
A SELF-DRIVING SYSTEM USING DOUBLE DEEP Q-LEARNING

by

Siraphop Prasertprasasna

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Mechatronics

 Examination Committee: Dr. Mongkol Ekpanyapong (Chairperson)

 Prof. Manukid Parnichkun

 Prof. Matthew N. Dailey

 Nationality: Thai

 Previous Degree: Bachelor of Engineering in Mechatronics

 Engineering Technology

 King Mongkut’s University of Technology

 North Bangkok

 Thailand

 Scholarship Donor: His Majesty the King's Scholarships (Thailand)

Asian Institute of Technology

School of Engineering and Technology

Thailand

July 2021

ii

AUTHOR’S DECLARATION

I, Siraphop Prasertprasasna, declare that the research work carried out for this thesis

was in accordance with the regulations of the Asian Institute of Technology. The work

presented in it are my own and has been generated by me as the result of my own

original research, and if external sources were used, such sources have been cited. It is

original and has not been submitted to any other institution to obtain another degree or

qualification. This is a true copy of the thesis, including final revisions.

Date: 21 July 2021

Name: Siraphop Prasertprasasna

Signature:

iii

ACKNOWLEDGMENTS

First and foremost, I would want to express my gratitude to my advisor, Dr. Mongkol

Ekpanyapong, for his invaluable assistance, ideas, and support during the research

process. It would be difficult to complete this thesis without his advice.

I would like to express my appreciation to the members of the examination committee,

Prof. Manukid Parnichkun and Prof. Matthew N. Dailey, for their insightful remarks

and knowledge sharing.

In addition, I would want to extend my thanks to Mr. Phawaphol Udompitayatorn, the

AI Center's staff. He generously provided me with information and suggestions.

I would also want to show my gratitude to His Majesty the King's Scholarship of

Thailand for funding my whole master's degree in AIT.

Finally, I would want to thank my parents for their unwavering support and aid during

my education.

iv

ABSTRACT

In the self-driving car industry, LIDARs and cameras have been used as sensors to drive

a car. LIDARs can know the exact distance around a car, but when a car is driven by a

human, a human does not know the exact distance like LIDARs. This thesis aims to

create an AI that can drive like a human. Humans see an image when driving. Using

only a camera was chosen to do this thesis, and the main AI algorithm is a double deep

Q-network. When using a double deep Q-network, it requires a simulator to train the

network. It will be hard if the network is trained in the real environment due to giving

a reward. Training the network in a simulator will not be able to apply to a real car

because the network has never seen a real environment before. A semantic

segmentation was chosen to solve the problem. There are several semantic

segmentation networks. PSPNet is the best choice to use in this case because it can

provide quality segmented images, and it can run in real-time. In the end, a golf cart

was used to drive in the left lane of a road. The golf cart has been controlled

successfully.

v

CONTENTS

Page

ACKNOWLEDGMENTS iii

ABSTRACT iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 Background of the Study 1

