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ABSTRACT 

This thesis proposed reinforcement learning method to perform the object 

transportation task for multiple robots. This task consists of two main processes, path 

planning and motion control task. Double deep Q-learning (DDQN) model is selected 

to achieve path planning for any random environment. To increase the capability of 

reinforcement learning model, semi-supervised method by A* algorithm is applied 

during the training process in order to find the optimal path. For motion control task, 

reinforcement learning model must control a motion of differential wheeled mobile 

robot by providing actions composed of speeds of left wheel and right wheel. The 

models are separately trained for two different purposes. The first agent is trained to 

deal with path following task and another agent is trained to handle with point following 

task. The agent of point following task is used to control the group of robots to move 

with a fixed group shape. The agent which is trained in the environment without 

disturbance is used in simulation. And the agent which is trained in the environment 

included disturbance is applied in practice with three differential wheeled mobile 

robots. Proximal policy optimization (PPO) is selected to achieve path following task 

in simulation and point following task in practice. Deep deterministic policy gradient 

(DDPG) is selected to complete path following task in practice. And soft actor-critic is 

selected to complete point following task in simulation. Finally, the integration of 

proposed reinforcement learning models can accomplish the object transportation task 

for multi-robot system appropriately both in simulation and practice. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

In many cases, it is obviously that multi-robot cooperation can perform complex tasks 

more effectively than one single powerful robot for tasks that impossible for one robot 

to accomplish. In industrial application, assembling task, transporting task, painting 

task, packaging task, and welding task usually require flexibility to perform (see Figure 

1.1). Hence, the cooperation of multi-robot system has been developed with many 

techniques for increasing efficiency and enhancing flexibility in industrial application. 

  

Figure 1.1  

Application Scenarios of Collaborative Robotic Manipulation (Feng et al., 2020)  

 

 

The fundamental of multi-robot system is to distribute subtasks to individual robots and 

allow them to handle the tasks to solve the complex problem. The multi-robot system 

(MRs) is very cost effective when compared to one single powerful robot. The 

comfortable of multi-robot system makes them popular widely in various application. 

In contrast, multi-robot system requires a lot of setting or tunning for deployment and 

has high possibility to collision to each other as well.  

This thesis focuses on path planning with formation forming of multiple mobile robots 

for object transportation. Formation forming of group of mobile robots is often used to 

extend the capability of a single mobile robot to break down and distribute the complex 

task into smaller subtasks (see Figure 1.2). The connectivity of these mobile robots 
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enables them to carry out the task simpler than one capability robot. Moreover, 

formation forming increase the flexibility of overall system to adapt with complexed 

and customized of large objects. 

 

Figure 1.2  

Mobile Industrial Robots Carrying a Crane Bearing (Recker et al., 2020) 

 

 

For object transportation by multi-robot system, one important problem is path planning 

for group of mobile robots. There is various research proposed efficient path planning 

algorithm to establish path and movement that allow mobile robots to reach the goal 

autonomously and safety in working environment with collision-free (Patle et al., 2019) 

(see Figure 1.3). Most approach try to generate optimal path for navigating a mobile 

robot to move from initial location to final location by avoiding static and dynamic 

obstacles presented in the environment. 

 

Figure 1.3  

Flow Diagram for Mobile Robot Navigation (Patle et al., 2019) 
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At present, there are several studies proposed machine learning approach in order to 

solve path planning problem. Reinforcement learning (RL) algorithm is one of the most 

popular methods in machine learning approach which be proposed to solve path 

planning problem for mobile robot navigation (Sartoretti et al., 2019) (Wang et al., 

2020). Reinforcement learning method proposes an automatically search of agent for 

optimization problem by training an agent in self-supervised. To apply reinforcement 

learning method, we design the model of problem as a sequential of decision-making 

process. Then the agent can interact to the environment by performing actions 

sequentially to find the optimal solution (see Figure 1.4). Markov decision process 

(MDP) provides a mathematical framework for the model in this type of problem 

(Mazyavkina et al., 2021). 

 

Figure 1.4  

Concept of Reinforcement Learning (Mazyavkina et al., 2021) 

 

 

1.2 Statement of the Problem 

There are various algorithms have been proposed for solving path planning problem. 

Recently, one of interesting emerging trend to solve this optimization problem is 

machine learning approach. To increase automatically learning capability and making-

decision of robots, reinforcement learning method is one branch of machine learning 

that allow agent to learn autonomously how to accomplish any task even the 

environment has changed with less setting or tunning parameters when compared to 

traditional methods. 
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When considering the object transportation for multi-robot system, it is interesting to 

explore how reinforcement learning approach handles to this problem. Therefore, this 

thesis proposed reinforcement learning models to perform path planning and motion 

control task for multi-robot system. In this thesis, the agent which is trained to solve 

path planning problem must find the optimal path with obstacles avoidance for 

individual robots from initial positions to loading positions. It also find the optimal path 

for the group of robots from loading point to the delivery point. Another agent which is 

trained for motion control task must control the movement of multiple robots to follow 

their paths appropriately. The integration of these agents is used to perform the object 

transportation task. The performance of reinforcement learning method is evaluated 

both in simulation and practice. 

1.3 Objectives of the Study 

The main objective of this thesis is to develop reinforcement learning models to solve 

the object transportation problem for multi-robot system. To achieve the objective, the 

following sub-objectives are required. 

1. Develop path planning model based on reinforcement learning method. 

2. Develop motion control model for differential wheeled mobile robot based on 

reinforcement learning method. 

3. Develop three differential wheeled mobile robots to implement the models in 

practice. 

1.4 Scope and Limitation 

The scopes of this thesis are listed as following: 

1. Reinforcement learning method is used for path planning. 

2. Reinforcement learning method is used for motion control task.  

3. Three differential-wheeled mobile robots are developed to evaluate the 

performance of reinforcement learning models in practice. 

4. Translation and rotation of mobile robot limited in cartesian plane (𝑋, 𝑌, 𝜃). 

5. The working area is enveloped within 1.2 x 2.0 square meter. 

6. The performance of reinforcement learning models will be compared among 

value-based method and policy-based method.  
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CHAPTER 2 

LITERATURE REVIEW 

There are several published papers involved with the multi-robot cooperation. As 

mentioned in the previous chapter, this thesis focuses on optimal path planning with 

formation forming for object transportation. Therefore, in this chapter, the related 

literatures will be reviewed separated into following sections such that 1) multi-robot 

system 2) localization of indoor mobile robot, 3) path planning for mobile robot, 4) 

formation control for nonholonomic robot, 5) reinforcement learning with optimization 

problem. 

2.1 Multi-Robot System 

There is a review of research in multi-robot system. Goh & Tjahjono (2006) mentioned 

that multi-robot system has potential to solve vast application of complex tasks in 

different domain. Much research has been proposed coordination algorithm inspired 

from small living organisms such as birds, fishes, or insects. The algorithm can divide 

into leader-follower or leaderless approaches. Certain communication is appropriate in 

a situation that real time response is not necessary such as path planning, formation 

forming. The communication between multi-agents is suitable for the situation when it 

required immediate reaction such as obstacle detection, collision avoidance.  

The architecture of multi-robot system is very importance according to applications. 

The architecture of control system can be separated into centralized or decentralized. 

In centralized architecture, there is only single agent provide command and supervise 

to the other agents to perform the cooperative tasks. This type of architecture has highly 

efficient when control a small group of robots (Khoshnevis & Bekey, 1998). In 

centralized architecture,   However, this type of architecture is difficult to handle with 

large number of robots system. On the other hand, decentralized architectures do not 

have a leader agent that commands the overall system. This architecture applies 

behavior-based control over multiple robots instead. Decentralized architecture treats 

all agents equally and respect each agent to take control itself individually. 
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2.2 Localization of Indoor Mobile Robot  

Localization is a technique which necessary for mobile robots to know their current 

position and use this data to generate their next movement. Most localization technique 

provide the robot, a measurement sensor that allow mobile robot getting environment 

information. However, those technique require high cost as they use much equipment. 

The mobile robot became expensive and complicate body structure. Several research of 

localization carry out this problem by using external sensors getting the environment 

information. Shim & Cho (2015) proposed alternative technique to localize the indoor 

mobile robot by using two surveillance cameras. They applied HSV range technique 

for the images from different perspective in order to remove the object’s shadow. And 

using homography technique to create two-dimensional map with object information 

(see Figures 2.2, 2.3)  

 

Figure 2.1  

Two Images Viewed from Two Surveillance Cameras at Indoor (Shim & Cho, 2015) 

 

 

Figure 2.2  

Robot’s Path from the External Cameras Localization Method (Shim & Cho, 2015). 
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2.3 Path Planning for Mobile Robot 

Currently, many researchers developed and proposed several techniques to perform a 

mobile robot navigation. The strategy of navigation can be classified to global 

navigation and local navigation based on required information of environment for path 

planning. (Patle et al., 2019). For global navigation, overall information of environment 

is required for the mobile robot such as current position, goal position, or obstacle 

position. In global navigation, many path planning algorithms based on classical 

approach are developed such as artificial potential field (APF), roadmap approach 

(RA), and cell decomposition (CD). In contrast, local navigation is concerned where 

the mobile robot handle with the unknow or partial known environment. The path 

planning algorithm for local navigation is based on reactive approach such as neural 

network (NN), fuzzy logic (FL), genetic algorithm (GA) etc., (see Figure 2.7). 

 

Figure 2.3  

Classification of Mobile Robot Navigational Approaches (Patle et al., 2019) 

 

 

One of the most well-known searching methods for path planning problem is A* 

algorithm. This algorithm can be applied on grid map or topological configuration space 

(Duchon et al., 2014). This algorithm finds the shortest path by applying heuristic 

searching. In A* algorithm, each cell of the configuration space is evaluated by the loss 

value: 
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 𝑓(𝑣) = ℎ(𝑣) + 𝑔(𝑣) (2.1) 

Where 𝑓(𝑣) is the loss value that will be evaluated for each adjacent cell connected to 

the current cell, ℎ(𝑣) is Euclidean distance or heuristic distance between the current 

cell and the goal state, and 𝑔(𝑣) is the length of the path from the initial state to the 

current state according to the selected sequence of cells. The cell which has the lowest 

loss value will be chosen as the next cell in the sequence. This algorithm continuously 

searches and evaluates the cell until it reaches the goal state in order to obtain the lowest 

loss value. 

2.4 Formation Control for Nonholonomic Robot 

Formation control is a one of application for multi-robot cooperation, use to extend 

capability of a single robot. Multi-robot formation control increases flexibility of the 

overall system and adaptability for object transportation. Multi-robot formation control 

can be separated into holonomic and nonholonomic robot. This thesis focuses on 

formation control for nonholonomic mobile robot which is more complex and more 

practical in industrial usability. Recker et al. (2020) presented a comparison and 

evaluation of leader-follower based formation control approach for mobile robots 

within transportation process (see Figure 2.4). 

 

Figure 2.4  

Control Structure of Leader-Follower (Recker et al., 2020) 
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Desai et al. (1998) presented the l-ψ-control law (l.c.). Within this control law, the 

mobile robot’s state is considered both the distance and the angle between a leader and 

the follower. According to this state representation of the mobile robots, the linear 

velocity and angular velocity of a follower are obtained by the linearization method 

(see Figure 2.5). 

