solve the problem when increasing the network depth. However, when

the depth goes beyond 10 – 20 layers, the problem of degradation has occurred. With

 24

additional network depth, training error has decreased to some point then it starts to

increase. ResNet introduced a mechanism for shortcut connections that prevents the

scrambling of effect of newly initialized layers by bypassing them, allowing

undegraded gradient information to be efficiently backpropagated to the earliest layers

of the model.

ResNet18 is the simplest ResNet with 8 residual blocks (there are two convolutional

layers in each residual block), the initial convolution layer, and the final linear layer

with sofmax activation function, giving a total 18 layers. However, ResNet18 was

modified in this thesis by replacing the last fully connected layer with five fully

connected layers with ReLU activation function as shown in Figure 3.9.

Figure 3.9

Structure of Modified ResNet18 for Path Planning

The residual block is a reusable block. ResNet18 and ResNet34 use a basic residual

block, but ResNet50, ResNet101, and ResNet152 use bottleneck block which is more

complicated residual blocks with three convolutions. We also need two types of residual

 25

block, one that preserves feature map size and one that allows changes to the feature

map size (see Figure 3.10 & 3.11).

Figure 3.10

Structure of Residual Blocks, Preserved and Not Preserved Feature Map Size

Figure 3.11

Structure of Bottleneck Blocks, Preserved and Not Preserved Feature Map Size

 26

ResNet50 which is more complicated when compared to ResNet18 consists of 16

bottleneck blocks (there are three convolutional layers in each bottleneck block), the

initial convolution layer, and the final linear layer with sofmax activation function,

giving a total 50 layers. However, ResNet50 was modified in this thesis by replacing

the last fully connected layer same structure as modification in ResNet18 as shown in

Figure 3.12.

Figure 3.12

Structure of Modified ResNet50 for Path Planning

Three different structure of convolution network are trained individually. The results

are compared to find which convolution network has the best performance in order to

find the optimal path when encounter with the random maps. After finished training

process, the network with parameter that has the best reward during training was

selected. All three convolutional network were evaluated by running 100 episodes in

simulation. The convolution network that has the highest episode reward will be select

as a winner. The results of the experiment are shown in Evaluation session.

 27

Next assumption is to evaluate reinforcement learning algorithm for path planning

problem. When consideration of the state as referred in previous, there is unlimited

number of possible states which can generate from the environment. This type of

countless number of states is suitable for reinforcement learning with model-free

method to handle with. In this thesis, there are three reinforcement learning algorithms

were selected for comparison the performance in path planning problem those are deep

Q-learning network (DQN), double deep Q-learning network (DDQN), and proximal

policy optimization (PPO).

DQN and DDQN are reinforcement learning algorithm in value-based method that find

the optimal policy via approximation Q-value. And PPO is reinforcement learning

algorithm in policy-based method that directly find the optimal policy via optimization

the policy parameters. Due to DQN was already mentioned previously, thus only

DDQN and PPO algorithm will be described in this part.

Double Deep Q-Learning Network (DDQN)

Double deep Q-learning network is developed in order to solve the problem of

overestimation of action-value in deep Q-learning network (Xiao et al., 2020). When

we consider target Q-value in DQN algorithm, the term 𝑚𝑎𝑥 𝑄(𝑠 , 𝑎) take the

maximum overestimate value that led to maximization bias in learning process. This

problem leads to unstable training and low-quality policy. This problem will be solved

by using DDQN. The solution involves using two separated Q networks, primary

network and target network, each network is used to update each other. The primary Q

network used to estimate Q-value of current state and was updated in every step. On

the other hand, target network used to estimate the Q-values of next state and was

updated in particular time duration by copy the primary network’s parameters. The

calculation of target Q-value in DDQN algorithm and learning step are shown in

algorithm 2.

Algorithm 2 Double deep Q-learning with experience replay

Initialize experience replay memory D to capacity K

Initialize network 𝑄 and target network 𝑄 with random weights

Update target network parameters 𝜃 ← 𝜃

 28

Initialize the Agent to interact with the environment

for episode = 1, M do

 𝜖 ← setting new epsilon with 𝜖-decay

 With probability 𝜖 select the random action 𝑎

 Otherwise select 𝑎 = 𝑚𝑎𝑥 𝑄 (𝑠 , 𝑎)

 Agent takes action 𝑎 and observe reward 𝑟 and state 𝑠

 Store transition (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) in D

 If enough experience in D then

 Sample random minibatch N of transitions (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) from D

 Compute target Q-value:

 𝑄∗ = 𝑟 + 𝛾𝑄 (𝑠 , 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄 (𝑠 , 𝑎))(1 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)

 Calculate the loss ℒ = ∑ (𝑄(𝑠 , 𝑎) − 𝑄∗)

 Update 𝑄 using a gradient descent algorithm by minimize the loss ℒ

 If reach the period of updating target network, 𝑄 then

 Update target network parameters 𝜃 ← 𝜃

 Set 𝑠 ← 𝑠

 end

end

The difference between DQN and DDQN is shown in the derived equation of target Q-

value, especially in term of maximum Q-value of next state. In DQN algorithm, it

calculates the maximum Q-value of the next state using primary network 𝑄 which is

always changing during training time. Whereas DDQN calculates the maximum Q-

value of the next state using target network 𝑄 but the next action is selected from the

highest Q-value of next state by primary network 𝑄 . The target network’s parameters

are fixed in particular duration and update to be the same as the present primary

network’s parameters. With this technique, the network Q should be improved the

performance in convergence compared to ordinary DQN. The hyperparameters of

DDQN approach which are determined for training process are shown in table 3.5.

 29

Table 3.5

The Hyperparameters of DDQN Approach for Path Planning

hyperparameter Setting Value

Episode number 10,000

Max step 1,000

Learning rate (𝛼) 0.001

Discount factor (𝛾) 0.99

𝜖-start 1.0

𝜖-min 0.01

𝜖-decay 0.99999

Memory capacity (K) 5000

Minibatch (N) 16

Target 𝑄 update period 2,000

Proximal Policy Optimization (PPO)

Proximal policy optimization is an interesting algorithm in the field of reinforcement

learning, which provides an improvement on trust region policy optimization (TRPO).

This algorithm was proposed in 2017 (Schulman et al. 2017). PPO is a policy gradient

method and can be used for environments with either discrete or continuous action

spaces. It trains a stochastic policy in an on-policy way and utilizes the actor critic

method. The actor maps the observation to an action and the critic gives an expectation

of the rewards of the agent for the given observation. Firstly, a set of trajectories consist

of state, action, log 𝜋 (𝑎 |𝑠), reward, next state, and terminal of each step is collected

in a memory. When the memory is filled, it collects a set of trajectories for each epoch

by sampling from the memory and the advantage estimates are computed in order to

update the policy and fit the value function. The policy is updated via a stochastic

gradient ascent optimizer, while the value function is fitted via some gradient descent

algorithm. This procedure is applied for many epochs until the environment is solved.

The pseudocode representing the learning step of PPO is shown in algorithm 3.

 30

Algorithm 3 Proximal policy optimization with clipped surrogate objective

Initialize memory to collect trajectories D with capacity K

Initialize policy parameters 𝜃

Initialize value function parameters 𝜙

Initialize the Agent to interact with the environment

for episode = 1, M do

 Select action 𝑎 by policy 𝜋

 Agent runs action 𝑎 and observe reward 𝑟 and state 𝑠

 Collect set of trajectories (𝑠 , 𝑎 , log 𝜋 (𝑎 |𝑠), 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) in D

 If memory D is filled with capacity K then

 Compute expected reward, 𝑅 = 𝑟 + 𝛾𝑉 (𝑠)(1 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)

 Compute advantage estimates, 𝐴 = 𝑅 − 𝑉 (𝑠)

 for epoch = 1, P do

 Sample minibatch N of trajectories from memory until empty

 Calculate probability ratio, 𝑟(𝜃) =
(|)

(|)

 Calculate policy loss with clipped surrogate objective:

 𝐿 (𝜃) = 𝔼 min (𝑟 (𝜃)𝐴 , 𝑐𝑙𝑖𝑝(𝑟 (𝜃), 1 − 𝜖, 1 + 𝜖)𝐴)

 Calculate value function loss, 𝐿(𝜙) = ∑ (𝑉 (𝑠) − 𝑅)

 Total loss, 𝐿 = 𝐿 (𝜃) + 2𝐿(𝜙)

 Update policy parameter 𝜃 and value function parameters 𝜙

 using a gradient descent algorithm

 Set 𝑠 ← 𝑠

 end

end

In this thesis, the policy network and value function network are combined to be single

network (see Figure 3.13). The network takes observation as input then estimate state

value and generate action distribution as the same time. The total loss to update network

is shown in algorithm 3 and was update with Adam optimizer. The last layer of actor

applying Softmax activation function to estimate probability for each action then the

 31

action was sampled via this probability. The hyperparameters of PPO approach which

are determined for training process are shown in table 3.6.