1.2 Statement of the Problem 1

1.3 Objectives of the Study 2

1.4 Scope and Limitations 2

CHAPTER 2 LITERATURE REVIEW 3

2.1 Semantic Segmentation 3

2.1.1 Related Work 4

2.1.2 Semantic Segmentation Ranking 5

2.1.3 Mean Intersection-over-Union 6

2.1.4 Pyramid Scene Parsing Network 7

2.2 Reinforcement Learning 11

2.2.1 Related Work 11

2.2.2 Q-Learning 14

2.2.3 Deep Q-Learning 15

2.2.4 Double Deep Q-Learning 16

2.2.5 Experience Replay 16

2.3 Simulator 16

2.3.1 Related Work 16

2.3.2 CARLA Simulator 19

CHAPTER 3 METHODOLOGY 21

3.1 Overview 21

3.2 Equipment Selection 21

3.2.1 Golf Cart 21

3.2.2 Computing Hardware 22

vi

Page

3.2.3 Camera 23

3.3 Semantic Segmentaion 24

3.3.1 Model Selection 24

3.3.2 Dataset 24

3.3.3 Preprocessing 27

3.3.4 Training 27

3.4 CARLA Simulator 28

3.4.1 Creating A Golf Cart Model 28

3.4.2 Creating the AIT Map 29

3.5 Double Deep Q-Learning 32

3.5.1 Deep Q-Network Architecture 32

3.5.2 Training Scene 33

3.5.3 Training 34

CHAPTER 4 RESULTS 42

4.1 Camera Setting 42

4.2 Semantic Segmentaion 43

4.2.1 HRNet-OCR 43

4.2.2 Response Time Testing 43

4.2.3 Preprocessing 45

4.2.4 Training 46

4.3 Double Deep Q-Learning 50

4.3.1 Training 50

4.3.2 Testing 54

CHAPTER 5 CONCLUSIONS 56

5.1 Conclusion 56

5.2 Recommendations 56

REFERENCES 58

vii

LIST OF TABLES

Tables Page

Table 2.1 Semantic Segmentation Dataset on Papers with Code Website 6

Table 2.2 Cityscapes test Benchmark Score on Papers with Code Website 6

Table 2.3 An Example of a Q-Table 14

Table 3.1 A specification for EVT Echo 4s 22

Table 3.2 A specification for the Logitech C525 24

Table 3.3 The Number of Images in Each Dataset 25

Table 3.4 Hyperparameters of Semantic Segmentation Experiment 1 28

Table 3.5 Hyperparameters of Semantic Segmentation Experiment 2 and 3 28

Table 3.6 Actions of Double DQN Experiment 1 and 2 35

Table 3.7 Hyperparameters of Every Double DQN Experiment 36

Table 3.8 Hyperparameters of Double DQN Experiment 1 36

Table 3.9 Hyperparameters of Double DQN Experiment 2 37

Table 3.10 Actions of Double DQN Experiment 3 38

Table 3.11 Hyperparameters of Double DQN Experiment 3 and 4 39

Table 3.12 Actions of Double DQN Experiment 4 and 5 39

Table 3.13 Hyperparameters of Double DQN Experiment 5 41

Table 4.1 Mean and Standard Values for Normalization 46

viii

LIST OF FIGURES

Figures Page

Figure 2.1 Different Image Processing Methods Using CNN 3

Figure 2.2 Image Segmentation Result of a Clear Road Image Using SegNet 4

Figure 2.3 Image Segmentation Result of a Road Junction Image Using 4

SegNet

Figure 2.4 HCN Architecture for Road Segmentation 5

Figure 2.5 Intersection-over-Union 7

Figure 2.6 Overview of PSPNet 7

Figure 2.7 Bottleneck Block 8

Figure 2.8 ResNet-101 Block 9

Figure 2.9 Full Architecture of PSPNet 10

Figure 2.10 Deep Q-Network Architecture by Based on Fully Connected CNN 12

Figure 2.11 CNN Architecture Gives Q Values 12

Figure 2.12 An example of a DQN 15

Figure 2.13 Driving Cars on Unity Game Engine in a Two-Dimensional 17

Simulator

Figure 2.14 Driving Cars on Unity Game Engine in a Three-Dimensional 17

Simulator

Figure 2.15 Driving Cars in the Real Environment 18

Figure 2.16 Driving Cars in Grand Theft Auto V 18

Figure 2.17 Changing of Four Weather Conditions in CARLA 19

Figure 2.18 Semantic Segmentation Function in CARLA 20

Figure 2.19 Showing of Self-Driving Car Using CARLA 20

Figure 3.1 A Golf Cart Model EVT Echo 4s 21

Figure 3.2 Logitech C525 23

Figure 3.3 Example of the AIT Dataset 25

Figure 3.4 Example of the Augmented AIT Dataset 26

Figure 3.5 Example of the Mapillary Vistas Dataset 26

Figure 3.6 Example of the CARLA Dataset 27

Figure 3.7 Golf Cart Model in CARLA Simulator 29

Figure 3.8 AIT Map from OpenStreetMap 29

ix

Figures Page

Figure 3.9 Guideline from OpenStreetMap 30

Figure 3.10 Finished Drawing Roads 30

Figure 3.11 Add Objects to the Map 31

Figure 3.12 Finished Adding Objects to the Map 31

Figure 3.13 Deep Q-Network Architecture 32

Figure 3.14 Conv Block 33

Figure 3.15 Training Scene 1 33

Figure 3.16 Training Scene 2 34

Figure 3.17 Training Scene 3 34

Figure 3.18 5 Position of Spawning the Golf Cart in Training Scene 2 35

Figure 3.19 Changing Reward Mask for Double DQN Experiment 5 40

Figure 4.1 Response Time of Camera for Each Resolution 42

Figure 4.2 GPU’s Out of Memory When Running HRNet-OCR 43

Figure 4.3 Response Time of DeepLabv3 at 272x272 44

Figure 4.4 Response Time of DeepLabv3 at 512x512 44

Figure 4.5 Response Time of PSPNet at 272x272 45

Figure 4.6 Response Time of PSPNet at 512x512 45

Figure 4.7 Validation mIoU of PSPNet Experiment 1 46

Figure 4.8 Example of the Prediction Result of Validation Set from PSPNet 47

Experiment 1

Figure 4.9 Validation mIoU of PSPNet Experiment 2 48

Figure 4.10 Validation mIoU of PSPNet Experiment 3 48

Figure 4.11 Example of the Prediction Result of Validation Set from PSPNet 49

Experiment 2

Figure 4.12 Example of the Prediction Result of Validation Set from PSPNet 50

Experiment 3

Figure 4.13 Mean Play Score of Double DQN Experiment 1 51

Figure 4.14 Mean Play Score of Double DQN Experiment 2 51

Figure 4.15 Mean Play Score of Double DQN Experiment 3 52

Figure 4.16 Mean Play Score of Double DQN Experiment 4 53

Figure 4.17 Mean Play Score of Double DQN Experiment 5 54

Figure 4.18 Response Time of PSPNet when Real Test 54

Figure 4.19 Response Time of PSPNet and DQN when Real Test 55

x

LIST OF ABBREVIATIONS

AI = Artificial Intelligence

AIT = Asian Institute of Technology

API = Application Programming Interface

CNN = Convolutional Neural Network

CPU = Central Processing Unit

DQN = Deep Q-Network

GPS = Global Positioning System

GPU = Graphic Processing Unit

HCN = Hybrid Convolutional Network

IoU = Intersection-over-Union

LIDAR = LIght Detection And Ranging

mIoU = mean Intersection-over-Union

OS = Operation System

PSPNet = Pyramid Scene Parsing Network

RAM = Random Access Memory

1

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Over the past decades, automobile technology has been developed continuously. It

began with the invention of the first steam-powered vehicle instead of horses, and the

next generation of cars was powered by oil and gas. Nowadays, cars have changed to

electric cars, and every car these days comes with many conventional systems, such as

GPS and a rear-view camera, to assist the driver in various fields.