 

Figure 2.5  

l-ψ-Control a) Notation, b) Isomorphic Diagraphs (Desai et al., 1998) 

 

 

Kanayama, (1990) presented the cartesian control (c.c.) which the robot’s state is 

represented in the cartesian state (x, y, 𝜃) for all members in a formation. the linear 

control velocities and angular control velocities of a particular following robots are 

calculated by Lyapunov stabilizing the error dynamics of the mobile robot (see Figure 

2.6). 

 

Figure 2.6  

Cartesian Control a) Postures, b) Tracking Controller (Kanayama, 1990) 
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2.5 Reinforcement Learning (RL) with Optimization Problem  

Optimization problems are involved with finding optimal value among different 

possibility choices. In mobile robot path planning problem, finding the shortest path 

among all available paths is concerned. Reinforcement learning is one of the emerging 

trends to solve optimization problem by training a machine learning algorithm. 

Mazyavkina et al. (2021) presented a survey of recent applying of reinforcement 

learning framework to solve optimization problem. To apply reinforcement learning 

method, we design the model of problem as a sequential of decision-making process. 

Then the agent can interact to the environment by performing actions sequentially to 

find the optimal solution. Markov decision process (MDP) is the important 

mathematical framework use to model this type of problems (Richard Bellman, 1957). 

Markov decision process (MDP) can define as 𝑀 = ⟨𝑆, 𝐴, 𝑅, 𝑇, 𝛾, 𝐻⟩, when 

• S is state space for optimization problem 

• A is action space represent addition or changing in the solution (e.g., changing order 

of nodes in path) 

• R is reward function mapping of states and actions. Rewards define the chosen action 

in particular state to improve a solution. 

• T is transition function which control dynamic changing from one state to another 

state according to action. 

• 𝛾 is scalar discount factor encouraging the agent to account for short-term rewards. 

• H is horizon determining the length of the episode. 

In Markov decision process (MDP), the goal of agents’ action is to find a policy 

function 𝜋(𝑠) that map state into action. Solving optimization problem is finding 

optimal policy 𝜋∗ that maximize the accumulate rewards. 

 𝜋∗ = argmax 𝔼[∑ 𝛾 𝑅(𝑠 , 𝑎 )] (2.2) 

For reinforcement learning algorithm that utilizes Markov decision process in order to 

searches for the optimal policy, it can be separated into two main categories, model-

based methods, and model-free methods, (see Figure 2.13). Model-based methods 

normally apply in the situation where the transition functions are available or can be 

acquired from the environment. The agent can utilize the transition function when 
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making decisions. Monte-Carlo tree search (MCTS) algorithm is included in this 

method as well. Whereas model-free methods deal with the environment without the 

availability of the transition function. The experiences during training process are 

collected in the agent’s memory which can be utilized later in learning step. Moreover, 

model-free methods can be divided into value-based methods and policy-based 

methods. In case of value-based methods, a value function is approximated. A value 

function is used to evaluate the policy’s quality for all available state-action pairs in the 

given environment. On the other hand, policy-based methods approximate the policy 

directly. In addition, there are actor–critic methods that is a combination between value-

based method and policy-based method. 

 

Figure 2.7  

A Classification of Reinforcement Learning Methods (Mazyavkina et al., 2021) 
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CHAPTER 3 

METHODOLOGY 

3.1 Overview of a System 

This thesis proposed path planning based on reinforcement learning (RL) algorithm for 

object transportation in multi-robot system. The platform is set which area is enveloped 

by 1.2 x 2.0 square meter include various sizes of static obstacles (see Figure 3.1). The 

obstacles and robots are placed in arbitrary positions inside map’s area. Loading 

position and delivery position are randomly assigned and be shown only in the program 

display. Single external camera with computer vision technique is required to obtain 

the information from environment by considering of the cheapest budget option.  

 

Figure 3.1  

Initial State of Environment in Simulation and Experiment.  

 

 

The object transportation task for multiple robots can be separated into four subtasks. 

First subtask is to create the optimal path with obstacle avoidance from initial position 

to the loading position (see Figure 3.2). In this case, just one webcam is used to obtain 

the information of environment. This information is transformed into observation for 

RL model in order to generate path for each mobile robot. For second subtask, another 

RL model is used to control the motion of each mobile robot to follow the planned path 

properly. This RL model used the distance error between robot’s position and the 

current waypoint of planned path as an input, then RL model estimates the actions 
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composed of left wheel speed and right wheel speed in order to control robot’s 

movement. 

 

Figure 3.2  

Optimal Paths with Collision-Free from Reinforcement Learning Model 

  

a) Path Planning to Loading Point 

 

b) Path Planning to Delivery Point 

 

After all mobile robots have reached their specified loading positions, the object will 

be transferred to the group of robots appropriately. The center of robot’s formation is 

considered as a virtual position which represent as a virtual leader of a group of robots. 

In third subtask, the reinforcement learning for path planning takes responsibility to 

generate path for the virtual leader from loading position to delivery position (see 

Figure 3.2). Last subtask is to control all mobile robots to follow the virtual leader and 

maintain the formation properly until reaching the delivery position. The virtual leader 

is controlled by PID control in order to follow the planned path. In each time step, the 

reference points of all mobile robots are updated by calculating from their specified 

distance refer to the virtual robot. The RL model, which is trained to handle the point 
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following task, takes responsibility to control robot’s speeds by using the distance error 

between updated reference point and current robot position as an observation. The 

object transportation task will be completed when all mobile robots along with the 

object have reached the delivery position properly (see Figure 3.3). 

 

Figure 3.3  

Final State of Group of Mobile Robots 

 

 

3.2 Component of a System 

The platform of a system consists of three main components, computing machine, 

sensing equipment, and mobile robot. The sensing equipment is used to sense the 

information of environment. Computing machine is used to train reinforcement learning 

model and navigate the mobile robot. Mobile robot receives the command from the 

server then move accordingly to the speed in command until reaching the goal position 

(see Figure 3.4). In simulation, only computing machine is used for implementation. 

However, all components are operated together when reinforcement learning models 

are implemented in real environment. 
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Figure 3.4  

Component of a System  

 

 

Computing Machine 

The first machine is a laptop. The specification of this laptop is an Intel Core I7-9750H 

CPU, a NVIDIA GeForce RTX 2060Ti GPU, 16 gigabytes of RAM, and Windows 11 

OS. This laptop is used to create all programs such as RL models, environments for 

training and testing in simulation, program for communication between server (laptop) 

and client (mobile robots), and training RL models for motion control task. 

The second machine is a desktop. The specification of this desktop is an Intel Core I9-

10900F CPU, a NVIDIA GeForce RTX 2080Ti GPU, 32 gigabytes of RAM, and 

Ubuntu 20.04 OS. This desktop is used to train the RL models for path planning with 

is consume large amounts of compute capability. 

Sensing Equipment 

Xiaovv webcam 1080P HD is used in this thesis to capture images and record videos 

of overall environment from the top view with image size 1080x1920 pixels (see Figure 

3.5). 
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Figure 3.5  

Xiaovv Webcam 1080P HD 

 

 

Mobile Robot 

Yahboom Micro:bit smart robot car is selected to implement the RL models for object 

transportation in practice. Micro:bit is a build-in microcontroller for general purpose. 

And Yahboom smart robot car is a two wheels build-in mobile robot which controlled 

by Micro:bit (see Figure 3.6). This build-in robot car has a compact body and light 

weight. Thus, it is suitable to implement in a limited area. Micro:bit has a function to 

broadcast a radio message to other Micro:bit that is programed to be the same radio 

group. Therefore, one Micro:bit is used to receive the command speeds from the server, 

then broadcast to all mobile robots wirelessly in order to control the robot’s speed in 

real time. 

 

Figure 3.6  

Yahboom Micro:bit Smart Robot Car and Micro:bit 
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3.3 Path Planning  

Path planning is the main task for this thesis. Before mobile robot can do any task such 

as load carriage, object rearrangement, object catching, work assembly, or map making, 

it must move to desired location and path planning is required firstly. There are several 

traditional approaches to handle with path planning. A* algorithm is one of the most 

popular approaches which searches for optimal available path with collision-free from 

start position to goal position. In this thesis, A* is used to supervise reinforcement 

learning model for path planning as well. 

This thesis aims to create and improve reinforcement learning model which handle to 

path planning for any random environment optimally. Environment for training the RL 

model is created in python program which the agent can move in a grid map step by 

step. Due to the dimension of map is H1200 x W2000 square millimeter in height and 

width respectively. When consideration the compute capacity of available machine 

during training process, the map is decreased the dimension with ratio 50:1 in 

simulation. Thus, the map in simulation is created with sized H24 x W40 pixels. There 

are three static obstacles with random size between 2 to 4 pixels. They are placed in 

random position that doesn’t overlap to each other. The initial position of robot and 

goal position are assigned randomly on available pixel within map’s area. The distance 

between start position and goal position should not be lower than 32 pixel (see Figure 

3.7).  

 

Figure 3.7  

Map in Simulation 
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When the map is created, the start and goal positions are assigned as a single point. And 

the obstacles are offset with the robot’s radius. The different labels are assigned to each 

grid cell according to different object types as you can see in table 3.1. In each step, 

agent can move to any adjacent cell in eight directions (see Table 3.2).  

 

Table 3.1  

Label of Pixel in Grid Map 

Object Label 

Free space 0 

Obstacle -1 

Goal Position 1 

Robot Position 2 

 

Table 3.2  

Action Space in Path Planning Respected the Image Coordinate  

Action Number Direction 

0 Up-left 

1 Up 

2 Up-right 

3 Left 

4 Right 

5 Down-left 

6 Down 

7 Down-right 

 

The state of RL model is created by considering the current position of agent at the 

center. It is a cropped cells from grid map in size of H43xW75 pixels, so agent can see 

all obstacles and goal position wherever it is in the grid map. the pixels which are 

cropped outside the grid map’ area is filled with label -1 same as obstacle’s label. Then 

the cropped grid map is scaled up with ratio 1:4 and be stacked with the last four states. 
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Hence, agent could recognize the robot’s motion in the last four steps and has a better 

decision-making for a next movement. 

For the reward and terminal status are determined as see in table 3.3. In path planning, 

the agent is expected to learn how to move closer to the goal position until it can reach 

the goal position. The maximum length of episode is defined at 1000 step. In each step, 

agent learns how to find the optimal action that it could obtain maximum total reward 

at the end of the episode. The reward is calculated according to showing in table 3.3. It 

used the previous distance between robot’s position and goal position subtracted by the 

new distance between robot’ position and goal then subtract by the moving distance. If 

the robot moves to the direction that overlap to the static obstacle’s areas, agent will be 

returned to its previous position and receive -3 scores as a punishment for this step. If 

agent can reach the goal’s position, it receives 0 score and terminal status became 

‘True’, then the episode has ended. It is obviously that the maximum reward per step is 

0 score, and the minimum reward is -3 scores per step. Therefore, the main objective of 

this RL agent is to accomplishment the path planning with less negative score per 

episode as possible.  