Figure 3.13

Structure of PPO for Path Planning

Table 3.6

The Hyperparameters of PPO Approach for Path Planning

hyperparameter Setting Value

Episode number 10,000

Max step 1,000

Learning rate (𝛼) 0.001

Discount factor (𝛾) 0.99

𝜖-clipped 0.1

Number of Epoch (P) 30

Memory capacity (K) 256

Minibatch (N) 32

 32

In the last step to find reinforcement learning model for path planning, the best model

will be supervised by the best well-known path planning algorithm, A*. A* algorithm

guarantees to find the optimal path in this grid world environment. The experiences

played with A* are collected in replay buffer memory for exploitation. There is mixture

experience between exploration from RL policy 𝜋, and exploitation from A*. Hence,

in learning step, the RL model supposes to learn for finding optimal path as well.

Moreover, this experiment would like to see the appropriate proportion of experience

replays which are collected via RL model and A* algorithm. the assumption is tested

with three scenarios, no supervised, 25% supervised with A*, and 50% supervised with

A*. The model after training should find the optimal path in any environment and

training time will be considered as well.

3.4 Motion Control Task

After path was created from current position to desire goal, motion control part is

required to allow mobile robot moving to the target location. In this thesis, differential

wheeled mobile robot is selected to implement the object transportation in practice due

to it is easy to build and control. Differential wheeled mobile robot is nonholonomic

robot which its controllable degree of freedom is less than the total degrees of freedom.

A car has three degrees of freedom, i.e., its position in two axes and its orientation.

However, there are only two controllable degrees of freedom which are left wheel speed

and right wheel speed. This makes it difficult to turn the car in any direction unless

the car slides. In addition, it is more challenge to form the formation and transport the

object using nonholonomic mobile robots.

Equation 3.1 to 3.2 shows the relation between robot’s linear velocity and angular

velocity when left wheel’s speed and right wheel’s speed are provided.

 𝑣 =
()

, ∆𝑠 = 𝑣𝑑𝑡 (3.1)

 𝜔 =
()

, ∆𝜃 = 𝜔𝑑𝑡 (3.2)

 33

Where 𝑣 is a linear velocity, ∆𝑠 is displacement, 𝜔 is an angular velocity, ∆𝜃 is

changing of heading, 𝑣 is left wheel’s speed, 𝑣 is right wheel’s speed, 𝑙 is the distance

between two wheels, and 𝑑𝑡 is time period.

In figure 3.14, assume robot is at some position (𝑥, 𝑦) in reference coordinate, headed

in a direction making an angle 𝜃 with X axis. We assume the robot’s center is at the

midpoint along the wheel axle. By manipulating the control parameters 𝑣 , 𝑣 , the

displacement ∆𝑠 and changing of orientation ∆𝜃 can be calculated by equation 3.1.

Thus, we can get the robot to move to different positions (𝑥 , 𝑦) and orientations 𝜃 .

Figure 3.14

Displacement of Two Wheels Mobile Robot

Due to the displacement ∆𝑠 occurred within short period is small, so it can be assumed

∆𝑑 = ∆𝑠, then we can find the displacement in x-axis, the displacement in y-axis, and

changing of heading using equation 3.3 to 3.4. Finally, the new position (𝑥 , 𝑦) and

orientations 𝜃 can be obtained from equation 3.5.

 ∆𝑥 = ∆𝑠 cos(𝜃 + ∆𝜃/2) (3.3)

 ∆𝑦 = ∆𝑠 sin(𝜃 + ∆𝜃/2) (3.4)

𝑥
𝑦

𝜃

=
𝑥
𝑦
𝜃

+
𝑣𝑑𝑡 cos(𝜃 + 𝜔𝑑𝑡/2)

𝑣𝑑𝑡 sin(𝜃 + 𝜔𝑑𝑡/2),
𝜔𝑑𝑡

 (3.5)

 34

According to equation 3.5, to display the mobile robot’s motion in simulation, it used

only linear velocity and angular velocity with 𝑑𝑡 to update the robot’s position.

However, in practice, we need to transform linear velocity and angular velocity to left

wheel speed and right wheel speed then sending the command to mobile robots.

To control the robot’s motion, the error between the robot’s current position and target

position is used in order to generate the outputs as linear velocity and angular velocity.

The robot’s local coordinate was set up considering robot’s position at point (0, 0), as

you can see in figure 3.15. The target position was transformed into robot’s coordinate

then error in x-axis ∆𝑥 is used to generate linear velocity 𝑣 and error in orientation

∆𝜃 is used to generate angular velocity 𝜔.

Figure 3.15

Errors in Robot’s Coordinate

Policy-based reinforcement learning method is suitable to deal with the problem with

continuous action space. In this thesis, there are three reinforcement learning algorithms

which are selected to perform motion control task, proximal policy optimization (PPO),

deep deterministic policy gradient (DDPG), and soft actor-critic (SAC).

As mentioned previously, proximal policy optimization is one of Policy Gradient

method that can be used for environments with either discrete or continuous action

 35

spaces by training a stochastic policy and utilizing the actor critic method. The network

for the motion control task is shown in figure 3.16.

Figure 3.16

Structure of PPO for Motion Control Task

According to the PPO network, the input is an observation which consist of two errors,

distance error ∆𝑥 and heading error ∆𝜃. It has two separate branches in this network,

one called value function used to estimate state value and other called policy network

used to generate actions in form of linear velocity 𝑣 and angular velocity 𝜔. Policy

network generates two values for each action, Alpha-𝛼 and Beta-𝛽 then utilize the

function in pytorch called “Beta”. Beta function is one of distribution in exponential

family which require two attributes, concentration1 and concentration2. Then the action

is sampled from this distribution. Training step of this PPO network still follows

 36

Algorithm 3. And the hyperparameters for training process of this PPO network are

determined as shown in table 3.7.

Table 3.7

The Hyperparameters of PPO Approach for Motion Control Task

hyperparameter Setting Value

Episode number 500

Max step 400

Learning rate (𝛼) 0.001

Discount factor (𝛾) 0.99

𝜖-clipped 0.1

Number of Epoch (P) 20

Memory capacity (K) 1024

Minibatch (N) 128

Deep Deterministic Policy Gradient (DDPG)

Deep deterministic policy gradient is an algorithm which simultaneously learns a Q-

function and a policy. It uses off-policy data and bellman equation to learn the Q-

function and uses the Q-function to learn the policy (Lillicrap et al., 2016). This

approach is closely related to deep Q-learning. Instead of learning an approximator to

𝑄∗(𝑠, 𝑎), DDPG learns an approximator to 𝑎∗(𝑠) and it can handle any specifically

adapted environment with continuous action spaces. When there is an infinite number

of action spaces, we can’t compute all Q-values and find the best action which has the

maximum Q-value among them. But DDPG maps the any given environment to

continuous action spaces directly with the policy. And it has a Q-function to evaluate

how good of that action is. The learning step of DDPQ is shown in Algorithm 4.