One of the conventional systems that the driver wants is a self-driving capability. The

popular self-driving capability is a cruise control system that helps the driver without

stepping on a pedal. In the present day, there is already a self-driving capability for

automobile technology. The car will be driven and decided by AI.

1.2 Statement of the Problem

Since cars are the main vehicle that is used for traveling, the number of accidents has

increased because of human errors. When an accident occurs, it causes death. Most

accidents are caused by a driver's lack of focus on driving, such as sleepiness,

drunkenness, and playing on a mobile phone. A self-driving capability will help a driver

to prevent these problems.

Research papers about self-driving cars have been published increasingly, but there is

no work that is 100 percent safe for today. News about accidents caused by self-driving

vehicles has been seen periodically, and the self-driving systems of certain car brands,

such as Tesla, are still not available in some regions of America and all regions of

Thailand.

The hardware that is used to build the self-driving system is expensive. For example,

LIDAR for visualization and distance measuring can be replaced by using cameras, and

AI’s model optimization can replace expensive calculation hardware.

2

1.3 Objectives of the Study

This thesis aims to build a self-driving car that can move automatically from one

location to another, as per the following details:

1. To create the best semantic segmentation model for road, lane marking, and

object detection.

2. To create the best double deep q-learning model to control a car.

1.4 Scope and Limitations

Scope and limitations of this research as per the following details:

1. A car that is used in the real experiment is a golf cart.

2. A golf cart can be controlled in AIT.

3. A golf cart can be controlled on roads by having lane markings.

4. A golf cart can be controlled in the left lane.

5. A golf cart can be controlled in the daytime.

6. A camera installation in the front view of a golf cart is a vision for a self-driving

system.

7. A driver must stay on the steering wheel for safety, and a golf cart can come

back to control manually at any time.

8. The maximum speed of a golf cart is 8 kilometers per hour.

9. A golf cart can stay in its lane.

10. An AI’s calculation device in real-time is a laptop.

3

CHAPTER 2

LITERATURE REVIEW

Chapter 2 describes algorithms that are used in this thesis and related work. The first

part is a semantic segmentation to detect roads, lane markings, and objects. The next

part is deep reinforcement learning, which is an algorithm for an AI to control a car,

and the final part is simulators to simulate the road environment for training an AI.

2.1 Semantic Segmentation

Semantic segmentation is one of the image processing methods using the CNN

architecture. There are 4 types of image processing methods using a CNN that consist

of classification, object detection, image segmentation, and instance segmentation (see

Figure 2.1).

Figure 2.1

Different Image Processing Methods Using CNN

Note. Classification using CNN can classify only one object, and CNN can predict this image

as a cat, but CNN does not know the location of the cat in this image. Classification with

localization is the same as object detection. The difference between them is the detection of a

single object and multiple objects. Object detection can predict the location of the cat or dog in

these images, and it can predict what those objects are, but it does not know the shape of the

object that is detected. Semantic segmentation can predict every object for every pixel in that

image, and it knows the shape of objects, but if there is more than one cat in that image, it will

detect one cat. Instance segmentation can detect objects like semantic segmentation, but it can

separate objects if there is more than one object for each class.

4

2.1.1 Related Work

Kai-Li Lim, Thomas Drage, and Thomas Bräunl presented a semantic segmentation to

detect road and lane markings. They used SegNet, which is one of the CNN

architectures for semantic segmentation. The reason why they use semantic

segmentation is road and lane marking detection. They could not detect them by using

only LIDAR. Errors were calculated as a percentage that corresponds to the area of

each figure’s road segments, as shown in Figure 2.2 and Figure 2.3.

Figure 2.2

Image Segmentation Result of a Clear Road Image Using SegNet

 Input Output

Note. This result was predicted by SegNet, which was the lowest error of road pixels at 0.04

percent because the tested road’s image was clear.

Figure 2.3

Image Segmentation Result of a Road Junction Image Using SegNet

 Input Output

Note. The SegNet predicted this outcome, which had the highest road pixel error of 16.16

percent because of poor road surface and illumination.

5

Ye Li, Lili Guo, Jun Rao, Lele Xu, and Shau Jin presented comparing popular

architecture to segment roads from satellite images. The CNN architectures that they

tested are VGG, U-Net, Modified U-Net, FCN, VGG+FCN, VGG+Modified U-Net,

FCN+ Modified U-Net, SegNet, CasNet, and HCN. For modified nets, they adjusted the

original architecture of that net by themselves to get the best accuracy. For HCN, they

called another their architecture, which is the hybrid convolutional network (see Figure

2.4).

Figure 2.4

HCN Architecture for Road Segmentation

Note. The HCN architecture includes VGG, FCN, and Modified U-Net. The HCN can give

the best mean pixel accuracy of 0.8355.

2.1.2 Semantic Segmentation Ranking

Robert Stojnic, Ross Taylor, Marcin Kardas, Viktor Kerkez, Ludovic Viaud, Elvis

Saravia, and Guillem Cucurull created the Papers with Code website, which is a website

to compare machine learning scores, and there is a semantic segmentation category.

From Table 2.1, the most popular dataset for the contest is the Cityscapes test dataset.

This thesis did some tests with 3 models, as shown in Table 2.2.