 

Table 3.3  

Reward and Terminal Status in Path Planning 

Criteria Reward Terminal 

Reach the goal 0 True 

Hit obstacle -3 False 

Other 𝑅 False 

 

Where   𝑅 =  ∆𝑠 −  ∆𝑠 −  ∆𝑑 

   ∆𝑠    is a previous distance between robot’s position and goal 

   ∆𝑠   is a current distance between robot’s position and goal 

   ∆𝑑    is a moving distance in this step 

Due to the obstacles, start position, and goal position are randomly generated in each 

episode independently, so it is hard to compare the reward in episode by episode 



 

 20

directly. Moving average reward of last 100 episodes is applied to find the model’s 

parameters during a training period. To reach this thesis’ objective in order to find the 

reinforcement learning model for path planning, there are three steps for the experiment 

as list below.  

1. Evaluate convolutional layers.  

2. Evaluate reinforcement learning algorithms.  

3. Explore an effect of semi-supervised with A* algorithm to reinforcement 

learning model.  

Deep Q-Learning (DQN) 

To test the first assumption above, deep Q-learning network is selected as an initial 

reinforcement learning model because DQN is one of the most popular and well-known 

RL models to handle with the environment that has discreate actions. DQN is improved 

from Q-learning algorithms by use a neural network to approximate the Q-value 

function instead of using Q-table (Huang, Y. 2020). The state is given as the input in 

the neural network and Q-value of all possible actions is generated as an output. The 

state generate in this simulation is grid map sized H24xW40 pixels, and the state is 

changed in every step respect to the current position of an agent. Thus, it is too difficult 

to limit the number of states in Q-table with Q-learning techniques. DQN could solve 

this problem by using convolution network to generate the feature map representing the 

information of the state in each step then feed to neural networks with ReLU activation 

function to approximate all possible Q-values. This DQN model select the action 

respect to epsilon greedy value. The epsilon value starts from 1 and decreasing every 

step by decay parameter. In every step, the model generates a random float from 0 to 1, 

if the random float more than current epsilon value, model send the random action. In 

the other hand, if the random float less than current epsilon value, the model provides 

the action which has maximum Q-value. During the training process, the network’s 

parameters are updated by mean square error (MSE) between Q-value from the current 

model and the target Q-value. The pseudo-code of DQN model is shown in algorithm1. 

 

 

 

 



 

 21

Algorithm 1 Deep Q-learning with experience replay 

Initialize experience replay memory D to capacity K 

Initialize network Q with random weights 

Initialize the Agent to interact with the environment 

for episode = 1, M do 

     𝜖 ← setting new epsilon with 𝜖-decay 

     With probability 𝜖 select the random action 𝑎  

     Otherwise select 𝑎 =  𝑚𝑎𝑥 𝑄(𝑠 , 𝑎;  𝜃) 

     Agent takes action 𝑎  and observe reward 𝑟  and state 𝑠  

     Store transition (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) in D 

     If enough experience in D then 

          Sample random minibatch N of transitions (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) from D 

          Compute target Q-value: 

          𝑄∗ =  𝑟 +  𝛾𝑚𝑎𝑥 𝑄(𝑠 , 𝑎 ;  𝜃)(1 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) 

          Calculate the loss ℒ =  ∑ (𝑄(𝑠 , 𝑎 ) −  𝑄∗)  

          Update Q using a gradient descent algorithm by minimize the loss ℒ 

     Set 𝑠 ← 𝑠  

     end 

end 

 

The hyperparameters of DQN approach which are determined for training process are 

shown in table 3.4. 
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Table 3.4  

The Hyperparameters of DQN Approach for Path Planning  

hyperparameter Setting Value 

Episode number 10,000 

Max step 1,000 

Learning rate (𝛼) 0.001 

Discount factor (𝛾) 0.99 

𝜖-start 1.0 

𝜖-min 0.01 

𝜖-decay 0.99999 

Memory capacity (K) 5000 

Minibatch (N) 64 

 

Convolution neural networks (CNN) is a type of artificial neural network used in image 

recognition and processing that is specifically designed to process pixel data. The layers 

of a CNN consist of an input layer, an output layer and a hidden layer that includes 

multiple convolutional layers, pooling layers, fully connected layers and normalization 

layers. The removal of limitations and increase in efficiency for image processing 

results in a system that is far more effective, simpler to trains limited for image 

processing. In order to find an appropriate convolutional layer for this thesis’ state, three 

different convolutional layers are selected to test the performance consisted of ordinary 

convolutional layer, ResNet18, and ResNet50. 
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Ordinary Convolutional Network 

 

Figure 3.8  

Structure of Ordinary Convolution Network for Path Planning  

 

 

Ordinary Convolution Network of this thesis consists of five convolutional layers with 

ReLU activation function and four fully connected layers with ReLU activation 

function. The last layer is a linear layer which approximates the Q-values (see Figure 

3.8). The network takes state sized 4x172x300 as an input, the convolutional layer 

transforms the input into a feature map then feed to fully connected layer. Finally, the 

network generates eight Q-values. 

ResNet 

The ResNet Convolution Neural Network was first described in the ResNet paper (He 

et al., 2016). It is the popular as a baseline model today. Before the rise of ResNet, there 

were many difficulties when building very deep neural networks. Normalization 

technique could solve the problem when increasing the network depth. However, when 

the depth goes beyond 10 – 20 layers, the problem of degradation has occurred. With 
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additional network depth, training error has decreased to some point then it starts to 

increase. ResNet introduced a mechanism for shortcut connections that prevents the 

scrambling of effect of newly initialized layers by bypassing them, allowing 

undegraded gradient information to be efficiently backpropagated to the earliest layers 

of the model. 

ResNet18 is the simplest ResNet with 8 residual blocks (there are two convolutional 

layers in each residual block), the initial convolution layer, and the final linear layer 

with sofmax activation function, giving a total 18 layers. However, ResNet18 was 

modified in this thesis by replacing the last fully connected layer with five fully 

connected layers with ReLU activation function as shown in Figure 3.9. 

 

Figure 3.9  

Structure of Modified ResNet18 for Path Planning  

 

 

The residual block is a reusable block. ResNet18 and ResNet34 use a basic residual 

block, but ResNet50, ResNet101, and ResNet152 use bottleneck block which is more 

complicated residual blocks with three convolutions. We also need two types of residual 
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block, one that preserves feature map size and one that allows changes to the feature 

map size (see Figure 3.10 & 3.11). 

 

Figure 3.10  

Structure of Residual Blocks, Preserved and Not Preserved Feature Map Size 

 

 

Figure 3.11  

Structure of Bottleneck Blocks, Preserved and Not Preserved Feature Map Size 
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ResNet50 which is more complicated when compared to ResNet18 consists of 16 

bottleneck blocks (there are three convolutional layers in each bottleneck block), the 

initial convolution layer, and the final linear layer with sofmax activation function, 

giving a total 50 layers. However, ResNet50 was modified in this thesis by replacing 

the last fully connected layer same structure as modification in ResNet18 as shown in 

Figure 3.12. 

 

Figure 3.12  

Structure of Modified ResNet50 for Path Planning  

 

 

Three different structure of convolution network are trained individually. The results 

are compared to find which convolution network has the best performance in order to 

find the optimal path when encounter with the random maps. After finished training 

process, the network with parameter that has the best reward during training was 

selected. All three convolutional network were evaluated by running 100 episodes in 

simulation. The convolution network that has the highest episode reward will be select 

as a winner. The results of the experiment are shown in Evaluation session. 
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Next assumption is to evaluate reinforcement learning algorithm for path planning 

problem. When consideration of the state as referred in previous, there is unlimited 

number of possible states which can generate from the environment. This type of 

countless number of states is suitable for reinforcement learning with model-free 

method to handle with. In this thesis, there are three reinforcement learning algorithms 

were selected for comparison the performance in path planning problem those are deep 

Q-learning network (DQN), double deep Q-learning network (DDQN), and proximal 

policy optimization (PPO). 

DQN and DDQN are reinforcement learning algorithm in value-based method that find 

the optimal policy via approximation Q-value. And PPO is reinforcement learning 

algorithm in policy-based method that directly find the optimal policy via optimization 

the policy parameters. Due to DQN was already mentioned previously, thus only 

DDQN and PPO algorithm will be described in this part.  

Double Deep Q-Learning Network (DDQN) 

Double deep Q-learning network is developed in order to solve the problem of 

overestimation of action-value in deep Q-learning network (Xiao et al., 2020). When 

we consider target Q-value in DQN algorithm, the term 𝑚𝑎𝑥 𝑄(𝑠 , 𝑎 ) take the 

maximum overestimate value that led to maximization bias in learning process. This 

problem leads to unstable training and low-quality policy. This problem will be solved 

by using DDQN. The solution involves using two separated Q networks, primary 

network and target network, each network is used to update each other. The primary Q 

network used to estimate Q-value of current state and was updated in every step. On 

the other hand, target network used to estimate the Q-values of next state and was 

updated in particular time duration by copy the primary network’s parameters. The 

calculation of target Q-value in DDQN algorithm and learning step are shown in 

algorithm 2. 

 

Algorithm 2 Double deep Q-learning with experience replay 

Initialize experience replay memory D to capacity K 

Initialize network 𝑄  and target network 𝑄  with random weights 

Update target network parameters 𝜃  ←  𝜃 
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Initialize the Agent to interact with the environment 

for episode = 1, M do 

     𝜖 ← setting new epsilon with 𝜖-decay 

     With probability 𝜖 select the random action 𝑎  

     Otherwise select 𝑎 =  𝑚𝑎𝑥 𝑄 (𝑠 , 𝑎) 

     Agent takes action 𝑎  and observe reward 𝑟  and state 𝑠  

     Store transition (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) in D 

     If enough experience in D then 

          Sample random minibatch N of transitions (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) from D 

          Compute target Q-value: 

          𝑄∗ =  𝑟 +  𝛾𝑄 (𝑠 , 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄 (𝑠 , 𝑎 ))(1 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) 

          Calculate the loss ℒ =  ∑ (𝑄(𝑠 , 𝑎 ) −  𝑄∗)  

          Update 𝑄  using a gradient descent algorithm by minimize the loss ℒ 

          If reach the period of updating target network, 𝑄  then 

               Update target network parameters 𝜃  ←  𝜃 

     Set 𝑠 ← 𝑠  

     end 

end 

  

The difference between DQN and DDQN is shown in the derived equation of target Q-

value, especially in term of maximum Q-value of next state. In DQN algorithm, it 

calculates the maximum Q-value of the next state using primary network 𝑄  which is 

always changing during training time. Whereas DDQN calculates the maximum Q-

value of the next state using target network 𝑄  but the next action is selected from the 

highest Q-value of next state by primary network 𝑄 . The target network’s parameters 

are fixed in particular duration and update to be the same as the present primary 

network’s parameters. With this technique, the network Q should be improved the 

performance in convergence compared to ordinary DQN. The hyperparameters of 

DDQN approach which are determined for training process are shown in table 3.5. 
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Table 3.5  

The Hyperparameters of DDQN Approach for Path Planning  

hyperparameter Setting Value 

Episode number 10,000 

Max step 1,000 

Learning rate (𝛼) 0.001 

Discount factor (𝛾) 0.99 

𝜖-start 1.0 

𝜖-min 0.01 

𝜖-decay 0.99999 

Memory capacity (K) 5000 

Minibatch (N) 16 

Target 𝑄  update period 2,000 

 

Proximal Policy Optimization (PPO) 

Proximal policy optimization is an interesting algorithm in the field of reinforcement 

learning, which provides an improvement on trust region policy optimization (TRPO). 