Algorithm 4 Deep deterministic policy gradient

Initialize experience replay memory D to capacity K

Initialize policy 𝜇 , Q-function 𝑄 , target policy 𝜇 , target Q-function 𝑄

Set target policy parameters 𝜃 ← 𝜃, and target Q-function parameters 𝜙 ← 𝜙

 37

Initialize the Agent to interact with the environment

for episode = 1, M do

 Select 𝑎 = 𝜇 (𝑠)

 Agent executes action 𝑎 and observe reward 𝑟 and state 𝑠

 Store transition (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) in D

 If enough experience in D then

 Sample random minibatch N of transitions (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) from D

 Compute target Q-value:

 𝑄∗ = 𝑟 + 𝛾𝑄 (𝑠 , 𝜇 (𝑠))(1 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)

 Compute the MSE loss, 𝐿 = ∑ (𝑄 (𝑠 , 𝑎) − 𝑄∗)

 Update 𝑄 using a gradient descent algorithm

 Compute the policy loss, 𝐿 = ∑ 𝑄 𝑠 , 𝜇 (𝑠)

 Update 𝜇 using a gradient ascent algorithm

 Update target networks’ parameters with:

 𝜃 ← 𝜏𝜃 + (1 − 𝜏)𝜃

 𝜙 ← 𝜏𝜙 + (1 − 𝜏)𝜙

 Set 𝑠 ← 𝑠

 end

end

Likely to double deep Q-learning, in DDPG algorithm, there are target Q-function and

target policy used to compute target Q-value then updating Q-function 𝑄 using a

gradient descent algorithm. The policy 𝜇 is updated by using updated Q-function with

a gradient ascent algorithm. Later, each learning step, the target policy 𝜇 and target

Q-function 𝑄 are updated by cloning the current network parameters with small

proportion 𝜏. The figure 3.17 shows the structures of policy network and Q-function

network. It used a simple structure of neural network for Q-function with fully

connected layers and ReLU. For policy network, the last layer applied Tanh activation

function in order to limit the boundary of action within specific range. The

hyperparameters for training process of DDPG approach are determined as shown in

table 3.8

 38

Figure 3.17

Structures of Policy and Q-Function of DDPG for Motion Control Task

Table 3.8

The Hyperparameters of DDGP Approach for Motion Control Task

Hyperparameter Setting Value

Episode number 500

Max step 400

Learning rate of policy network (𝛼) 0.0005

Learning rate of Q-function network (𝛽) 0.001

Discount factor (𝛾) 0.99

Tau (𝜏) 0.001

Memory capacity (K) 10000

Minibatch (N) 128

 39

Soft Actor-Critic (SAC)

Soft actor-critic is an algorithm that optimizes a stochastic policy in an off-policy way.

It is a combination between stochastic policy optimization and DDPG approach

(Haarnoja et al., 2018). A main feature of SAC is entropy regularization. The policy is

trained to maximize a trade-off between expected return and entropy which measures a

randomness in the policy. It is similar to the exploration-exploitation trade-off. An

increasing entropy results in more exploration, which can accelerate a learning later. It

can also prevent the policy from too early converging to a bad local optimum. SAC

simultaneously learns a policy 𝜋 , two Q-functions 𝑄 , 𝑄 , and value-function 𝑉 as

be shown in Algorithm 5.

Algorithm 4 Soft actor-critic

Initialize experience replay memory D to capacity K

Initialize policy 𝜋 , two Q-functions 𝑄 , 𝑄 , value-function 𝑉 and target value-

function 𝑉

Set target value-function parameters 𝜓 ← 𝜓

Initialize the Agent to interact with the environment

for episode = 1, M do

 Select 𝑎 = 𝜋 (𝑎|𝑠)

 Agent executes action 𝑎 and observe reward 𝑟 and state 𝑠

 Store transition (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) in D

 If enough experience in D then

 Sample random minibatch N of transitions (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) from D

 Compute target value:

 𝑉∗ = min 𝑄 (𝑠 , 𝑎), 𝑄 (𝑠 , 𝑎) − log 𝜋 (𝑎|𝑠) , 𝑎 ∼ 𝜋 (𝑎|𝑠)

 Compute the value loss, 𝐿 = ∑ (𝑉 (𝑠) − 𝑉∗)

 Update 𝑉 using a gradient descent algorithm

 Compute the policy loss:

 𝐿 = ∑ (min 𝑄 (𝑠 , 𝑎), 𝑄 (𝑠 , 𝑎) − log 𝜋 (𝑎|𝑠))

 Update 𝜋 using a gradient ascent algorithm

 Compute target Q-value:

 40

 𝑄∗ = 𝑟 + 𝛾(𝑉 (𝑠))(1 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)

 Compute Q-value loss:

 𝐿 = ∑ 𝑄 (𝑠 , 𝑎) − 𝑄∗ , 𝐿 = ∑ 𝑄 (𝑠 , 𝑎) − 𝑄∗

 𝐿 = (𝐿 + 𝐿)/2

 Update 𝑄 , 𝑄 using a gradient descent algorithm by minimize the loss 𝐿

 Update target value-function with

 𝜓 ← 𝜏𝜓 + (1 − 𝜏)𝜓

 Set 𝑠 ← 𝑠

 end

end

There are totally five networks in this SAC approach, policy 𝜋 , two Q-function

𝑄 , 𝑄 , value function 𝑉 , and target value function 𝑉 . Two Q-functions and policy

are used to compute target value. The value function is updated using gradient descent

algorithm with MSE loss between value function and this target value. The policy loss

is computed by using two Q-functions and current policy with reparameterization trick.

The policy is updated using gradient assent algorithm. For the updating of Q-function,

it uses a gradient descent algorithm to minimize the average loss of two Q-functions

and update both networks at the same time. The structure of three networks, policy, Q-

function, and value function are shown in figure 3.18.

 41

Figure 3.18

Structures of Policy, Q-Function, and V-Function of SAC for Motion Control Task

The policy network has five layers of fully connected layers with ReLU activation

function. There are two parallel layers at the last layer to estimate mean-𝜇 and std-𝜎 for

each action. The networks of Q-function and value function are consisted of six fully

connected layers with ReLU to estimate action value and state value. The

hyperparameters of SAC approach in training process are shown in table 3.9.

 42

Table 3.9

The Hyperparameters of SAC Approach for Motion Control Task

Hyperparameter Setting Value

Episode number 500

Max step 400

Learning rate of policy network (𝛼) 0.001

Learning rate of Q-function network (𝛽) 0.001

Discount factor (𝛾) 0.99

Tau (𝜏) 0.001

Memory capacity (K) 10000

Minibatch (N) 128

3.5 Object Transportation

To accomplish the object transportation task, it is necessary to utilize the RL models

both path planning and motion control which obtained from previous session. The

models which have the best performance among all available options will be selected.

As mentioned in session 3.1, the object transportation task consists of four sub-

processes, finding paths for all robots to loading positions, controlling robots

individually moving to target positions, finding path for group of robots from loading

position to delivery position, and controlling group of robots moving in a specific

formation with load carriage to target position.

Implementation in Simulation

This thesis evaluates the result of the RL models both in simulation and practice.

However, it is impossible to load an object in simulation, so the last sub-process in

simulation is replaced by displaying a group of robots moving in a specific formation

instead. The program which evaluates the RL models is create using python. The RL

model handling with path planning takes responsibility to find individual paths for all

robots from arbitrary positions to specified positions at loading point. And it also finds

path for a group of robots from loading position to delivery position (see Figure 3.19).

For the motion control task, the RL agents are trained separately for two different

 43

purposes. The first RL model is trained to deal with path following task and another RL

model is trained to handle with point following task.

Figure 3.19

Path Planning for Individual Robot and Group of Robots.