6

Table 2.1

Semantic Segmentation Dataset on Papers with Code Website

Dataset Trend

Cityscapes Test Dataset 94

PASCAL VOC 2012 Test Dataset 57

PASCAL Context Dataset 43

ADE20K Validation Dataset 43

Cityscapes Validation Dataset 39

Note. The trend shows the number of models that have a benchmark score for each dataset. This

table does not show all of the datasets on the Papers with Code website. It shows only the top

5 from 49 datasets.

Table 2.2

Cityscapes test Benchmark Score on Papers with Code Website

Rank Model Encoder mIoU

1 HRNet-OCR Hierarchical Multi-Scale Attention 0.851

36 DeepLabv3 ResNet-101 0.813

49 PSPNet ResNet-101 0.784

Note. This table shows only 3 models from 94 models because this thesis tested with these

models.

2.1.3 Mean Intersection-over-Union

Mean intersection-over-union or mIoU is the most popular one for scoring semantic

segmentation. For one class of prediction, it can be scored by IoU as shown in Figure

2.5. For multi-class prediction, it uses mIoU by averaging the IoU of each class.

7

Figure 2.5

Intersection-over-Union

Note. Intersection-over-union or IoU is calculated by an area of overlap divided by an area of

union. These areas mean a ground truth area and a predicted segmentation area.

2.1.4 Pyramid Scene Parsing Network

Pyramid Scene Parsing Network or PSPNet is one of the semantic segmentation

networks. PSPNet was invented by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi,

Xiaogang Wang, and Jiaya Jia. In 2017, this network had a new record on the PASCAL

VOC 2012 test dataset with mIoU 0.854, which is ranked 16th now. The overview of

PSPNet is shown in Figure 2.6.

The full architecture of PSPNet can be found in Figure 2.9. The inside of PSPNet

consists of ResNet-101, which is shown in Figure 2.8, and the inside of ResNet-101

consists of many Bottleneck blocks, which are shown in Figure 2.7. In this PSPNet, the

input image size is 512x512 with a RGB channel, and there are 5 classes of objects.

Figure 2.6

Overview of PSPNet

Note. The input image is fed into a feature map block. The feature map block is ResNet-101 or

any encoder block. The output from the ResNet-101 is fed into the pyramid pooling module,

8

which is distributed to different sub-regions. At the last of the pyramid pooling module, it is

upsampled, then concatenates the different sub-regions together. In the end, the output from the

pyramid pooling module is fed into a convolution layer.

Figure 2.7

Bottleneck Block

Note. The bottleneck block contains 3 convolution layers which after each convolution layer, it

is applied by a batch normalization layer. The bottleneck block is one part of the ResNet-101.

There are 4 inputs of bottleneck block when used with ResNet-101. #N_IN is a number of the

input channel, #N_MID is a number of the middle channel, #ST_SIZE is the size of the stride

size, and #N_OUT is a number of the output channel.

Conv2d, in channel = #N_IN, out channel = #N_MID, kernel size = (1, 1), stride = (1, 1), no bias

BatchNorm2d, in channel = #N_MID, epsilon = 1e-5, momentum = 0.1

Conv2d, in channel = #N_MID, out channel = #N_MID, kernel size = (1, 1),

stride = (#ST_SIZE, #ST_SIZE), padding = (1, 1), no bias

BatchNorm2d, in channel = #N_MID, epsilon = 1e-5, momentum = 0.1

Conv2d, in channel = #N_MID, out channel = #N_OUT, kernel size = (1, 1), stride = (1, 1), no bias

BatchNorm2d, in channel = #N_OUT, epsilon = 1e-5, momentum = 0.1

9

Figure 2.8

ResNet-101 Block

Note. There are bottleneck blocks inside ResNet-101. The bottleneck block is shown in Figure

2.7.

Bottleneck Block, #N_IN = 64,
#N_MID = 64, #ST_SIZE = 1,

#N_OUT = 256

Conv2d, in channel = 64, out channel = 256, kernel size = (1, 1), stride = (1, 1), no bias

BatchNorm2d, in channel = 256, epsilon = 1e-5, momentum = 0.1

Bottleneck Block, #N_IN = 256,
#N_MID = 128, #ST_SIZE = 2,

#N_OUT = 512

Conv2d, in channel = 256, out channel = 512, kernel size = (1, 1), stride = (1, 1), no bias

BatchNorm2d, in channel = 512, epsilon = 1e-5, momentum = 0.1

Input

Add blocks above, then ReLU

Bottleneck Block, #N_IN = 256, #N_MID = 64, #ST_SIZE = 1, #N_OUT = 256 Copy block above

Add blocks above, then ReLU

Bottleneck Block, #N_IN = 256, #N_MID = 64, #ST_SIZE = 1, #N_OUT = 256 Copy block above

Add blocks above, then ReLU

Add blocks above, then ReLU

Bottleneck Block, #N_IN = 512, #N_MID = 128, #ST_SIZE = 1, #N_OUT = 512

Copy block above

Add blocks above, then ReLU

Bottleneck Block, #N_IN = 512, #N_MID = 128, #ST_SIZE = 1, #N_OUT = 512

Copy block above

Add blocks above, then ReLU

Bottleneck Block, #N_IN = 512, #N_MID = 128, #ST_SIZE = 1, #N_OUT = 512

Copy block above

Add blocks above, then ReLU

10

Figure 2.9

Full Architecture of PSPNet

Note. The red 3 number at the first convolution block means color channels. The numbers that

can be changed depend on color channels and the image size of the input is marked in red. The

AdaptiveAvgPool2d after the ResNet-101 block means resizing of the width and height

channels of an image by averaging. The resize after that, the red (64, 64) is the original image

input that is divided by 8. In this case, the original image input is (512, 512). The red 5 number

at the last convolution block is the number of the object’s class.