This algorithm was proposed in 2017 (Schulman et al. 2017). PPO is a policy gradient 

method and can be used for environments with either discrete or continuous action 

spaces. It trains a stochastic policy in an on-policy way and utilizes the actor critic 

method. The actor maps the observation to an action and the critic gives an expectation 

of the rewards of the agent for the given observation. Firstly, a set of trajectories consist 

of state, action, log 𝜋 (𝑎 |𝑠 ), reward, next state, and terminal of each step is collected 

in a memory. When the memory is filled, it collects a set of trajectories for each epoch 

by sampling from the memory and the advantage estimates are computed in order to 

update the policy and fit the value function. The policy is updated via a stochastic 

gradient ascent optimizer, while the value function is fitted via some gradient descent 

algorithm. This procedure is applied for many epochs until the environment is solved. 

The pseudocode representing the learning step of PPO is shown in algorithm 3. 
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Algorithm 3 Proximal policy optimization with clipped surrogate objective  

Initialize memory to collect trajectories D with capacity K  

Initialize policy parameters 𝜃 

Initialize value function parameters 𝜙 

Initialize the Agent to interact with the environment 

for episode = 1, M do 

     Select action 𝑎  by policy 𝜋  

     Agent runs action 𝑎  and observe reward 𝑟  and state 𝑠  

     Collect set of trajectories (𝑠 , 𝑎 , log 𝜋 (𝑎 |𝑠 ),  𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) in D 

     If memory D is filled with capacity K then 

          Compute expected reward, 𝑅 =  𝑟 +  𝛾𝑉 (𝑠 )(1 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)  

          Compute advantage estimates, 𝐴 =  𝑅 −  𝑉 (𝑠 ) 

          for epoch = 1, P do 

               Sample minibatch N of trajectories from memory until empty 

               Calculate probability ratio, 𝑟(𝜃) =  
( | )

( | )
 

               Calculate policy loss with clipped surrogate objective: 

               𝐿 (𝜃) =  𝔼 min (𝑟 (𝜃)𝐴 , 𝑐𝑙𝑖𝑝(𝑟 (𝜃), 1 −  𝜖, 1 +  𝜖)𝐴 )   

               Calculate value function loss, 𝐿(𝜙) =  ∑ (𝑉 (𝑠 )  −  𝑅 )  

               Total loss, 𝐿 =  𝐿 (𝜃) + 2𝐿(𝜙) 

               Update policy parameter 𝜃 and value function parameters 𝜙 

               using a gradient descent algorithm 

   Set 𝑠 ← 𝑠  

     end 

end 

 

In this thesis, the policy network and value function network are combined to be single 

network (see Figure 3.13). The network takes observation as input then estimate state 

value and generate action distribution as the same time. The total loss to update network 

is shown in algorithm 3 and was update with Adam optimizer. The last layer of actor 

applying Softmax activation function to estimate probability for each action then the 
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action was sampled via this probability. The hyperparameters of PPO approach which 

are determined for training process are shown in table 3.6. 

 

Figure 3.13  

Structure of PPO for Path Planning  

 

 

Table 3.6  

The Hyperparameters of PPO Approach for Path Planning  

hyperparameter Setting Value 

Episode number 10,000 

Max step 1,000 

Learning rate (𝛼) 0.001 

Discount factor (𝛾) 0.99 

𝜖-clipped 0.1 

Number of Epoch (P) 30 

Memory capacity (K) 256 

Minibatch (N) 32 
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In the last step to find reinforcement learning model for path planning, the best model 

will be supervised by the best well-known path planning algorithm, A*. A* algorithm 

guarantees to find the optimal path in this grid world environment. The experiences 

played with A* are collected in replay buffer memory for exploitation.  There is mixture 

experience between exploration from RL policy 𝜋, and exploitation from A*. Hence, 

in learning step, the RL model supposes to learn for finding optimal path as well. 

Moreover, this experiment would like to see the appropriate proportion of experience 

replays which are collected via RL model and A* algorithm. the assumption is tested 

with three scenarios, no supervised, 25% supervised with A*, and 50% supervised with 

A*. The model after training should find the optimal path in any environment and 

training time will be considered as well. 

3.4 Motion Control Task 

After path was created from current position to desire goal, motion control part is 

required to allow mobile robot moving to the target location. In this thesis, differential 

wheeled mobile robot is selected to implement the object transportation in practice due 

to it is easy to build and control. Differential wheeled mobile robot is nonholonomic 

robot which its controllable degree of freedom is less than the total degrees of freedom. 

A car has three degrees of freedom, i.e., its position in two axes and its orientation. 

However, there are only two controllable degrees of freedom which are left wheel speed 

and right wheel speed. This makes it difficult to  turn the car in any direction unless 

the car slides. In addition, it is more challenge to form the formation and transport the 

object using nonholonomic mobile robots. 

Equation 3.1 to 3.2 shows the relation between robot’s linear velocity and angular 

velocity when left wheel’s speed and right wheel’s speed are provided. 

 𝑣 =  
(   )

, ∆𝑠 = 𝑣𝑑𝑡  (3.1) 

 𝜔 =  
(  )

, ∆𝜃 =  𝜔𝑑𝑡   (3.2) 
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Where 𝑣  is a linear velocity, ∆𝑠  is displacement, 𝜔  is an angular velocity, ∆𝜃  is 

changing of heading, 𝑣  is left wheel’s speed, 𝑣  is right wheel’s speed, 𝑙 is the distance 

between two wheels, and 𝑑𝑡 is time period. 

In figure 3.14, assume robot is at some position (𝑥, 𝑦) in reference coordinate, headed 

in a direction making an angle 𝜃 with X axis. We assume the robot’s center is at the 

midpoint along the wheel axle. By manipulating the control parameters 𝑣 , 𝑣 , the 

displacement ∆𝑠 and changing of orientation ∆𝜃  can be calculated by equation 3.1. 

Thus, we can get the robot to move to different positions (𝑥 , 𝑦 ) and orientations 𝜃 . 

 

Figure 3.14  

Displacement of Two Wheels Mobile Robot 

 

 

Due to the displacement ∆𝑠 occurred within short period is small, so it can be assumed 

∆𝑑 =  ∆𝑠, then we can find the displacement in x-axis, the displacement in y-axis, and 

changing of heading using equation 3.3 to 3.4. Finally, the new position (𝑥 , 𝑦 )  and 

orientations 𝜃  can be obtained from equation 3.5. 

 ∆𝑥 =  ∆𝑠 cos(𝜃 +  ∆𝜃/2) (3.3) 

 ∆𝑦 =  ∆𝑠 sin(𝜃 + ∆𝜃/2) (3.4) 

 
𝑥
𝑦

𝜃

=  
𝑥
𝑦
𝜃

+ 
𝑣𝑑𝑡 cos(𝜃 +  𝜔𝑑𝑡/2)

𝑣𝑑𝑡 sin(𝜃 + 𝜔𝑑𝑡/2),
𝜔𝑑𝑡

 (3.5) 
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According to equation 3.5, to display the mobile robot’s motion in simulation, it used 

only linear velocity and angular velocity with 𝑑𝑡  to update the robot’s position. 

However, in practice, we need to transform linear velocity and angular velocity to left 

wheel speed and right wheel speed then sending the command to mobile robots. 

To control the robot’s motion, the error between the robot’s current position and target 

position is used in order to generate the outputs as linear velocity and angular velocity. 

The robot’s local coordinate was set up considering robot’s position at point (0, 0), as 

you can see in figure 3.15. The target position was transformed into robot’s coordinate 

then error in x-axis ∆𝑥  is used to generate linear velocity 𝑣 and error in orientation 

∆𝜃  is used to generate angular velocity 𝜔. 

 

Figure 3.15  

Errors in Robot’s Coordinate 

 

 

Policy-based reinforcement learning method is suitable to deal with the problem with 

continuous action space. In this thesis, there are three reinforcement learning algorithms 

which are selected to perform motion control task, proximal policy optimization (PPO), 

deep deterministic policy gradient (DDPG), and soft actor-critic (SAC).  

As mentioned previously, proximal policy optimization is one of Policy Gradient 

method that can be used for environments with either discrete or continuous action 
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spaces by training a stochastic policy and utilizing the actor critic method. The network 

for the motion control task is shown in figure 3.16. 

 

Figure 3.16  

Structure of PPO for Motion Control Task 

 

 

According to the PPO network, the input is an observation which consist of two errors, 

distance error ∆𝑥 and heading error ∆𝜃. It has two separate branches in this network, 

one called value function used to estimate state value and other called policy network 

used to generate actions in form of linear velocity 𝑣 and angular velocity 𝜔. Policy 

network generates two values for each action, Alpha-𝛼 and Beta-𝛽  then utilize the 

function in pytorch called “Beta”. Beta function is one of distribution in exponential 

family which require two attributes, concentration1 and concentration2. Then the action 

is sampled from this distribution. Training step of this PPO network still follows 
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Algorithm 3. And the hyperparameters for training process of this PPO network are 

determined as shown in table 3.7. 

 

Table 3.7  

The Hyperparameters of PPO Approach for Motion Control Task  

hyperparameter Setting Value 

Episode number 500 

Max step 400 

Learning rate (𝛼) 0.001 

Discount factor (𝛾) 0.99 

𝜖-clipped 0.1 

Number of Epoch (P) 20 

Memory capacity (K) 1024 

Minibatch (N) 128 

 

Deep Deterministic Policy Gradient (DDPG) 

Deep deterministic policy gradient is an algorithm which simultaneously learns a Q-

function and a policy. It uses off-policy data and bellman equation to learn the Q-

function and uses the Q-function to learn the policy (Lillicrap et al., 2016). This 

approach is closely related to deep Q-learning. Instead of learning an approximator to 

𝑄∗(𝑠, 𝑎), DDPG learns an approximator to 𝑎∗(𝑠) and it can handle any specifically 

adapted environment with continuous action spaces. When there is an infinite number 

of action spaces, we can’t compute all Q-values and find the best action which has the 

maximum Q-value among them. But DDPG maps the any given environment to 

continuous action spaces directly with the policy. And it has a Q-function to evaluate 

how good of that action is. The learning step of DDPQ is shown in Algorithm 4. 