In path following task, the agent is trained to control the robot’s motion in order to

follow the planned path from start position to goal position (see Figure 3.20). Several

waypoints are created within path interval range. The robot’s position error is computed

using the current referred waypoint and the current position of the robot for estimating

the robot’s speeds in form of linear velocity and angular velocity. The robot’s current

position will be updated in real time to see the movement. When the distance error

between robot and referred waypoint is less than 50 pixels, it shifts to refer the next

waypoint in sequence. The episode will be finished when the agent can control robot to

reach the goal position properly with error to the final position less than 2 pixels. Or the

distance error goes beyond the acceptable error at 170 pixels, the episode will be forced

to terminate.

 44

Figure 3.20

Motion Control Training Process for Path Following Task

Point following task is used to control robot to move in a specific formation when apply

to multi-robot system. Considering when we would like the robots move in a specific

formation, firstly, we set a formation with specified position for each robot. The center

of group of robots is considered as the representative of this group. This thesis applied

leader-followers concept to control multiple robots moving in specific formation. The

virtual robot is created at the center of a formation as a leader and all robots are the

followers. The reference points for all robots are created and updated in every step

respected to the current position of this virtual robot which moving follow the path via

PID control. The agent is trained by using the distance error between robot’s current

position and the moving reference point as an observation to approximate the action in

linear velocity and angular velocity (see Figure 3.21). The agent will be obtained high

reward when it can control the robot to move with less error as possible. The episode

will end when the virtual robot reaches goal’ position and the error between agent and

last reference point is less than 2 pixels or the error is larger than an acceptable error at

120 pixels.

 45

Figure 3.21

Motion Control Training Process for Point Following Task

Implementation in Practice

When implement the RL models in practice, the map in real environment is set by

placing the obstacles and mobile robots in a limited area. The map’ dimension is 1200

millimeters in height and 2000 millimeters in width when considering in a perspective

of webcam’s view. However, the map can be changed by placing the obstacles and the

robots in any available positions at initial state. The map was captured by single camera

installed at middle top location of the map as see in figure 3.22.

Figure 3.22

Real Environment for Experiment.

The image captured by this webcam has a distortion effect, so it is necessary to undistort

the image with distortion matrix obtained from camera calibration process (see Figure

 46

3.23). Then the undistorted image is transformed using Homography matrix in order to

have the perfect perspective of top view with specific area. The obstacles and robots

are detected by using HSV range technique. the mask for each object is created using

the defined values of HSV range, then the contours and positions of all objects are

identified (see Figure 3.24).

Figure 3.23

Distorted Image and Undistorted Image

Figure 3.24

Image with Homography Transformation, and Identification of Position.

The processed image with map’s information is transformed into an observation for

path planning agent in order to create the optimal path for each mobile robot. And the

distance errors detected via camera are used to control the robots’ motion by the motion

control agents. The results of performance comparison of the agents both for path

planning and motion control task are shown in the evaluation chapter later.

 47

CHAPTER 4

SIMULATION AND EXPERIMENT RESULTS

The object transportation of multiple robots is the consequence of assemblage of basic

sub-processes of the robots. The details of cooperation among multiple robots in object

transportation task are listed below:

1. Multiple robots are placed at any initial position inside the working area.

2. Reinforcement learning model finds the optimal paths with collision-free for all

mobile robots individually from initial positions to loading points.

3. Reinforcement learning model controls each robot to follow its path to goal

position.

4. The object is transferred to the robots.

5. Reinforcement learning model find the optimal path with collision-free for

group of mobile robots from loading point to delivery point.

6. Reinforcement learning model controls all robots follow the path with fixed

group shape to transfer the object to assign position.

To accomplish the object transportation, there are three necessary reinforcement

learning models will be selected to handle to all subtasks, path planning, path following

task, and point following task. In each subtask, several reinforcement learning model

with different solutions will be evaluated in order to an appropriate reinforcement

learning model.

4.1 Evaluate RL Model for Path Planning

In path planning, the performance of reinforcement learning model is evaluated by

considering the capability of the model which can find the optimal path for mobile robot

in any random map. Therefore, the RL model is evaluated by the episode reward that

obtained in the environment of path planning. If the agent can find the shorter path from

initial position to goal position that mean the higher reward, it could get. Moreover, the

robustness of the model is measured by evaluating the RL model with several episodes

to see how often it has fallen in a local optimum where the agent can’t find path to the

goal position. There are three steps were created in order to find the reinforcement

learning model for path planning as following:

 48

1. Evaluate the convolutional layers which suitable for the observation of this path

planning.

2. Evaluate the reinforcement learning algorithm which has high performance in

path planning.

3. Explore the effect of semi-supervised method by A* algorithm to the

reinforcement learning model to find the optimal path.

Evaluate the Convolutional Layers

Three convolutional layers were selected as mentioned in previous chapter, the ordinary

convolutional layers, Resnet18, and Resnet50. Those convolution networks were

applied to deep Q-learning in order to solve path planning problem. During training

process, the parameters of RL model will be saved when the agent obtained a new high

score of average reward of last 100 episodes.

Figure 4.1 shows a moving average reward of DQN with ordinary convolutional layer

in training process. The model obtained the highest average reward at episode 5766

with -11.35 scores. The model was ended training process at episode 8250 with 85

hours for training time, because this model had fallen into local optimum where agent

always hit the obstacles and couldn’t find an appropriate path to goal position. This

situation led the model to has a poor-quality Q-function and can’t further find path to

the goal.

Figure 4.1

Training Result of DQN with Ordinary Convolutional Layer for Path Planning

 49

Figure 4.2 shows a result of DQN with ordinary convolutional layer in evaluating mode.

the mean reward is -47.00. the maximum reward is 0.37. And the minimum reward is -

600.00. this model can find the path for any simple maps. However, paths that were

created by this model still far to consider as an optimal path. And it can’t find path to

goal position when encounter any complex maps.

Figure 4.2

Testing Result of DQN with Ordinary Convolutional Layer for Path Planning

Figure 4.3 shows a moving average reward of DQN with Resnet18 in training process.

The model obtained the highest average reward at episode 8145 with -8.50 scores. The

training process took 84 hours 11 minutes and 14 seconds to complete 10,000 episodes.

 Figure 4.3

Training Result of DQN with Resnet18 for Path Planning

 50

Figure 4.4 shows a result of DQN with Resnet18 in evaluating mode. the mean reward

is -47.68. the maximum reward is 0.00. And the minimum reward is -600.00. this model

can find the optimal path for some simple maps. However, many time, this model fell

into local optimum near the goal position and couldn’t find completed path.

Figure 4.4

Testing Result of DQN with Resnet18 for Path Planning

Figure 4.5 shows a moving average reward of DQN with Resnet50 in training process.

The model obtained the highest average reward at episode 8093 with -5.65 scores. The

training process took 59 hours 16 minutes and 57 seconds to complete 10,000 episodes.

The reason for the shorter training time when compared to the DQN model with

Resnet18 because this model was applied with smaller minibatch size than the DQN

with Resnet18.

 51

Figure 4.5

Training Result of DQN with Resnet50 for Path Planning

Figure 4.6 shows a result of DQN with Resnet50 in evaluating mode. the mean reward

is -15.09. the maximum reward is 0.00. And the minimum reward is -544.36. this model

can find path to the goal closely to the optimal path for both simple maps and complex

map. However, it still had some episodes that the model can’t find an appropriate path

to the goal.

Figure 4.6

Testing Result of DQN with Resnet50 for Path Planning

 52

The performance comparison of DQN model with selected convolutional layers is

shown in table 4.1. The result shows that deep Q-learning with Resnet50 is outperform

both in training process and evaluating process when compared to the other choices.

Even if the minibatch size setting in training process is less than the other but Resnet50

still has the best result. It can be concluded that Resnet50 can create better feature map

which is easier to further estimate Q-values than other convolutional layers.

Table 4.1

Performance of DQN with Convolutional Layers for Path Planning

Evaluate the RL Algorithms

Three reinforcement learning algorithms were selected as mentioned in previous

chapter, deep Q-learning, double deep Q-learning, and proximal policy optimization.

Those reinforcement learning model apply resnet50 as convolutional layer in order to

solve path planning problem. During training process, the parameters of RL model will

be saved when the agent obtained a new high score of average reward of last 100

episodes.