Resize to (64, 64)

ReLU

Conv2d, in = 512, out

= 128, kernel = 1,

stride = 1

AdaptiveAvgPool2d,

size = (1, 1)

Resize to (64, 64)

BatchNorm2d, ReLU

Conv2d, in = 512, out

= 128, kernel = 1,

stride = 1

AdaptiveAvgPool2d,

size = (2, 2)

Resize to (64, 64)

BatchNorm2d, ReLU

Conv2d, in = 512, out

= 128, kernel = 1,

stride = 1

AdaptiveAvgPool2d,

size = (3, 3)

Resize to (64, 64)

BatchNorm2d, ReLU

Conv2d, in = 512, out

= 128, kernel = 1,

stride = 1

AdaptiveAvgPool2d,

size = (6, 6)

Copy the output from

the ResNet-101 block

Input

Conv2d, in channel = 3, out channel = 64, kernel size = (7, 7),

stride = (2, 2), padding = (3, 3), no bias

BatchNorm2d, in channel = 64, epsilon = 1e-5, momentum = 0.1

ReLU

MaxPool2d, kernel size = 3, stride = 2, padding = 1

ResNet-101 Block

Concatenation

Conv2d, in channel = 1024, out channel = 512, kernel size = (1, 1), stride = (1, 1), no bias

BatchNorm2d, ReLU, Dropout2d = 0.2

Conv2d, in channel = 512, out channel = 5, kernel size = (3, 3), stride = (1, 1), padding = (1, 1)

UpsamplingBilinear2d, scale factor = 8

11

2.2 Reinforcement Learning

Reinforcement learning is one type of machine learning. There are 3 types of machine

learning, which include supervised learning, unsupervised learning, and reinforcement

learning. The first type is supervised learning. It trains a machine with known data and

known responses. That machine is trained to predict new data that will give new

responses. Examples of supervised learning applications are face recognition, weather

forecasting, and optical character recognition. The second type is unsupervised

learning. It trains a machine with known data and unknown responses to group the data.

Examples of unsupervised learning applications are recommendation systems, buying

habits, and grouping user logs. The last type is reinforcement learning. It learns from

its mistakes to find the best solution. Examples of reinforcement learning applications

are AI in video games, industrial simulation, and autonomous vehicles, and the most

popular reinforcement learning is q-learning and deep q-learning.

2.2.1 Related Work

Abdur Razzaq Fayjie, Sabir Hossain, Doukhi Oualid and Deok Jin Lee presented a

driverless car using deep q-learning. They have 2 inputs. The first input is 4 images

from a front camera, which is an RGB image of size 80x80, and the second input is 4

data from LIDAR, which has a size of 80x80. Their overview is shown in Figure 2.10.

They updated the network every 6000 steps. There are 5 actions for an agent to be

trained, which are go straight, right, left, accelerate and brake. Keep going is doing

nothing, and collect the reward at the current speed divided by 5. The Left collected a

reward of -0.6. The right collected a reward of -0.2. Accelerate collected reward of +1.

The brake collected a reward of -0.4, and if the car hit, the reward was -6. From these

rewards, the network would learn how to accelerate and decelerate. They trained the

network by simulation of an urban environment in the Unity Game Engine. Finally,

they designed a car prototype based on their simulation experiments, which is capable

of running a deep q-network in real-time.

12

Figure 2.10

Deep Q-Network Architecture by Based on Fully Connected CNN

Note. Both inputs are fed into the neural network, and processed using the convolutional layers.

After that, they concatenated them using flatten layers, preceded by a dense layer and a pooling

layer.

Figure 2.11

CNN Architecture Gives Q Values

Note. An image was fed into CNN to get Q-values.

13

Takafumi Okuyama, Tad Gonsalves and Jaychand Upadhay presented an autonomous

driving system based on deep q-learning. The input of the network is an RGB image as

shown in Figure 2.11. They trained on a simulator which has a straight road bounded

by footpaths on both sides, and obstacles are placed in random positions every 30

meters. There are 3 actions, which are steering 10 degrees to the left, keeping straight

and steering 10 degrees to the right. They trained by repeating till the agent reaches the

goal. In the state-action cycle, if the agent hits an obstacle or crosses one of the

bounding lanes, the learning episode is discontinued, and the agent begins a new

episode. The reward is the number of obstacles that it overcomes. They trained agents

to avoid obstacles when driving at a constant speed of 10 meters per second, 15 meters

per second and 20 meters per second. The highest distance of car speed at 10 meters

per second is 10077 meters. The highest distance of car speed at 15 meters per second

is 4907 meters, and the highest distance of car speed at 20 meters per second is 2173

meters.

Syed Owais Ali Chishti, Sana Riaz, Muhammad Bilal Zaib, and Mohammad Nauman

presented self-driving cars using CNN and q-learning. The input of the CNN is an RGB

image of size 32x24 that is resized from 320x240. There are 3 actions, which are

forward, left and right. They tested it with signs on the road. There are 3 signs in this

paper, which are the stop sign, the no-left sign and the traffic light for deep q-network.