 

Algorithm 4 Deep deterministic policy gradient 

Initialize experience replay memory D to capacity K 

Initialize policy 𝜇 , Q-function 𝑄 , target policy 𝜇 , target Q-function 𝑄  

Set target policy parameters 𝜃  ←  𝜃, and target Q-function parameters 𝜙  ←  𝜙 
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Initialize the Agent to interact with the environment 

for episode = 1, M do 

     Select 𝑎 = 𝜇 (𝑠 ) 

     Agent executes action 𝑎  and observe reward 𝑟  and state 𝑠  

     Store transition (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) in D 

     If enough experience in D then 

          Sample random minibatch N of transitions (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) from D 

          Compute target Q-value: 

          𝑄∗ =  𝑟 +  𝛾𝑄 (𝑠 , 𝜇 (𝑠 ))(1 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) 

          Compute the MSE loss, 𝐿 =  ∑ (𝑄 (𝑠 , 𝑎 ) −  𝑄∗)  

          Update 𝑄  using a gradient descent algorithm 

          Compute the policy loss, 𝐿 =   ∑ 𝑄 𝑠 , 𝜇 (𝑠 )  

          Update 𝜇  using a gradient ascent algorithm 

          Update target networks’ parameters with: 

          𝜃  ←  𝜏𝜃 + (1 −  𝜏)𝜃  

          𝜙  ←  𝜏𝜙 + (1 −  𝜏)𝜙  

     Set 𝑠 ← 𝑠  

     end 

end 

 

Likely to double deep Q-learning, in DDPG algorithm, there are target Q-function and 

target policy used to compute target Q-value then updating Q-function 𝑄  using a 

gradient descent algorithm. The policy 𝜇  is updated by using updated Q-function with 

a gradient ascent algorithm. Later, each learning step, the target policy 𝜇  and target 

Q-function 𝑄  are updated by cloning the current network parameters with small 

proportion 𝜏. The figure 3.17 shows the structures of policy network and Q-function 

network. It used a simple structure of neural network for Q-function with fully 

connected layers and ReLU. For policy network, the last layer applied Tanh activation 

function in order to limit the boundary of action within specific range. The 

hyperparameters for training process of DDPG approach are determined as shown in 

table 3.8 
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Figure 3.17  

Structures of Policy and Q-Function of DDPG for Motion Control Task 

 

 

Table 3.8  

The Hyperparameters of DDGP Approach for Motion Control Task  

Hyperparameter Setting Value 

Episode number 500 

Max step 400 

Learning rate of policy network (𝛼) 0.0005 

Learning rate of Q-function network (𝛽) 0.001 

Discount factor (𝛾) 0.99 

Tau (𝜏) 0.001 

Memory capacity (K) 10000 

Minibatch (N) 128 
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Soft Actor-Critic (SAC) 

Soft actor-critic is an algorithm that optimizes a stochastic policy in an off-policy way. 

It is a combination between stochastic policy optimization and DDPG approach 

(Haarnoja et al., 2018). A main feature of SAC is entropy regularization. The policy is 

trained to maximize a trade-off between expected return and entropy which measures a 

randomness in the policy. It is similar to the exploration-exploitation trade-off. An 

increasing entropy results in more exploration, which can accelerate a learning later. It 

can also prevent the policy from too early converging to a bad local optimum. SAC 

simultaneously learns a policy 𝜋 , two Q-functions 𝑄 , 𝑄 , and value-function 𝑉  as 

be shown in Algorithm 5.  

 

Algorithm 4 Soft actor-critic 

Initialize experience replay memory D to capacity K 

Initialize policy 𝜋 , two Q-functions 𝑄 , 𝑄 , value-function 𝑉  and target value-

function 𝑉  

Set target value-function parameters 𝜓  ←  𝜓 

Initialize the Agent to interact with the environment 

for episode = 1, M do 

     Select 𝑎 = 𝜋 (𝑎|𝑠 ) 

     Agent executes action 𝑎  and observe reward 𝑟  and state 𝑠  

     Store transition (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) in D 

     If enough experience in D then 

          Sample random minibatch N of transitions (𝑠 , 𝑎 , 𝑟 , 𝑠 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) from D 

          Compute target value: 

          𝑉∗ = min 𝑄 (𝑠 , 𝑎), 𝑄 (𝑠 , 𝑎) − log 𝜋 (𝑎|𝑠 ) , 𝑎  ∼  𝜋 (𝑎|𝑠 )  

          Compute the value loss, 𝐿 =  ∑ (𝑉 (𝑠 ) − 𝑉∗)  

          Update 𝑉  using a gradient descent algorithm 

          Compute the policy loss: 

          𝐿 =   ∑ (min 𝑄 (𝑠 , 𝑎), 𝑄 (𝑠 , 𝑎) − log 𝜋 (𝑎|𝑠 )) 

          Update 𝜋  using a gradient ascent algorithm 

          Compute target Q-value: 
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          𝑄∗ = 𝑟 +  𝛾(𝑉 (𝑠 ))(1 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙)   

          Compute Q-value loss: 

          𝐿 =   ∑ 𝑄 (𝑠 , 𝑎 ) −  𝑄∗ , 𝐿 =   ∑ 𝑄 (𝑠 , 𝑎 ) − 𝑄∗  

          𝐿 = (𝐿 +  𝐿 )/2 

          Update 𝑄 , 𝑄  using a gradient descent algorithm by minimize the loss 𝐿  

          Update target value-function with 

          𝜓  ←  𝜏𝜓 + (1 −  𝜏)𝜓  

     Set 𝑠 ← 𝑠  

     end 

end 

 

There are totally five networks in this SAC approach, policy 𝜋 , two Q-function 

𝑄 , 𝑄 , value function 𝑉 , and target value function 𝑉 . Two Q-functions and policy 

are used to compute target value. The value function is updated using gradient descent 

algorithm with MSE loss between value function and this target value. The policy loss 

is computed by using two Q-functions and current policy with reparameterization trick. 

The policy is updated using gradient assent algorithm. For the updating of Q-function, 

it uses a gradient descent algorithm to minimize the average loss of two Q-functions 

and update both networks at the same time. The structure of three networks, policy, Q-

function, and value function are shown in figure 3.18. 
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Figure 3.18  

Structures of Policy, Q-Function, and V-Function of SAC for Motion Control Task 

 

 

The policy network has five layers of fully connected layers with ReLU activation 

function. There are two parallel layers at the last layer to estimate mean-𝜇 and std-𝜎 for 

each action. The networks of Q-function and value function are consisted of six fully 

connected layers with ReLU to estimate action value and state value. The 

hyperparameters of SAC approach in training process are shown in table 3.9. 
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Table 3.9  

The Hyperparameters of SAC Approach for Motion Control Task  

Hyperparameter Setting Value 

Episode number 500 

Max step 400 

Learning rate of policy network (𝛼) 0.001 

Learning rate of Q-function network (𝛽) 0.001 

Discount factor (𝛾) 0.99 

Tau (𝜏) 0.001 

Memory capacity (K) 10000 

Minibatch (N) 128 

 

3.5 Object Transportation 

To accomplish the object transportation task, it is necessary to utilize the RL models 

both path planning and motion control which obtained from previous session. The 

models which have the best performance among all available options will be selected. 

As mentioned in session 3.1, the object transportation task consists of four sub-

processes, finding paths for all robots to loading positions, controlling robots 

individually moving to target positions, finding path for group of robots from loading 

position to delivery position, and controlling group of robots moving in a specific 

formation with load carriage to target position. 

Implementation in Simulation 

This thesis evaluates the result of the RL models both in simulation and practice. 

However, it is impossible to load an object in simulation, so the last sub-process in 

simulation is replaced by displaying a group of robots moving in a specific formation 

instead. The program which evaluates the RL models is create using python. The RL 

model handling with path planning takes responsibility to find individual paths for all 

robots from arbitrary positions to specified positions at loading point. And it also finds 

path for a group of robots from loading position to delivery position (see Figure 3.19). 

For the motion control task, the RL agents are trained separately for two different 
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purposes. The first RL model is trained to deal with path following task and another RL 

model is trained to handle with point following task. 

 

Figure 3.19  

Path Planning for Individual Robot and Group of Robots. 

 

 

In path following task, the agent is trained to control the robot’s motion in order to 

follow the planned path from start position to goal position (see Figure 3.20). Several 

waypoints are created within path interval range. The robot’s position error is computed 

using the current referred waypoint and the current position of the robot for estimating 

the robot’s speeds in form of linear velocity and angular velocity. The robot’s current 

position will be updated in real time to see the movement. When the distance error 

between robot and referred waypoint is less than 50 pixels, it shifts to refer the next 

waypoint in sequence. The episode will be finished when the agent can control robot to 

reach the goal position properly with error to the final position less than 2 pixels. Or the 

distance error goes beyond the acceptable error at 170 pixels, the episode will be forced 

to terminate. 
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Figure 3.20  

Motion Control Training Process for Path Following Task 

 

 

Point following task is used to control robot to move in a specific formation when apply 

to multi-robot system. Considering when we would like the robots move in a specific 

formation, firstly, we set a formation with specified position for each robot. The center 

of group of robots is considered as the representative of this group. This thesis applied 

leader-followers concept to control multiple robots moving in specific formation. The 

virtual robot is created at the center of a formation as a leader and all robots are the 

followers. The reference points for all robots are created and updated in every step 

respected to the current position of this virtual robot which moving follow the path via 

PID control. The agent is trained by using the distance error between robot’s current 

position and the moving reference point as an observation to approximate the action in 

linear velocity and angular velocity (see Figure 3.21). The agent will be obtained high 

reward when it can control the robot to move with less error as possible. The episode 

will end when the virtual robot reaches goal’ position and the error between agent and 

last reference point is less than 2 pixels or the error is larger than an acceptable error at 

120 pixels. 
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Figure 3.21  

Motion Control Training Process for Point Following Task 

 

 

Implementation in Practice 

When implement the RL models in practice, the map in real environment is set by 

placing the obstacles and mobile robots in a limited area. The map’ dimension is 1200 

millimeters in height and 2000 millimeters in width when considering in a perspective 

of webcam’s view. However, the map can be changed by placing the obstacles and the 

robots in any available positions at initial state. The map was captured by single camera 

installed at middle top location of the map as see in figure 3.22.  

 

Figure 3.22  

Real Environment for Experiment. 

 

 

The image captured by this webcam has a distortion effect, so it is necessary to undistort 

the image with distortion matrix obtained from camera calibration process (see Figure 



 

 46

3.23). Then the undistorted image is transformed using Homography matrix in order to 

have the perfect perspective of top view with specific area. The obstacles and robots 

are detected by using HSV range technique. the mask for each object is created using 

the defined values of HSV range, then the contours and positions of all objects are 

identified (see Figure 3.24). 

 

Figure 3.23  

Distorted Image and Undistorted Image 

 

 

Figure 3.24  

Image with Homography Transformation, and Identification of Position. 

 

 

The processed image with map’s information is transformed into an observation for 

path planning agent in order to create the optimal path for each mobile robot. And the 

distance errors detected via camera are used to control the robots’ motion by the motion 

control agents. The results of performance comparison of the agents both for path 

planning and motion control task are shown in the evaluation chapter later. 
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CHAPTER 4 

SIMULATION AND EXPERIMENT RESULTS 

The object transportation of multiple robots is the consequence of assemblage of basic 

sub-processes of the robots. The details of cooperation among multiple robots in object 

transportation task are listed below: 

1. Multiple robots are placed at any initial position inside the working area. 

2. Reinforcement learning model finds the optimal paths with collision-free for all 

mobile robots individually from initial positions to loading points. 

3. Reinforcement learning model controls each robot to follow its path to goal 

position. 