Figure 4.7 shows a moving average reward of DDQN with Resnet50 in training process.

The model obtained the highest average reward at episode 9404 with -5.06 scores. The

training process took 30 hours 44 minutes and 48 seconds to complete 10,000 episodes.

The reason for the shorter training time when compared to the DQN model because this

model was applied with smaller minibatch size than the DQN.

BEST REWARD EP TRAIN TIME MEAN REWARD MAX REWARD MIN REWARD

Simple Conv -11.35 5766 Too long time -47.00 -0.37 -600.00

Resnet18 -8.50 8145 303073.72 -47.68 0.00 -600.00

Resnet50 -5.65 8093 213416.94 -15.09 0.00 -544.36

MODEL

TRAIN TEST

 53

Figure 4.7

Training Result of DDQN with Resnet50 for Path Planning

Figure 4.8 shows a result of DDQN with Resnet50 in evaluating mode. the mean reward

is -10.34. the maximum reward is 0.00. And the minimum reward is -600.00. this model

can find the optimal path for both simple maps and complex map. However, it still had

just few episodes that model can’t find an appropriate path to the goal. Nevertheless,

the performance of DDQN algorithm is better than DQN algorithm if compared from

the results.

Figure 4.8

Testing Result of DQN with Resnet50 for Path Planning

 54

Figure 4.8 shows a moving average reward of PPO with Resnet50 in training process.

The model obtained the highest average reward at episode 1190 with -931.45 scores.

The training process was stopped at episode 1200 and took almost 65 hours. PPO with

Resnet50 showed no signal to improve the performance since episode 200. the model

can’t converge and can’t find path to the goal position as well.

Figure 4.9

Training Result of PPO with Resnet50 for Path Planning

Figure 4.10 shows a result of PPO with Resnet50 in evaluating mode. the mean reward

is -250.67. the maximum reward is 38.08. And the minimum reward is 392.23. Unlike

DQN and DDQN, PPO model couldn’t find path to goal position properly. Due to the

model couldn’t converge in training process. Due to PPO utilize the trajectory inside

memory replay in learning process, but the memory capacity is very small compared to

the maximum step per episode due to the computing capacity of the machine. It means

that the model didn’t have enough experience in exploration. And this led the model to

have very low-quality Q-function.

 55

Figure 4.10

Testing Result of PPO with Resnet50 for Path Planning

The performance comparison of reinforcement learning algorithms is shown in table

4.2. The result shows that double deep Q-learning with Resnet50 is outperform both in

training process and evaluating process when compared to the other choices. Even if

the minibatch size setting in training process of DDQN is less than DQN but it still has

the best result. It can be concluded that DDQN has appropriate algorithm to estimate

Q-values in path planning.

Table 4.2

Performance of RL Models for Path Planning

BEST REWARD EP TRAIN TIME MEAN REWARD MAX REWARD MIN REWARD

DQN -5.65 8093 213416.94 -15.09 0.00 -544.36

DDQN -5.06 9404 110687.63 -10.34 0.00 -600

PPO -931.45 1190 Too long time -250.67 -38.08 -392.23

TRAIN

MODEL

TEST

 56

Explore the Effect of Semi-Supervised by A* Algorithm

Normally, reinforcement learning model learns how to achieve the task and obtain the

maximum total reward by exploration and exploitation. However, if we need the model

to have a faster convergence rate, supervised method is a one choice that provide the

optimum action directly to the environment and the trajectories will be collected in the

memory for learning step later. This supervised method can reduce time consumption

in exploration process in order to find the optimal action. In semi-supervised method,

path in each episode were found by RL model and A* algorithm. The trajectories of

both solutions are collected in memory. At the beginning, the trajectories collected from

RL model aimed for exploration. And the trajectories collected from A* aimed for

shortcutting to the optimal solution. However, the map always be changed during

training process, so it is necessary to have enough experiences from exploration as well.

In this experiment, the DDQN with semi-supervised by A* algorithm in various ratio

will be tested. The parameters of RL model will be saved when the agent obtained a

new high score of average reward of last 100 episodes.

Figure 4.11 shows a moving average reward of DDQN with 25% supervised by A* in

training process. The model obtained the highest average reward at episode 9033 with

-5.81 scores. The best score in training process didn’t significantly difference to DDQN

without supervised.

Figure 4.11

Training Result of DDQN with 25% Supervised by A* for Path Planning

 57

Figure 4.12 shows a result of DDQN with 25% supervised by A* in evaluating mode.

the mean reward is -10.23. the maximum reward is 0.00. And the minimum reward is -

591.91. this model can find the optimal path for both simple maps and complex map.

However, it still had just few episodes that model can’t find an appropriate path to the

goal. The performance of DDQN with 25% supervised by A* is same as DDQN without

supervised by A* but the training time is faster due to 25% of total episode were

completed by A*.

Figure 4.12

Testing Result of DDQN with 25% Supervised by A* for Path Planning

Figure 4.13 shows a moving average reward of DDQN with 50% supervised by A* in

training process. The model obtained the highest average reward at episode 9501 with

-2.47 scores. The best average reward of this mode is improved due to 50% of total

paths were found by A* algorithm.

 58

Figure 4.13

Training Result of DDQN with 50% Supervised by A* for Path Planning

Figure 4.13 shows a result of DDQN with 50% supervised by A* in evaluating mode.

the mean reward is -12.19. the maximum reward is 0.00. And the minimum reward is -

600.00. this model can find the optimal path for both simple maps and complex map.

However, it still had just few episodes that model can’t find an appropriate path to the

goal. The performance of DDQN with supervised 50% by A* is same as DDQN without

supervised by A* but the training time is faster due to 50% of total episode were

completed by A*.

Figure 4.14

Testing Result of DDQN with 50% Supervised by A* for Path Planning

 59

Figure 4.15 shows a moving average reward of DDQN with 75% supervised by A* in

training process. The model obtained the highest average reward at episode 9483 with

-2.10 scores. The best average reward of this mode is improved due 75% of total paths

were found by A* algorithm.

Figure 4.15

Training Result of DDQN with 75% Supervised by A* for Path Planning

Figure 4.16 shows a result of DDQN with 75% supervised by A* in evaluating mode.

the mean reward is -30.92. the maximum reward is 0.00. And the minimum reward is -

591.91. this model can find the optimal path same as applying A* algorithm for simple

maps. However, when the model encountered some complex map, many times it fell

into local optimum and couldn’t find path to the goal position. Due to 75% of episodes

in training process are accomplished by A* algorithm, thus this RL model lacks in

experience from exploration in order to handle with any unseen environments.

 60

Figure 4.16

Testing Result of DDQN with 75% Supervised by A* for Path Planning

The performance comparison of DDQN with semi-supervised by A* algorithm is

shown in table 4.3. When considering the same number of episodes in training process,

the result shows that double deep Q-learning with 25% supervised by A* has the highest

score compared to the other choices. The performance of the RL model with different

semi-supervisor ratio represented a trade-off between exploration and exploitation from

A* algorithm. If the model has too much using A* algorithm in training process, it will

lack in experience to handle with more complicated map. however, this problem can be

solved by increasing the number of episodes in training process. Hence, the model could

be improved to have an ability to find the optimal path like A* algorithm and can

accomplish path planning for any random map.

Table 4.3

Performance of DDQN with Semi-Supervised by A* for Path Planning

BEST REWARD EP TRAIN TIME MEAN REWARD MAX REWARD MIN REWARD

0% -5.06 9404 110687.63 -10.34 0.00 -600.00

25% -5.81 9033 98791.01 -10.23 0.00 -591.91

50% -2.47 9501 78166.37 -12.19 0.00 -600.00

75% -2.10 9483 64841.65 -30.92 0.00 -600.00

TRAIN

MODEL

TEST

 61

4.2 Evaluate RL Model for Path Following Task

In path following task, the map is created in simulation randomly. A* algorithm is

applied in order to find the optimal path. The objective of path following task is to

control the differential wheeled mobile robot to follow the planned path until reach the

goal. Three reinforcement learning algorithms in policy-based method are selected in

order to test the performance in path following task. Those models consist of proximal

policy optimization, deep deterministic policy gradient, and soft actor-critic.