First, they used OpenCV cascade classifiers for sign detection. The results from

OpenCV cascade classifiers would be the reward inspector, would not feed them into

the deep q-network. For stop signs, if the stop sign was detected, and the car was

moving forward, the reward value was -0.5, but if the car was stopped, the reward value

was +2. If the stop sign was not detected, and the car was moving forward, the reward

value was +0.05, but if the car was stopped, the reward value was -0.5. For a traffic

light, if the red light was detected, and the car was moving forward, the reward value

was -1, but if the car was stopped, the reward value was +0.01. If a green light or yellow

light was detected, and the car was moving forward, the reward value was +0.01, but if

the car was stopped, the reward value was -0.1. If no light was detected, and the car

was moving forward, the reward value was +0.01, but if the car was stopped, the reward

value was -0.1. Finally, they achieved 89 percent of training accuracy and 73 percent

of testing accuracy from supervised learning.

14

2.2.2 Q-Learning

Q-learning is one of the reinforcement learning. It is an algorithm to optimize a Q-value

by random action. The Q-value is changed for every learning step. An example of a Q-

value is shown in Table 2.3 as a Q-table. The Q-table gives an action or output when a

state or input comes in. The action is selected by the maximum of the Q-values in that

state. For example, if the robot detects a range of 2.1, an action that will be selected is

going right because 0.91 is the maximum number of the second row. The Q-learning

equation is shown in Equation 2.1. If it is the last step or reaching the goal, the new Q-

value is equal to the reward (see Equation 2.2).

Table 2.3

An Example of a Q-Table

Q(s, a) Go Up Go Down Go Left Go Right

[0, 2] 0.23 0.57 0.82 0.11

(2, 4] 0.15 0.08 0.51 0.91

(4, 6] 0.92 0.52 0.22 0.02

> 6 0.17 1.22 0.75 0.59

Note. The Q-table represents Q-values for states (s) and actions (a). This table is an example of

an environment. The states are the range of a sensor or some information, and the actions are

the direction of what it should go.

The Q-learning equation that is not the last step is:

 𝑄(𝑠, 𝑎)𝑛𝑒𝑤 = 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) (2.1)

Where, 𝑄(𝑠, 𝑎)𝑛𝑒𝑤 is a new Q-value of state and action that is changed,

 𝑄(𝑠, 𝑎) is an old Q-value of state and action that is changed,

 𝛼 is a learning rate or alpha,

 𝑟 is a reward for a step,

 𝛾 is a discount factor or gamma,

 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) is a maximum of old Q-value of a next state.

15

The Q-learning equation that is the last step is:

 𝑄(𝑠, 𝑎)𝑛𝑒𝑤 = 𝑟 (2.2)

The training algorithm steps of Q-learning are as follows:

1. Design a Q-table, and initialize an epsilon to 1.

2. Random a number between 0 and 1, and if the number is less than or equal to

the epsilon, the action will be random. If the number is greater than the epsilon,

the action will be picked from the Q-table.

3. Do the action that it gets from number 2, and it will give a new state.

4. Update Q-table from Equation 2.1 or 2.2.

5. Reduce the epsilon, and repeat number 2.

2.2.3 Deep Q-Learning

From Table 2.3, if the state consists of many sensors and many states of each sensor or

an image, it is hard to find all the Q-values of those states and actions, and it will not

be possible to find all the Q-values if the state is an image. Thus, deep q-learning was

created to solve this problem. A Q-table is replaced by a neural network. The input of

the neural network is a state, and the output is q-values that will provide an action. The

neural network is called a deep Q-network or DQN (see Figure 2.12).

Figure 2.12

An example of a DQN

Note. If an input is an image, a CNN can be applied at the first layer.

The training algorithm for deep Q-learning is the same as Q-learning, but the getting

value from the Q-table is replaced by prediction of DQN, and the updating of the Q-

table is replaced by updating or training of DQN.

16

2.2.4 Double Deep Q-Learning

From deep Q-learning, when it calculates Q-values of the current state and Q-values of

the next state, it uses the same neural network. It causes a divergence because the Q-

values of the next state keep on changing, and the Q-values of the current state will

chase the Q-values of the next state that is always changing.

The problem will be solved by using double DQN. The Double DQN method uses two

neural networks. The first neural network is used for calculating Q-values of the current

state, and this network is always changing by training or updating it. The second neural

network is used for calculating Q-values of the next state, and this network is changed

every T step, where T is a hyperparameter. The second network is changed by copying

the first neural network.

2.2.5 Experience Replay

In DQN and double DQN, having one current step is not stable for training neural

networks because the neural networks are always changing. The experience replay

algorithm is used to improve stability. It stores every step in replay memory. The replay

memory is limited by a number. When the replay memory is full, the new one will

replace the oldest one in the replay memory. When in the training step, it will randomly

pick in replay memories by a number that is more than one. It is not trained by the state

of the current step.

2.3 Simulator

When reinforcement learning is used in one project, there is always a simulator for

training reinforcement learning networks. For autonomous driving, there are many

simulators.

2.3.1 Related Work

When reinforcement learning is used in one project, there is always a simulator for

training reinforcement learning networks. For autonomous driving, there are many

simulators.

Samuel Arzt presented deep learning cars using Unity in two-dimensional as shown in

Figure 2.13. Unity is a game engine. He used Unity to train his reinforcement learning

network. When he uses a game engine, he has to build a game by himself because it is

not ready to use.