4. The object is transferred to the robots. 

5. Reinforcement learning model find the optimal path with collision-free for 

group of mobile robots from loading point to delivery point. 

6. Reinforcement learning model controls all robots follow the path with fixed 

group shape to transfer the object to assign position. 

To accomplish the object transportation, there are three necessary reinforcement 

learning models will be selected to handle to all subtasks, path planning, path following 

task, and point following task. In each subtask, several reinforcement learning model 

with different solutions will be evaluated in order to an appropriate reinforcement 

learning model.  

4.1 Evaluate RL Model for Path Planning  

In path planning, the performance of reinforcement learning model is evaluated by 

considering the capability of the model which can find the optimal path for mobile robot 

in any random map. Therefore, the RL model is evaluated by the episode reward that 

obtained in the environment of path planning. If the agent can find the shorter path from 

initial position to goal position that mean the higher reward, it could get. Moreover, the 

robustness of the model is measured by evaluating the RL model with several episodes 

to see how often it has fallen in a local optimum where the agent can’t find path to the 

goal position. There are three steps were created in order to find the reinforcement 

learning model for path planning as following: 
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1. Evaluate the convolutional layers which suitable for the observation of this path 

planning. 

2. Evaluate the reinforcement learning algorithm which has high performance in 

path planning. 

3. Explore the effect of semi-supervised method by A* algorithm to the 

reinforcement learning model to find the optimal path. 

Evaluate the Convolutional Layers 

Three convolutional layers were selected as mentioned in previous chapter, the ordinary 

convolutional layers, Resnet18, and Resnet50. Those convolution networks were 

applied to deep Q-learning in order to solve path planning problem. During training 

process, the parameters of RL model will be saved when the agent obtained a new high 

score of average reward of last 100 episodes. 

Figure 4.1 shows a moving average reward of DQN with ordinary convolutional layer 

in training process. The model obtained the highest average reward at episode 5766 

with -11.35 scores. The model was ended training process at episode 8250 with 85 

hours for training time, because this model had fallen into local optimum where agent 

always hit the obstacles and couldn’t find an appropriate path to goal position. This 

situation led the model to has a poor-quality Q-function and can’t further find path to 

the goal. 

 

Figure 4.1  

Training Result of DQN with Ordinary Convolutional Layer for Path Planning 
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Figure 4.2 shows a result of DQN with ordinary convolutional layer in evaluating mode. 

the mean reward is -47.00. the maximum reward is 0.37. And the minimum reward is -

600.00. this model can find the path for any simple maps. However, paths that were 

created by this model still far to consider as an optimal path. And it can’t find path to 

goal position when encounter any complex maps. 

 

Figure 4.2  

Testing Result of DQN with Ordinary Convolutional Layer for Path Planning 

 

 

Figure 4.3 shows a moving average reward of DQN with Resnet18 in training process. 

The model obtained the highest average reward at episode 8145 with -8.50 scores. The 

training process took 84 hours 11 minutes and 14 seconds to complete 10,000 episodes. 

 

 Figure 4.3  

Training Result of DQN with Resnet18 for Path Planning 
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Figure 4.4 shows a result of DQN with Resnet18 in evaluating mode. the mean reward 

is -47.68. the maximum reward is 0.00. And the minimum reward is -600.00. this model 

can find the optimal path for some simple maps. However, many time, this model fell 

into local optimum near the goal position and couldn’t find completed path. 

 

Figure 4.4  

Testing Result of DQN with Resnet18 for Path Planning 

 

 

Figure 4.5 shows a moving average reward of DQN with Resnet50 in training process. 

The model obtained the highest average reward at episode 8093 with -5.65 scores. The 

training process took 59 hours 16 minutes and 57 seconds to complete 10,000 episodes. 

The reason for the shorter training time when compared to the DQN model with 

Resnet18 because this model was applied with smaller minibatch size than the DQN 

with Resnet18. 
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Figure 4.5  

Training Result of DQN with Resnet50 for Path Planning 

 

 

Figure 4.6 shows a result of DQN with Resnet50 in evaluating mode. the mean reward 

is -15.09. the maximum reward is 0.00. And the minimum reward is -544.36. this model 

can find path to the goal closely to the optimal path for both simple maps and complex 

map. However, it still had some episodes that the model can’t find an appropriate path 

to the goal. 

 

Figure 4.6  

Testing Result of DQN with Resnet50 for Path Planning 
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The performance comparison of DQN model with selected convolutional layers is 

shown in table 4.1. The result shows that deep Q-learning with Resnet50 is outperform 

both in training process and evaluating process when compared to the other choices. 

Even if the minibatch size setting in training process is less than the other but Resnet50 

still has the best result. It can be concluded that Resnet50 can create better feature map 

which is easier to further estimate Q-values than other convolutional layers. 

 

Table 4.1  

Performance of DQN with Convolutional Layers for Path Planning 

 

 

Evaluate the RL Algorithms 

Three reinforcement learning algorithms were selected as mentioned in previous 

chapter, deep Q-learning, double deep Q-learning, and proximal policy optimization. 

Those reinforcement learning model apply resnet50 as convolutional layer in order to 

solve path planning problem. During training process, the parameters of RL model will 

be saved when the agent obtained a new high score of average reward of last 100 

episodes. 

Figure 4.7 shows a moving average reward of DDQN with Resnet50 in training process. 

The model obtained the highest average reward at episode 9404 with -5.06 scores. The 

training process took 30 hours 44 minutes and 48 seconds to complete 10,000 episodes. 

The reason for the shorter training time when compared to the DQN model because this 

model was applied with smaller minibatch size than the DQN. 

 

 

BEST REWARD EP TRAIN TIME MEAN REWARD MAX REWARD MIN REWARD

Simple Conv -11.35 5766 Too long time -47.00 -0.37 -600.00

Resnet18 -8.50 8145 303073.72 -47.68 0.00 -600.00

Resnet50 -5.65 8093 213416.94 -15.09 0.00 -544.36

MODEL

TRAIN TEST
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Figure 4.7  

Training Result of DDQN with Resnet50 for Path Planning 

 

 

Figure 4.8 shows a result of DDQN with Resnet50 in evaluating mode. the mean reward 

is -10.34. the maximum reward is 0.00. And the minimum reward is -600.00. this model 

can find the optimal path for both simple maps and complex map. However, it still had 

just few episodes that model can’t find an appropriate path to the goal. Nevertheless, 

the performance of DDQN algorithm is better than DQN algorithm if compared from 

the results. 

 

Figure 4.8  

Testing Result of DQN with Resnet50 for Path Planning 
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Figure 4.8 shows a moving average reward of PPO with Resnet50 in training process. 

The model obtained the highest average reward at episode 1190 with -931.45 scores.  

The training process was stopped at episode 1200 and took almost 65 hours. PPO with 

Resnet50 showed no signal to improve the performance since episode 200. the model 

can’t converge and can’t find path to the goal position as well. 

 

Figure 4.9  

Training Result of PPO with Resnet50 for Path Planning 

 

 

Figure 4.10 shows a result of PPO with Resnet50 in evaluating mode. the mean reward 

is -250.67. the maximum reward is 38.08. And the minimum reward is 392.23. Unlike 

DQN and DDQN, PPO model couldn’t find path to goal position properly. Due to the 

model couldn’t converge in training process. Due to PPO utilize the trajectory inside 

memory replay in learning process, but the memory capacity is very small compared to 

the maximum step per episode due to the computing capacity of the machine. It means 

that the model didn’t have enough experience in exploration. And this led the model to 

have very low-quality Q-function. 
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Figure 4.10  

Testing Result of PPO with Resnet50 for Path Planning 

 

 

The performance comparison of reinforcement learning algorithms is shown in table 

4.2. The result shows that double deep Q-learning with Resnet50 is outperform both in 

training process and evaluating process when compared to the other choices. Even if 

the minibatch size setting in training process of DDQN is less than DQN but it still has 

the best result. It can be concluded that DDQN has appropriate algorithm to estimate 

Q-values in path planning. 

 

Table 4.2  

Performance of RL Models for Path Planning 

 

 

 

 

BEST REWARD EP TRAIN TIME MEAN REWARD MAX REWARD MIN REWARD

DQN -5.65 8093 213416.94 -15.09 0.00 -544.36

DDQN -5.06 9404 110687.63 -10.34 0.00 -600

PPO -931.45 1190 Too long time -250.67 -38.08 -392.23

TRAIN

MODEL

TEST
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Explore the Effect of Semi-Supervised by A* Algorithm 

Normally, reinforcement learning model learns how to achieve the task and obtain the 

maximum total reward by exploration and exploitation. However, if we need the model 

to have a faster convergence rate, supervised method is a one choice that provide the 

optimum action directly to the environment and the trajectories will be collected in the 

memory for learning step later. This supervised method can reduce time consumption 

in exploration process in order to find the optimal action.  In semi-supervised method, 

path in each episode were found by RL model and A* algorithm. The trajectories of 

both solutions are collected in memory. At the beginning, the trajectories collected from 

RL model aimed for exploration. And the trajectories collected from A* aimed for 

shortcutting to the optimal solution. However, the map always be changed during 

training process, so it is necessary to have enough experiences from exploration as well. 

In this experiment, the DDQN with semi-supervised by A* algorithm in various ratio 

will be tested. The parameters of RL model will be saved when the agent obtained a 

new high score of average reward of last 100 episodes. 

Figure 4.11 shows a moving average reward of DDQN with 25% supervised by A* in 

training process. The model obtained the highest average reward at episode 9033 with 

-5.81 scores. The best score in training process didn’t significantly difference to DDQN 

without supervised. 

 

Figure 4.11  

Training Result of DDQN with 25% Supervised by A* for Path Planning 
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Figure 4.12 shows a result of DDQN with 25% supervised by A* in evaluating mode. 

the mean reward is -10.23. the maximum reward is 0.00. And the minimum reward is -

591.91. this model can find the optimal path for both simple maps and complex map. 

However, it still had just few episodes that model can’t find an appropriate path to the 

goal. The performance of DDQN with 25% supervised by A* is same as DDQN without 

supervised by A* but the training time is faster due to 25% of total episode were 

completed by A*. 

 

Figure 4.12  

Testing Result of DDQN with 25% Supervised by A* for Path Planning 

 

 

Figure 4.13 shows a moving average reward of DDQN with 50% supervised by A* in 

training process. The model obtained the highest average reward at episode 9501 with 

-2.47 scores. The best average reward of this mode is improved due to 50% of total 

paths were found by A* algorithm. 
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Figure 4.13  

Training Result of DDQN with 50% Supervised by A* for Path Planning 

 

 

Figure 4.13 shows a result of DDQN with 50% supervised by A* in evaluating mode. 

the mean reward is -12.19. the maximum reward is 0.00. And the minimum reward is -

600.00. this model can find the optimal path for both simple maps and complex map. 

However, it still had just few episodes that model can’t find an appropriate path to the 

goal. The performance of DDQN with supervised 50% by A* is same as DDQN without 

supervised by A* but the training time is faster due to 50% of total episode were 

completed by A*. 

 

Figure 4.14  

Testing Result of DDQN with 50% Supervised by A* for Path Planning 
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Figure 4.15 shows a moving average reward of DDQN with 75% supervised by A* in 

training process. The model obtained the highest average reward at episode 9483 with 

-2.10 scores. The best average reward of this mode is improved due 75% of total paths 

were found by A* algorithm. 