Reinforcement learning model which be trained in the environment without any

disturbance will be used to perform in simulation. And reinforcement learning model

which be trained in the environment with disturbance will be used to perform in

practice.

Training in Environment without Disturbance

Figure 4.17 shows a moving average reward of PPO model in training process. The

model obtained the highest average reward at episode 343 with 823.14 scores. The

training process took 1 hour 49 minutes and 45 seconds to complete 500 episodes. PPO

model can achieve path following task appropriately.

Figure 4.17

Training Result of PPO Model for Path Following Task (No Disturbance)

 62

Figure 4.18 shows a result of PPO model in evaluating mode. the mean reward is

696.88. the maximum reward is 1088.60. And the minimum reward is 433.60. This

model can control differential wheeled mobile robot follow path to the goal properly.

Figure 4.18

Testing Result of PPO Model for Path Following Task (No Disturbance)

Figure 4.19 shows a moving average reward of DDPG model in training process. The

model obtained the highest average reward at episode 372 with 770.89 scores. The

training process took 2 hours 2 minutes and 59 seconds to complete 500 episodes.

DDPG model can achieve path following task appropriately.

Figure 4.19

Training Result of DDPG Model for Path Following Task (No Disturbance)

 63

Figure 4.20 shows a result of DDPG model in evaluating mode. the mean reward is

525.16. the maximum reward is 789.34. And the minimum reward is 302.33. This

model can control differential wheeled mobile robot follow path to the goal properly.

Figure 4.20

Testing Result of DDPG Model for Path Following Task (No Disturbance)

Figure 4.21 shows a moving average reward of SAC model in training process. The

model obtained the highest average reward at episode 192 with 796.15 scores. The

training process took 2 hours 29 minutes and 18 seconds to complete 500 episodes.

SAC model can achieve path following task appropriately.

Figure 4.21

Training Result of DDPG Model for Path Following Task (No Disturbance)

 64

Figure 4.22 shows a result of SAC model in evaluating mode. the mean reward is

557.69. the maximum reward is 914.14. And the minimum reward is 377.90. This

model can control differential wheeled mobile robot follow path to the goal properly.

Figure 4.22

Testing Result of SAC Model for Path Following Task (No Disturbance)

The performance comparison of reinforcement learning algorithms is shown in table

4.4. The result shows that proximal policy optimization is outperform both in training

process and evaluating process when compared to the other choices. Therefore, PPO is

selected to perform the path following task in simulation.

Table 4.4

Performance of RL Models for Path Following Task (No Disturbance)

BEST REWARD EP TRAIN TIME MEAN REWARD MAX REWARD MIN REWARD

PPO 823.14 343 6584.83 696.88 1088.60 433.60

DDPG 770.89 372 7379.68 525.16 789.34 302.33

SAC 796.15 192 8953.38 557.69 914.14 377.90

MODEL

TRAIN TEST

 65

Training in Environment with Disturbance

Figure 4.23 shows a moving average reward of PPO model in training process. The

model obtained the highest average reward at episode 355 with 786.92 scores. The

training process took 2 hours 25 minutes and 45 seconds to complete 500 episodes.

PPO model can achieve path following task in the environment with disturbance

appropriately.

Figure 4.23

Training Result of PPO Model for Path Following Task (With Disturbance)

Figure 4.24 shows a result of PPO model in evaluating mode. the mean reward is

554.40. the maximum reward is 918.46. And the minimum reward is 373.27. This

model can control differential wheeled mobile robot follow path to the goal in the

environment with disturbance properly.

Figure 4.24

Testing Result of PPO Model for Path Following Task (With Disturbance)

 66

Figure 4.25 shows a moving average reward of DDPG model in training process. The

model obtained the highest average reward at episode 331 with 705.04 scores. The

training process took 2 hours 10 minutes and 28 seconds to complete 500 episodes.

DDPG model can achieve path following task in the environment with disturbance

appropriately.

Figure 4.25

Training Result of DDPG Model for Path Following Task (With Disturbance)

Figure 4.26 shows a result of DDPG model in evaluating mode. the mean reward is

507.78. the maximum reward is 830.97. And the minimum reward is 245.14. This

model can control differential wheeled mobile robot follow path to the goal in the

environment with disturbance properly.

Figure 4.26

Testing Result of DDPG Model for Path Following Task (With Disturbance)

 67

Figure 4.27 shows a moving average reward of SAC model in training process. The

model obtained the highest average reward at episode 176 with 782.11 scores. The

training process took 2 hours 29 minutes and 28 seconds to complete 500 episodes.

SAC model can achieve path following task in the environment with disturbance

appropriately.

Figure 4.27

Training Result of SAC Model for Path Following Task (With Disturbance)

Figure 4.28 shows a result of SAC model in evaluating mode. the mean reward is

562.52. the maximum reward is 990.71. And the minimum reward is 172.29. This

model can control differential wheeled mobile robot follow path to the goal in the

environment with disturbance properly.

Figure 4.28

Testing Result of SAC Model for Path Following Task (With Disturbance)

 68

The performance comparison of reinforcement learning algorithms is shown in table

4.5. There is no significant different in performance among selected algorithms.

However, soft actor-critic has the highest reward in evaluation when compared to the

other choices. Therefore, SAC is selected to perform the path following task in practice.

Table 4.5

Performance of RL Models for Path Following Task (With Disturbance)

4.3 Evaluate RL Model for Point Following Task

In point following task, Obstacles, loading position, and delivery position are randomly

assigned when the map is created at initial. A* algorithm is applied in order to find the

optimal path from loading position to delivery position. The reference point is created

and be considered as a virtual mobile robot. This virtual robot is controlled by PID

controller in order to follow the planned path until reach delivery position. The

objective of point following task is to control the differential wheeled mobile robot to

follow the moving reference point that be considered as a virtual robot, until reach

delivery position. The performance of RL model is evaluated by considering the

distance error between robot’s position and reference point. RL model must control the

robot’s speed to move closer to this moving reference point as much as position. Three

reinforcement learning algorithms in policy-based method are selected in order to test

the performance in point following task. Those models consist of proximal policy

optimization, deep deterministic policy gradient, and soft actor-critic. Reinforcement

learning model which be trained in the environment without any disturbance will be

used to perform in simulation. And reinforcement learning model which be trained in

the environment with disturbance will be used to perform in practice.

BEST REWARD EP TRAIN TIME MEAN REWARD MAX REWARD MIN REWARD

PPO 786.92 355 8745.09 554.40 918.46 373.27

DDPG 705.04 331 7828.17 507.78 830.97 245.14

SAC 782.11 176 8968.46 562.52 990.71 172.29

MODEL

TRAIN TEST

 69

Training in Environment without Disturbance

Figure 4.29 shows a moving average reward of PPO model in training process. The

model obtained the highest average reward at episode 145 with 1121.62 scores. The

training process took 1 hour 39 minutes and 43 seconds to complete 500 episodes. PPO

model can achieve point following task appropriately.

Figure 4.29

Training Result of PPO Model for Point Following Task (No Disturbance)

Figure 4.30 shows a result of PPO model in evaluating mode. The performance of RL

model is measured by using the distance error. the mean error is 8.59. the maximum

error is 9.80. And the minimum error is 7.27. This model can control differential

wheeled mobile robot follow the reference point until reach the goal properly.

Figure 4.30

Testing Result of PPO Model for Point Following Task (No Disturbance)

 70

Figure 4.31 shows a moving average reward of DDPG model in training process. The

model obtained the highest average reward at episode 272 with 1289.62 scores. The

training process took 3 hour 3 minutes and 18 seconds to complete 500 episodes. DDPG

model can achieve point following task appropriately.