17

Abdur Razzaq Fayjie, Sabir Hossain, Doukhi Oualid, and Deok Jin Lee presented

driverless cars using Unity to simulate the urban environment in three-dimensional

space, as shown in Figure 2.14.

Figure 2.13

Driving Cars on Unity Game Engine in a Two-Dimensional Simulator

Figure 2.14

Driving Cars on Unity Game Engine in a Three-Dimensional Simulator

Takafumi Okuyama, Tad Gonsalves, and Jaychand Upadhay presented an autonomous

driving system using Unity to simulate straight road boundaries and obstacles in three-

dimensional.

Syed Owais Ali Chishti, Sana Riaz, Muhammad Bilal Zaib and Mohammad Nauman

presented self-driving cars in a real environment. This method has a disadvantage,

which is the training time because it was not trained in parallel. There is only one agent

at one time, as shown in Figure 2.15.

18

Harrison Kinsley presented driving cars in a video game called Grand Theft Auto V.

The advantage of this method is that the environment in the game looks real, but using

a video game that is always generating high graphics cannot be trained by parallel as

shown in Figure 2.16.

Figure 2.15

Driving Cars in the Real Environment

Figure 2.16

Driving Cars in Grand Theft Auto V

19

2.3.2 CARLA Simulator

CARLA is one of the driving simulators for autonomous driving. It was built by Alexey

Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. It is

based on the Unreal Engine 4. CARLA has been developed from the ground up to

support the development, training, and validation of autonomous urban driving

systems. CARLA provides open digital assets (urban layouts, buildings, and vehicles)

that were created for this purpose and can be used freely. From Figure 2.17, CARLA

can change weather conditions. Changing weather conditions will improve training. It

will make a variety of training sets. From Figure 2.18, CARLA has a semantic

segmentation function. This function will be useful for training image segmentation

networks before data gets into the deep q-network. CARLA can also run without

rendering graphics.

Figure 2.17

Changing of Four Weather Conditions in CARLA

Harrison Kinsley used CARLA for training self-driving cars using a reinforcement

network. He coded the network using Python and used the Python API to control

CARLA. Figure 2.19 shows the result of a self-driving car using CARLA. He could

make cars stay in lanes, and the cars could change lanes.

20

Figure 2.18

Semantic Segmentation Function in CARLA

Figure 2.19

Showing of Self-Driving Car Using CARLA

21

CHAPTER 3

METHODOLOGY

3.1 Overview

This thesis uses only one sensor for controlling a car. The sensor is a camera. The main

control algorithm is a double DQN. It learns to drive a car in a simulator. The CARLA

simulator was selected to be used in this thesis. Because when training double DQN in

a simulator, the network needs the same input image between the simulator and the real

world. Semantic segmentation is selected to convert images to make them the same.

The real-world images are converted to segmented images, then segmented images are

fed to a double DQN to predict an action to control a golf cart.

3.2 Equipment Selection

3.2.1 Golf Cart

A model of golf cart that is used in this thesis is the EVT Echo 4s (see Figure 3.1). The

EVT Echo 4s is an electric golf cart. A specification is shown in Table 3.1.

Figure 3.1

A Golf Cart Model EVT Echo 4s

22

Table 3.1

A specification for EVT Echo 4s

Maximum Speed 45 kilometers per hour

Turning Radius 5 meters

Overall Length 3160 millimeters

Overall Width 1220 millimeters

Overall Height 1830 millimeters

Wheelbase Dimension 2410 millimeters

Tire Size 205/50 R10

The maximum speed is limited at 8 kilometers per hour because the golf cart easily

stops with this speed limit when out of control the golf cart when testing.

The golf cart can be controlled by a digital signal via a USB serial port. It can control

the position of the steering wheel from far-left to far-right, the level of the throttle

paddle from 0 percent to 100 percent, and the level of the brake paddle from 0 percent

to 100 percent. USB sends serial to the golf cart with a bytes array [36, position of

steering wheel, level of throttle paddle, level of brake paddle, 64] which are all decimal

numbers. The first and last position of the array is the head and tail value. The position

of the steering wheel is in the range of 0 to 255, where 0 means the far-left position,

255 means the far-right position, and the middle position is 128. The level of the throttle

paddle and brake paddle is in the range of 0 to 255, which is converted from the range

of 0 to 100. The bytes array is converted from decimal numbers to hexadecimal

numbers before being sent to the golf cart. The golf cart can receive a command to

change an action every 400 milliseconds.

3.2.2 Computing Hardware

The first computer was a desktop. The specifications of this desktop are an Intel I3-

8100 CPU, a GTX 1660 Ti GPU, 24 gigabytes of RAM, and Windows 10 OS. It is for

training a double DQN.

23

The second computer is a desktop. The specifications of this desktop are a Ryzen 5-

2600 CPU, a GTX 1050 Ti GPU, 16 gigabytes of RAM, and Windows 10 OS. It is for

running a simulator when training a double DQN. The first computer and the second

computer cannot train a double DQN and run a simulator at the same time on a single

computer due to a GPU’s out of memory.

The third computer is a laptop. The specifications of this laptop are an Intel I7-9750H

CPU, a RTX 2070 GPU, 32 gigabytes of RAM, and Windows 10 OS. It is for training

a semantic segmentation network and running a double DQN to control a golf cart in a

real-world experiment.