 

Figure 4.15  

Training Result of DDQN with 75% Supervised by A* for Path Planning 

 

 

Figure 4.16 shows a result of DDQN with 75% supervised by A* in evaluating mode. 

the mean reward is -30.92. the maximum reward is 0.00. And the minimum reward is -

591.91. this model can find the optimal path same as applying A* algorithm for simple 

maps. However, when the model encountered some complex map, many times it fell 

into local optimum and couldn’t find path to the goal position. Due to 75% of episodes 

in training process are accomplished by A* algorithm, thus this RL model lacks in 

experience from exploration in order to handle with any unseen environments. 
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Figure 4.16  

Testing Result of DDQN with 75% Supervised by A* for Path Planning 

 

 

The performance comparison of DDQN with semi-supervised by A* algorithm is 

shown in table 4.3. When considering the same number of episodes in training process, 

the result shows that double deep Q-learning with 25% supervised by A* has the highest 

score compared to the other choices. The performance of the RL model with different 

semi-supervisor ratio represented a trade-off between exploration and exploitation from 

A* algorithm. If the model has too much using A* algorithm in training process, it will 

lack in experience to handle with more complicated map. however, this problem can be 

solved by increasing the number of episodes in training process. Hence, the model could 

be improved to have an ability to find the optimal path like A* algorithm and can 

accomplish path planning for any random map. 

 

Table 4.3  

Performance of DDQN with Semi-Supervised by A* for Path Planning 

 

BEST REWARD EP TRAIN TIME MEAN REWARD MAX REWARD MIN REWARD

0% -5.06 9404 110687.63 -10.34 0.00 -600.00

25% -5.81 9033 98791.01 -10.23 0.00 -591.91

50% -2.47 9501 78166.37 -12.19 0.00 -600.00

75% -2.10 9483 64841.65 -30.92 0.00 -600.00

TRAIN

MODEL

TEST
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4.2 Evaluate RL Model for Path Following Task 

In path following task, the map is created in simulation randomly. A* algorithm is 

applied in order to find the optimal path. The objective of path following task is to 

control the differential wheeled mobile robot to follow the planned path until reach the 

goal. Three reinforcement learning algorithms in policy-based method are selected in 

order to test the performance in path following task. Those models consist of proximal 

policy optimization, deep deterministic policy gradient, and soft actor-critic. 

Reinforcement learning model which be trained in the environment without any 

disturbance will be used to perform in simulation. And reinforcement learning model 

which be trained in the environment with disturbance will be used to perform in 

practice. 

Training in Environment without Disturbance 

Figure 4.17 shows a moving average reward of PPO model in training process. The 

model obtained the highest average reward at episode 343 with 823.14 scores. The 

training process took 1 hour 49 minutes and 45 seconds to complete 500 episodes. PPO 

model can achieve path following task appropriately. 

 

Figure 4.17  

Training Result of PPO Model for Path Following Task (No Disturbance) 
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Figure 4.18 shows a result of PPO model in evaluating mode. the mean reward is 

696.88. the maximum reward is 1088.60. And the minimum reward is 433.60. This 

model can control differential wheeled mobile robot follow path to the goal properly.  

 

Figure 4.18  

Testing Result of PPO Model for Path Following Task (No Disturbance) 

 

 

Figure 4.19 shows a moving average reward of DDPG model in training process. The 

model obtained the highest average reward at episode 372 with 770.89 scores. The 

training process took 2 hours 2 minutes and 59 seconds to complete 500 episodes. 

DDPG model can achieve path following task appropriately. 

 

Figure 4.19  

Training Result of DDPG Model for Path Following Task (No Disturbance) 
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Figure 4.20 shows a result of DDPG model in evaluating mode. the mean reward is 

525.16. the maximum reward is 789.34. And the minimum reward is 302.33. This 

model can control differential wheeled mobile robot follow path to the goal properly.  

 

Figure 4.20  

Testing Result of DDPG Model for Path Following Task (No Disturbance) 

 

 

Figure 4.21 shows a moving average reward of SAC model in training process. The 

model obtained the highest average reward at episode 192 with 796.15 scores. The 

training process took 2 hours 29 minutes and 18 seconds to complete 500 episodes. 

SAC model can achieve path following task appropriately. 

 

Figure 4.21  

Training Result of DDPG Model for Path Following Task (No Disturbance) 
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Figure 4.22 shows a result of SAC model in evaluating mode. the mean reward is 

557.69. the maximum reward is 914.14. And the minimum reward is 377.90. This 

model can control differential wheeled mobile robot follow path to the goal properly. 

 

Figure 4.22  

Testing Result of SAC Model for Path Following Task (No Disturbance) 

 

 

The performance comparison of reinforcement learning algorithms is shown in table 

4.4. The result shows that proximal policy optimization is outperform both in training 

process and evaluating process when compared to the other choices. Therefore, PPO is 

selected to perform the path following task in simulation. 

 

Table 4.4  

Performance of RL Models for Path Following Task (No Disturbance) 

 

 

 

BEST REWARD EP TRAIN TIME MEAN REWARD MAX REWARD MIN REWARD

PPO 823.14 343 6584.83 696.88 1088.60 433.60

DDPG 770.89 372 7379.68 525.16 789.34 302.33

SAC 796.15 192 8953.38 557.69 914.14 377.90

MODEL

TRAIN TEST
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Training in Environment with Disturbance 

Figure 4.23 shows a moving average reward of PPO model in training process. The 

model obtained the highest average reward at episode 355 with 786.92 scores. The 

training process took 2 hours 25 minutes and 45 seconds to complete 500 episodes. 

PPO model can achieve path following task in the environment with disturbance 

appropriately. 

 

Figure 4.23  

Training Result of PPO Model for Path Following Task (With Disturbance) 

 

 

Figure 4.24 shows a result of PPO model in evaluating mode. the mean reward is 

554.40. the maximum reward is 918.46. And the minimum reward is 373.27. This 

model can control differential wheeled mobile robot follow path to the goal in the 

environment with disturbance properly. 

 

Figure 4.24  

Testing Result of PPO Model for Path Following Task (With Disturbance) 
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Figure 4.25 shows a moving average reward of DDPG model in training process. The 

model obtained the highest average reward at episode 331 with 705.04 scores. The 

training process took 2 hours 10 minutes and 28 seconds to complete 500 episodes. 

DDPG model can achieve path following task in the environment with disturbance 

appropriately. 

 

Figure 4.25  

Training Result of DDPG Model for Path Following Task (With Disturbance) 

 

 

Figure 4.26 shows a result of DDPG model in evaluating mode. the mean reward is 

507.78. the maximum reward is 830.97. And the minimum reward is 245.14. This 

model can control differential wheeled mobile robot follow path to the goal in the 

environment with disturbance properly. 

 

Figure 4.26  

Testing Result of DDPG Model for Path Following Task (With Disturbance) 
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Figure 4.27 shows a moving average reward of SAC model in training process. The 

model obtained the highest average reward at episode 176 with 782.11 scores. The 

training process took 2 hours 29 minutes and 28 seconds to complete 500 episodes. 

SAC model can achieve path following task in the environment with disturbance 

appropriately. 

 

Figure 4.27  

Training Result of SAC Model for Path Following Task (With Disturbance) 

 

 

Figure 4.28 shows a result of SAC model in evaluating mode. the mean reward is 

562.52. the maximum reward is 990.71. And the minimum reward is 172.29. This 

model can control differential wheeled mobile robot follow path to the goal in the 

environment with disturbance properly. 

 

Figure 4.28  

Testing Result of SAC Model for Path Following Task (With Disturbance) 

 



 

 68

The performance comparison of reinforcement learning algorithms is shown in table 

4.5. There is no significant different in performance among selected algorithms. 

However, soft actor-critic has the highest reward in evaluation when compared to the 

other choices. Therefore, SAC is selected to perform the path following task in practice. 

 

Table 4.5  

Performance of RL Models for Path Following Task (With Disturbance) 

 

 

4.3 Evaluate RL Model for Point Following Task 

In point following task, Obstacles, loading position, and delivery position are randomly 

assigned when the map is created at initial. A* algorithm is applied in order to find the 

optimal path from loading position to delivery position. The reference point is created 

and be considered as a virtual mobile robot. This virtual robot is controlled by PID 

controller in order to follow the planned path until reach delivery position. The 

objective of point following task is to control the differential wheeled mobile robot to 

follow the moving reference point that be considered as a virtual robot, until reach 

delivery position. The performance of RL model is evaluated by considering the 

distance error between robot’s position and reference point. RL model must control the 

robot’s speed to move closer to this moving reference point as much as position. Three 

reinforcement learning algorithms in policy-based method are selected in order to test 

the performance in point following task. Those models consist of proximal policy 

optimization, deep deterministic policy gradient, and soft actor-critic. Reinforcement 

learning model which be trained in the environment without any disturbance will be 

used to perform in simulation. And reinforcement learning model which be trained in 

the environment with disturbance will be used to perform in practice.  

BEST REWARD EP TRAIN TIME MEAN REWARD MAX REWARD MIN REWARD

PPO 786.92 355 8745.09 554.40 918.46 373.27

DDPG 705.04 331 7828.17 507.78 830.97 245.14

SAC 782.11 176 8968.46 562.52 990.71 172.29

MODEL

TRAIN TEST
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Training in Environment without Disturbance 

Figure 4.29 shows a moving average reward of PPO model in training process. The 

model obtained the highest average reward at episode 145 with 1121.62 scores. The 

training process took 1 hour 39 minutes and 43 seconds to complete 500 episodes. PPO 

model can achieve point following task appropriately. 

 

Figure 4.29  

Training Result of PPO Model for Point Following Task (No Disturbance) 

 

 

Figure 4.30 shows a result of PPO model in evaluating mode. The performance of RL 

model is measured by using the distance error. the mean error is 8.59. the maximum 

error is 9.80. And the minimum error is 7.27. This model can control differential 

wheeled mobile robot follow the reference point until reach the goal properly.  

 

Figure 4.30  

Testing Result of PPO Model for Point Following Task (No Disturbance) 
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Figure 4.31 shows a moving average reward of DDPG model in training process. The 

model obtained the highest average reward at episode 272 with 1289.62 scores. The 

training process took 3 hour 3 minutes and 18 seconds to complete 500 episodes. DDPG 

model can achieve point following task appropriately. 

 

Figure 4.31  

Training Result of DDPG Model for Point Following Task (No Disturbance) 

 

 

Figure 4.32 shows a result of DDPG model in evaluating mode. The performance of 

RL model is measured by using the distance error. the mean error is 3.44. the maximum 

error is 4.01. And the minimum error is 2.70. This model can control differential 

wheeled mobile robot follow the reference point until reach the goal properly.  

 

Figure 4.32  

Testing Result of DDPG Model for Point Following Task (No Disturbance) 
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Figure 4.33 shows a moving average reward of SAC model in training process. The 

model obtained the highest average reward at episode 120 with 1086.43 scores. The 

training process took 3 hour 15 minutes and 21 seconds to complete 500 episodes. SAC 

model can achieve point following task appropriately. 