Figure 4.31

Training Result of DDPG Model for Point Following Task (No Disturbance)

Figure 4.32 shows a result of DDPG model in evaluating mode. The performance of

RL model is measured by using the distance error. the mean error is 3.44. the maximum

error is 4.01. And the minimum error is 2.70. This model can control differential

wheeled mobile robot follow the reference point until reach the goal properly.

Figure 4.32

Testing Result of DDPG Model for Point Following Task (No Disturbance)

 71

Figure 4.33 shows a moving average reward of SAC model in training process. The

model obtained the highest average reward at episode 120 with 1086.43 scores. The

training process took 3 hour 15 minutes and 21 seconds to complete 500 episodes. SAC

model can achieve point following task appropriately.

Figure 4.33

Training Result of SAC Model for Point Following Task (No Disturbance)

Figure 4.34 shows a result of SAC model in evaluating mode. The performance of RL

model is measured by using the distance error. the mean error is 10.71. the maximum

error is 38.04. And the minimum error is 6.55. This model can control differential

wheeled mobile robot follow the reference point until reach the goal properly.

Figure 4.34

Testing Result of SAC Model for Point Following Task (No Disturbance)

 72

The performance comparison of reinforcement learning algorithms is shown in table

4.6. The result shows that deep deterministic policy gradient is outperform both in

training process and evaluating process when compared to the other choices. Therefore,

DDPG is selected to perform the point following task in simulation.

Table 4.6

Performance of RL Models for Point Following Task (No Disturbance)

Training in Environment with Disturbance

Figure 4.35 shows a moving average reward of PPO model in training process. The

model obtained the highest average reward at episode 294 with 967.47 scores. The

training process took 1 hour 42 minutes and 52 seconds to complete 500 episodes. PPO

model can achieve point following task in the environment with disturbance

appropriately.

Figure 4.35

Training Result of PPO Model for Point Following Task (With Disturbance)

BEST REWARD EP TRAIN TIME MEAN ERROR MAX ERROR MIN ERROR

PPO 1121.62 145 5983.04 8.58 9.80 7.27

DDPG 1289.62 272 10997.53 3.44 4.01 2.70

SAC 1086.43 120 11721.35 10.71 38.04 6.55

MODEL

TRAIN TEST

 73

Figure 4.36 shows a result of PPO model in evaluating mode. The performance of RL

model is measured by using the distance error. the mean error is 11.59. the maximum

error is 16.72. And the minimum error is 7.88. This model can control differential

wheeled mobile robot follow the reference point until reach the goal in the environment

with disturbance properly.

Figure 4.36

Testing Result of PPO Model for Point Following Task (With Disturbance)

Figure 4.37 shows a moving average reward of DDPG model in training process. The

model obtained the highest average reward at episode 129 with 796.75 scores. The

training process took 2 hour 41 minutes and 18 seconds to complete 500 episodes.

DDPG model can achieve point following task in the environment with disturbance.

However, there are several times that this model controlled the mobile robot to rotate

then follow the point by moving backward. And this is an undesirable situation.

 74

Figure 4.37

Training Result of DDPG Model for Point Following Task (With Disturbance)

Figure 4.38 shows a result of DDPG model in evaluating mode. The performance of

RL model is measured by using the distance error. the mean error is 8.48. the maximum

error is 28.80. And the minimum error is 3.81. This model can control differential

wheeled mobile robot follow the reference point until reach the goal in the environment

with but several time the robot was controller to move backward in order to follow the

reference point instead.

Figure 4.38

Testing Result of DDPG Model for Point Following Task (With Disturbance)

 75

Figure 4.39 shows a moving average reward of SAC model in training process. The

model obtained the highest average reward at episode 448 with 970.62 scores. The

training process took 3 hour 23 minutes and 27 seconds to complete 500 episodes. SAC

model can achieve point following task in the environment with disturbance

appropriately.

Figure 4.39

Training Result of SAC Model for Point Following Task (With Disturbance)

Figure 4.40 shows a result of SAC model in evaluating mode. The performance of RL

model is measured by using the distance error. the mean error is 13.85. the maximum

error is 23.10. And the minimum error is 8.5. This model can control differential

wheeled mobile robot follow the reference point until reach the goal in the environment

with disturbance properly.

Figure 4.40

Testing Result of SAC Model for Point Following Task (With Disturbance)

 76

The performance comparison of reinforcement learning algorithms is shown in table

4.7. The result shows that even if deep deterministic policy gradient has the lowest

mean error in evaluation but its maximum error is too high compare the other. It is

caused by rotation during movement in order to follow the reference point with

backward direction. In this case, proximal policy optimization is selected to perform

the point following task in practice.

Table 4.7

Performance of RL Models for Point Following Task (With Disturbance)

4.4 Implement RL Models for Object Transportation

After completely evaluate the performances of reinforcement learning algorithms for

all tasks. Double deep Q-learning with Resnet10 which 25% of training episode is

supervised by A* is selected to achieve path planning for individual robots and group

of robots. For path following task, proximal policy optimization is select to perform in

simulation and soft actor-critic is selected to execute in practice. For point following

task, deep deterministic policy gradient is selected to perform in simulation and

proximal policy optimization is selected to execute in practice. All selected RL models

are assembled in order to accomplish the object transportation task both in simulation

and practice.

Simulation Result of Multiple Robots

The RL models are tested firstly in simulation in order to see the performance in the

environment without any disturbance. Figure 4.41 shows sample of simulation result

when implement the RL models among multiple robots in object transportation.

BEST REWARD EP TRAIN TIME MEAN ERROR MAX ERROR MIN ERROR

PPO 967.47 294 6172.42 11.59 16.72 7.88

DDPG 796.75 129 9678.17 8.48 28.80 3.81

SAC 970.62 448 12206.50 13.85 23.10 8.75

MODEL

TRAIN TEST

 77

Figure 4.41

Simulation Result of Multiple Robots for Object Transportation

Path Planning for Individual Robots

Path Following for Individual Robots

Path Planning for Group of Robots

Formation Control for Group of Robots

 78

Firstly, three mobile robots stand at the initial position at arbitrary point inside map’s

area. The loading point is assigned randomly. The goal’s position of each robot is

generated respected to the robot’s formation. DDQN model finds the optimal paths for

all robots to their goal’s positions. The waypoints are created according to each robot’s

path. PPO model for path following task controls the robots to follow their paths using

current waypoint to calculate errors then estimates a linear velocity and angular velocity

for a current step. After all robots reach their loading positions. DDQN model finds the

optimal path for group of robots from loading point to delivery point. The virtual robot

is created at the middle of the formation to represent the group of mobile robots. This

virtual robot is controlled to follow the path to delivery point by PID controller. In every

time step, the reference point of each robot is computed refer to the current position of

the virtual robot. Then DDPG of point following task controls all robots to follow their

reference points in order to create movement of group of robots with fixed group shape.

Figure 4.42 shows the error of formation control in each time step. If the robots move

with specific formation, the distance between each robot should be maintained. Hence,

the distance between robot no.1 and robot no.2 is considered as line1. The distance

between robot no.2 and robot no.3 is considered as line2. The distance between robot

no.3 and robot no.1 is considered as line3. This graph shows the errors between real

distance and ideal distance occurred in line 1-3. When there is no disturbance in the

environment, RL models have an excellent performance.

Figure 4.42

Formation Errors of Multiple Robots in Simulation

 79

Experiment Result of Multiple Robots without Object

The RL models are tested in practice in order to see the performance in the environment

with many disturbances and uncontrollable factors. For examples, a speed of mobile

robot doesn’t match exactly to the command speed because this thesis used an output

control system which is different to a feedback loop control system. Moreover, there is

a delay time when broadcasting the command from the server to the robots. However,

the main problem is the normal speed of the selected robot of this thesis is too fast

compared to the available environment, thus it is necessary to apply a very low speed

of the robot and set many conditions in order to implement the RL models in practice.

Figure 4.43 shows sample of experiment result when implement the RL models among

multiple robots in formation control task.

Figure 4.43

Experiment Result of Multiple Robots for Formation Control Task

Path Planning for Individual Robots

Path Following for Individual Robots

 80

Path Planning for Group of Robots

Formation Control for Group of Robots

The process of implementation in experiment is the same as showing in simulation

result. However, several conditions are set in order to implement the RL models

appropriately in practice. For example, the formation of group of robots is expanded in

order to prevent an incident that robot crashes to each other during moving in a

formation. Figure 4.44 shows the error of formation control in each time step when

deploys the RL models in experiment. The formation error is ranged between -60 to 60

mm. it is acceptable for an output control system.

Figure 4.44

Formation Errors of Multiple Robots in Experiment (Excluded the Object)

 81

 Experiment Result of Multiple Robots with the Object

The RL models are tested in practice with the object in order to see the performance.

Figure 4.45 shows sample of experiment result when implement the RL models among

multiple robots in object transportation.

Figure 4.45

Experiment Result of Multiple Robots for Object Transportation

Path Planning for Individual Robots

Path Following for Individual Robots

Path Planning for Group of Robots

 82

Formation Control for Group of Robots

The result of implementing RL models in experiment with the object shows the same

performance compare when it has no object. Nevertheless, the formation error in the

object transportation is ranged between -80 to 75 mm. it is larger when compared to

the result in a formation control task due to the load that exerts to the robots in

different positions is effect to robots’ motion see in figure 4.45.

Figure 4.46

Formation Errors of Multiple Robots in Experiment (Included the Object)

 83

CHAPTER 5

CONCLUSION

This thesis proposed reinforcement learning model to find the optimal path for any

random map. According to the experiment results, double deep Q-learning with

Resnet50 has the best performance when compared to other selected reinforcement

learning algorithms. Moreover, semi-supervised method by A* algorithm can increase

the performance of reinforcement learning model in order to find the optimal path.

Whereas it decreases an experience of exploration in memory replay buffer. Therefore,

it is necessary to compensate a lacking in exploration by training the model with enough

number of episodes. Then the capability of the model could be improved. In addition,

this thesis also proposed another reinforcement learning models to control the motion

of differential wheeled mobile robot both for path following task and point following

task. The reinforcement learning model which handle with point following task is used

to control a group of mobile robots to move in a specific formation. Due to there is no

significant difference of performance among selected reinforcement learning

algorithms in evaluation. Hence, the reinforcement learning models which have the

highest score are selected to perform each task both in simulation and experiment. The

integration of proposed reinforcement learning models are used to perform for object

transportation in both simulation and experiment. The map’s area is enveloped within

1.2 x 2.0 square meter. The obstacles are randomly placed within map’s area. Robot’s

initial positions, loading position, and delivery position are assigned in arbitrary

position. The environment’s information in experiment was obtained using single

camera which applied HSV range technique in real time process. Eventually, the

proposed reinforcement learning models can accomplish the object transportation task

appropriately both in simulation and in experiment.

The recommendations of this thesis can be listed as the following.

 The reinforcement learning model for path planning should be tested with more

complicated environments.

 The reinforcement learning model with other convolutional layers should be

explored further in order to improve the performance of the model.

 84

 This thesis solved a path planning problem with static environment. However,

it is interesting to do path planning in dynamic environments as well.

 Lastly, the reinforcement learning model which can simultaneously create a

path planning and control a motion of group of mobile robots should be studied

further.

 85

REFERENCES

Abiyev, R., Ibrahim, D., & Erin, B. (2010). Navigation of mobile robots in the presence

of obstacles. Advances in Engineering Software, 41(10–11), 1179–1186.

https://doi.org/10.1016/j.advengsoft.2010.08.001

Desai, J. P., Ostrowski, J., & Kumar, V. (1998). Controlling formations of multiple

mobile robots. Proceedings - IEEE International Conference on Robotics and

Automation, 4, 2864–2869. https://doi.org/10.1109/ROBOT.1998.680621

Duchon, F., Babinec, A., Kajan, M., Beno, P., Florek, M., Fico, T., & Jurišica, L.

(2014). Path planning with modified A star algorithm for a mobile robot.

Procedia Engineering, 96, 59–69. https://doi.org/10.1016/j.proeng.2014.12.098

Feng, Z., Hu, G., Sun, Y., & Soon, J. (2020). An overview of collaborative robotic

manipulation in multi-robot systems. Annual Reviews in Control, 49, 113–127.

https://doi.org/10.1016/j.arcontrol.2020.02.002

Goh, K., & Tjahjono, B. (2006). A review of research in manufacturing. Informatics,

2006 IEEE, 00, 417–422.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4053424

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor. 35th

International Conference on Machine Learning, ICML 2018, 5, 2976–2989.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2016-December, 770–778.

https://doi.org/10.1109/CVPR.2016.90

Huang, Y. (2020). Deep Q-networks. Deep Reinforcement Learning: Fundamentals,

Research and Applications, 135–160. https://doi.org/10.1007/978-981-15-

4095-0_4

Janglová, D. (2004). Neural networks in mobile robot motion. In International Journal

of Advanced Robotic Systems (Vol. 1, Issue 1, pp. 15–22).

https://doi.org/10.5772/5615

Kala, R. (2014). Coordination in navigation of multiple mobile robots. Cybernetics and

Systems, 45(1), 1–24. https://doi.org/10.1080/01969722.2014.862085

 86

Kanayama, Y. (1990). A Stable Tracking Control Method for an Autonomous Mobile

Robot. 384–389.

Khoshnevis, B., & Bekey, G. (1998). Centralized sensing and control of multiple

mobile robots. Computers and Industrial Engineering, 35(3–4), 503–506.

https://doi.org/10.1016/s0360-8352(98)00144-2

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., &

Wierstra, D. (2016). Continuous control with deep reinforcement learning. 4th

International Conference on Learning Representations, ICLR 2016 -

Conference Track Proceedings.

Mazyavkina, N., Sviridov, S., Ivanov, S., & Burnaev, E. (2021). Reinforcement

learning for combinatorial optimization: A survey. Computers and Operations

Research, 134(August 2020), 105400.

https://doi.org/10.1016/j.cor.2021.105400

Patle, B. K., Babu L, G., Pandey, A., Parhi, D. R. K., & Jagadeesh, A. (2019). A review:

On path planning strategies for navigation of mobile robot. Defence

Technology, 15(4), 582–606. https://doi.org/10.1016/j.dt.2019.04.011

Recker, T., Heinrich, M., & Raatz, A. (2020). A Comparison of Different Approaches

for Formation Control of Nonholonomic Mobile Robots regarding Object

Transport. Procedia CIRP, 96, 248–253.

https://doi.org/10.1016/j.procir.2021.01.082

Richard Bellman. (1957). A Markovian decision process.

Sartoretti, G., Kerr, J., Shi, Y., Wagner, G., Satish Kumar, T. K., Koenig, S., & Choset,

H. (2019). PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent

Learning. IEEE Robotics and Automation Letters, 4(3), 2378–2385.

https://doi.org/10.1109/LRA.2019.2903261

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal

Policy Optimization Algorithms. 1–12. http://arxiv.org/abs/1707.06347

Shim, J. H., & Cho, Y. I. (2015). A mobile robot Localization using external

surveillance cameras at indoor. Procedia Computer Science, 56(1), 502–507.

https://doi.org/10.1016/j.procs.2015.07.242

Wang, B., Liu, Z., Li, Q., & Prorok, A. (2020). Reinforcement Learning. 5(4), 6932–

6939.

 87

Wen, S., Wen, Z., Zhang, D., Zhang, H., & Wang, T. (2021). A multi-robot path-

planning algorithm for autonomous navigation using meta-reinforcement

learning based on transfer learning. Applied Soft Computing, 110, 107605.

https://doi.org/10.1016/j.asoc.2021.107605

Xiao, Y., Hoffman, J., Xia, T., & Amato, C. (2020). Learning Multi-Robot

Decentralized Macro-Action-Based Policies via a Centralized Q-Net.

Proceedings - IEEE International Conference on Robotics and Automation,

10695–10701. https://doi.org/10.1109/ICRA40945.2020.9196684