 

Figure 4.33  

Training Result of SAC Model for Point Following Task (No Disturbance) 

 

 

Figure 4.34 shows a result of SAC model in evaluating mode. The performance of RL 

model is measured by using the distance error. the mean error is 10.71. the maximum 

error is 38.04. And the minimum error is 6.55. This model can control differential 

wheeled mobile robot follow the reference point until reach the goal properly.  

 

Figure 4.34  

Testing Result of SAC Model for Point Following Task (No Disturbance) 
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The performance comparison of reinforcement learning algorithms is shown in table 

4.6. The result shows that deep deterministic policy gradient is outperform both in 

training process and evaluating process when compared to the other choices. Therefore, 

DDPG is selected to perform the point following task in simulation. 

 

Table 4.6  

Performance of RL Models for Point Following Task (No Disturbance) 

 

 

Training in Environment with Disturbance 

Figure 4.35 shows a moving average reward of PPO model in training process. The 

model obtained the highest average reward at episode 294 with 967.47 scores. The 

training process took 1 hour 42 minutes and 52 seconds to complete 500 episodes. PPO 

model can achieve point following task in the environment with disturbance 

appropriately. 

 

Figure 4.35  

Training Result of PPO Model for Point Following Task (With Disturbance) 

 

BEST REWARD EP TRAIN TIME MEAN ERROR MAX ERROR MIN ERROR

PPO 1121.62 145 5983.04 8.58 9.80 7.27

DDPG 1289.62 272 10997.53 3.44 4.01 2.70

SAC 1086.43 120 11721.35 10.71 38.04 6.55

MODEL

TRAIN TEST
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Figure 4.36 shows a result of PPO model in evaluating mode. The performance of RL 

model is measured by using the distance error. the mean error is 11.59. the maximum 

error is 16.72. And the minimum error is 7.88. This model can control differential 

wheeled mobile robot follow the reference point until reach the goal in the environment 

with disturbance properly. 

 

Figure 4.36  

Testing Result of PPO Model for Point Following Task (With Disturbance) 

 

 

Figure 4.37 shows a moving average reward of DDPG model in training process. The 

model obtained the highest average reward at episode 129 with 796.75 scores. The 

training process took 2 hour 41 minutes and 18 seconds to complete 500 episodes. 

DDPG model can achieve point following task in the environment with disturbance. 

However, there are several times that this model controlled the mobile robot to rotate 

then follow the point by moving backward. And this is an undesirable situation. 
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Figure 4.37  

Training Result of DDPG Model for Point Following Task (With Disturbance) 

 

 

Figure 4.38 shows a result of DDPG model in evaluating mode. The performance of 

RL model is measured by using the distance error. the mean error is 8.48. the maximum 

error is 28.80. And the minimum error is 3.81. This model can control differential 

wheeled mobile robot follow the reference point until reach the goal in the environment 

with but several time the robot was controller to move backward in order to follow the 

reference point instead. 

 

Figure 4.38  

Testing Result of DDPG Model for Point Following Task (With Disturbance) 
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Figure 4.39 shows a moving average reward of SAC model in training process. The 

model obtained the highest average reward at episode 448 with 970.62 scores. The 

training process took 3 hour 23 minutes and 27 seconds to complete 500 episodes. SAC 

model can achieve point following task in the environment with disturbance 

appropriately. 

 

Figure 4.39  

Training Result of SAC Model for Point Following Task (With Disturbance) 

 

 

Figure 4.40 shows a result of SAC model in evaluating mode. The performance of RL 

model is measured by using the distance error. the mean error is 13.85. the maximum 

error is 23.10. And the minimum error is 8.5. This model can control differential 

wheeled mobile robot follow the reference point until reach the goal in the environment 

with disturbance properly. 

 

Figure 4.40  

Testing Result of SAC Model for Point Following Task (With Disturbance) 
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The performance comparison of reinforcement learning algorithms is shown in table 

4.7. The result shows that even if deep deterministic policy gradient has the lowest 

mean error in evaluation but its maximum error is too high compare the other. It is 

caused by rotation during movement in order to follow the reference point with 

backward direction. In this case, proximal policy optimization is selected to perform 

the point following task in practice. 

 

Table 4.7  

Performance of RL Models for Point Following Task (With Disturbance) 

 

 

4.4 Implement RL Models for Object Transportation  

After completely evaluate the performances of reinforcement learning algorithms for 

all tasks. Double deep Q-learning with Resnet10 which 25% of training episode is 

supervised by A* is selected to achieve path planning for individual robots and group 

of robots. For path following task, proximal policy optimization is select to perform in 

simulation and soft actor-critic is selected to execute in practice. For point following 

task, deep deterministic policy gradient is selected to perform in simulation and 

proximal policy optimization is selected to execute in practice. All selected RL models 

are assembled in order to accomplish the object transportation task both in simulation 

and practice. 

Simulation Result of Multiple Robots 

The RL models are tested firstly in simulation in order to see the performance in the 

environment without any disturbance. Figure 4.41 shows sample of simulation result 

when implement the RL models among multiple robots in object transportation. 

BEST REWARD EP TRAIN TIME MEAN ERROR MAX ERROR MIN ERROR

PPO 967.47 294 6172.42 11.59 16.72 7.88

DDPG 796.75 129 9678.17 8.48 28.80 3.81

SAC 970.62 448 12206.50 13.85 23.10 8.75

MODEL

TRAIN TEST
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Figure 4.41  

Simulation Result of Multiple Robots for Object Transportation 

 

Path Planning for Individual Robots 

 

Path Following for Individual Robots 

 

Path Planning for Group of Robots 

 

Formation Control for Group of Robots 
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Firstly, three mobile robots stand at the initial position at arbitrary point inside map’s 

area. The loading point is assigned randomly. The goal’s position of each robot is 

generated respected to the robot’s formation. DDQN model finds the optimal paths for 

all robots to their goal’s positions. The waypoints are created according to each robot’s 

path. PPO model for path following task controls the robots to follow their paths using 

current waypoint to calculate errors then estimates a linear velocity and angular velocity 

for a current step. After all robots reach their loading positions. DDQN model finds the 

optimal path for group of robots from loading point to delivery point. The virtual robot 

is created at the middle of the formation to represent the group of mobile robots. This 

virtual robot is controlled to follow the path to delivery point by PID controller. In every 

time step, the reference point of each robot is computed refer to the current position of 

the virtual robot. Then DDPG of point following task controls all robots to follow their 

reference points in order to create movement of group of robots with fixed group shape.  

Figure 4.42 shows the error of formation control in each time step. If the robots move 

with specific formation, the distance between each robot should be maintained. Hence, 

the distance between robot no.1 and robot no.2 is considered as line1. The distance 

between robot no.2 and robot no.3 is considered as line2. The distance between robot 

no.3 and robot no.1 is considered as line3. This graph shows the errors between real 

distance and ideal distance occurred in line 1-3. When there is no disturbance in the 

environment, RL models have an excellent performance. 

 

Figure 4.42  

Formation Errors of Multiple Robots in Simulation 
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Experiment Result of Multiple Robots without Object 

The RL models are tested in practice in order to see the performance in the environment 

with many disturbances and uncontrollable factors. For examples, a speed of mobile 

robot doesn’t match exactly to the command speed because this thesis used an output 

control system which is different to a feedback loop control system. Moreover, there is 

a delay time when broadcasting the command from the server to the robots. However, 

the main problem is the normal speed of the selected robot of this thesis is too fast 

compared to the available environment, thus it is necessary to apply a very low speed 

of the robot and set many conditions in order to implement the RL models in practice. 

Figure 4.43 shows sample of experiment result when implement the RL models among 

multiple robots in formation control task. 

 

Figure 4.43  

Experiment Result of Multiple Robots for Formation Control Task 

 

Path Planning for Individual Robots 

 

Path Following for Individual Robots 
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Path Planning for Group of Robots 

 

Formation Control for Group of Robots 

 

The process of implementation in experiment is the same as showing in simulation 

result. However, several conditions are set in order to implement the RL models 

appropriately in practice. For example, the formation of group of robots is expanded in 

order to prevent an incident that robot crashes to each other during moving in a 

formation. Figure 4.44 shows the error of formation control in each time step when 

deploys the RL models in experiment. The formation error is ranged between -60 to 60 

mm. it is acceptable for an output control system. 

 

Figure 4.44  

Formation Errors of Multiple Robots in Experiment (Excluded the Object) 
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 Experiment Result of Multiple Robots with the Object 

The RL models are tested in practice with the object in order to see the performance. 

Figure 4.45 shows sample of experiment result when implement the RL models among 

multiple robots in object transportation. 

 

Figure 4.45  

Experiment Result of Multiple Robots for Object Transportation 

 
Path Planning for Individual Robots 

 
Path Following for Individual Robots 

 

Path Planning for Group of Robots 
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Formation Control for Group of Robots 

 

The result of implementing RL models in experiment with the object shows the same 

performance compare when it has no object. Nevertheless, the formation error in the 

object transportation is ranged between -80 to 75 mm. it is larger when compared to 

the result in a formation control task due to the load that exerts to the robots in 

different positions is effect to robots’ motion see in figure 4.45. 

 

Figure 4.46  

Formation Errors of Multiple Robots in Experiment (Included the Object) 
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CHAPTER 5 

CONCLUSION 

This thesis proposed reinforcement learning model to find the optimal path for any 

random map. According to the experiment results, double deep Q-learning with 

Resnet50 has the best performance when compared to other selected reinforcement 

learning algorithms. Moreover, semi-supervised method by A* algorithm can increase 

the performance of reinforcement learning model in order to find the optimal path. 

Whereas it decreases an experience of exploration in memory replay buffer. Therefore, 

it is necessary to compensate a lacking in exploration by training the model with enough 

number of episodes. Then the capability of the model could be improved. In addition, 

this thesis also proposed another reinforcement learning models to control the motion 

of differential wheeled mobile robot both for path following task and point following 

task. The reinforcement learning model which handle with point following task is used 

to control a group of mobile robots to move in a specific formation. Due to there is no 

significant difference of performance among selected reinforcement learning 

algorithms in evaluation. Hence, the reinforcement learning models which have the 

highest score are selected to perform each task both in simulation and experiment. The 

integration of proposed reinforcement learning models are used to perform for object 

transportation in both simulation and experiment. The map’s area is enveloped within 

1.2 x 2.0 square meter. The obstacles are randomly placed within map’s area. Robot’s 

initial positions, loading position, and delivery position are assigned in arbitrary 

position. The environment’s information in experiment was obtained using single 

camera which applied HSV range technique in real time process. Eventually, the 

proposed reinforcement learning models can accomplish the object transportation task 

appropriately both in simulation and in experiment. 

The recommendations of this thesis can be listed as the following. 

 The reinforcement learning model for path planning should be tested with more 

complicated environments.  

 The reinforcement learning model with other convolutional layers should be 

explored further in order to improve the performance of the model.  
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 This thesis solved a path planning problem with static environment. However, 

it is interesting to do path planning in dynamic environments as well.  

 Lastly, the reinforcement learning model which can simultaneously create a 

path planning and control a motion of group of mobile robots should be studied 

further. 
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