3.2.3 Camera

This thesis uses a webcam. A model of this webcam is the Logitech C525 (see Figure

3.2). A specification is shown in Table 3.2.

From Section 4.1, the resolution of the camera is fixed at 864x480 pixels, then it is

cropped and resized to 512x512 pixels, and the frame rate is fixed at 5 fps due to the

system performance (see Section 4.3.2.1).

The camera is installed on the golf cart at a height of 1675 millimeters from the ground,

450 millimeters from the front of the golf cart, and 77.5 degrees to the ground. These

positions were roughly measured by a tape measure.

Figure 3.2

Logitech C525

24

Table 3.2

A specification for the Logitech C525

Resolution 1280x720 pixels

Frame Rate 30 frames per second

Field of View 69 degrees

3.3 Semantic Segmentaion

3.3.1 Model Selection

From Table 2.2, it shows the HRNet-OCR model is the best choice for semantic

segmentation, but it cannot be trained on my computers due to GPU’s out of memory

(see Section 4.2.1).

Pavel Yakubovskiy, or username Qubvel on GitHub, created a high-level API for

segmentation models based on Pytorch. I decided to use this API because it took less

time when compared with using source codes. Most of the source codes were created

for training with mixed-precision training that is available only on Ubuntu OS. All my

computers are Windows 10 OS. It took a long time to modify their codes. This Qubvel’s

API consists of DeepLabv3 and PSPNet. These two models have high scores on the

Cityscapes test dataset (see Table 2.2). The PSPNet was chosen for this thesis because

the DeepLabv3 takes more time than the PSPNet (see Section 4.2.2 and 4.2.3).

3.3.2 Dataset

There are 2 semantic segmentation models in this thesis. The first model is used to

segment real images, and the second model is used to segment images in the CARLA

simulator. The dataset that was used in this thesis is shown in Table 3.3. The first model

was trained by the AIT dataset, the augmented AIT dataset, and the Mapillary Vistas

dataset. The second model was trained by the CARLA dataset.

The reason for adding the augmented AIT dataset and the Mapillary Vistas dataset is to

avoid dataset overfitting of the main dataset.

The AIT dataset was recorded by a front-view camera. The images were labeled into 5

classes, which are roads, lane markings, vehicles, humans, and others (see Figure 3.3).

25

Table 3.3

The Number of Images in Each Dataset

Name Training Dataset Validation Dataset All

AIT 1607 689 2296

Augmented AIT 11249 0 11249

Mapillary Vistas 3000 0 3000

CARLA 1121 481 1602

Note. It was split 30 percent for the validation set on the AIT and the CARLA dataset. The

Augmented AIT and the Mapillary Vistas do not require to split for validation set because they

are not the main dataset for use.

Figure 3.3

Example of the AIT Dataset

The augmented AIT dataset was augmented from the AIT training set with 7 times

which it was randomly cropped, rotated, flipped, blurred, and added Gaussian noise

(see Figure 3.4).

26

Figure 3.4

Example of the Augmented AIT Dataset

The Mapillary Vistas dataset is a public dataset that is free to use. There are 20000

images in the training set. They were randomly selected from 3000 images. There are

124 classes in the Mapillary Vistas dataset. The 124 classes were converted into 5

classes, which are roads, lane markings, vehicles, humans, and others. The original is

shown in Figure 3.5.

Figure 3.5

Example of the Mapillary Vistas Dataset

The CARLA dataset was recorded in the simulator. The CARLA dataset has 24

different classes. The 24 classifications were reduced to 5, which are roads, lane

markers, cars, humans, and others. Figure 3.6 represents the original.

27

Figure 3.6

Example of the CARLA Dataset

3.3.3 Preprocessing

The normalization method was selected to preprocess images as shown in Equation 3.1.

Normalization is used after receiving an image from the camera. Mean and standard

values were found from the AIT dataset for each color channel. The values are shown

in Section 4.2.3.

The normalization equation is:

 𝑋𝑁𝑜𝑟𝑚 =
𝑋−𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑(𝑥)
 (3.1)

3.3.4 Training

The PSPNet experiment 1 and 2 is to segment real images. The PSPNet experiment 3

is to segment images in the CARLA simulator.

 3.3.4.1 PSPNet Experiment 1. This experiment was created to train the PSPNet.

The image size is 272x272. It was trained using the AIT dataset, the augmented AIT

dataset, and the Mapillary Vistas dataset. Hyperparameters are shown in Table 3.4. The

result is shown in Section 4.2.5.1.

 3.3.4.2 PSPNet Experiment 2. The trained model from experiment 1 provides

poor quality segmented images, especially the lane markings. This experiment wants to

improve them by increasing the image size from 272x272 to 512x512. The purpose of

this experiment was to train the PSPNet. It was trained using the AIT dataset, the

augmented AIT dataset, and the Mapillary Vistas dataset. Hyperparameters are shown

in Table 3.5. The result is shown in Section 4.2.5.2.

28

Table 3.4

Hyperparameters of Semantic Segmentation Experiment 1

Hyperparameter Value

Loss Function Cross Entropy

Optimization Adam

Learning Rate 0.0001

Batch Size 32

Table 3.5

Hyperparameters of Semantic Segmentation Experiment 2 and 3

Hyperparameter Value

Loss Function Cross Entropy

Optimization Adam

Learning Rate 0.0001

Batch Size 8

 3.3.4.3 PSPNet Experiment 3. This experiment was created to want a model to

use in the CARLA simulator. The model from experiment 2 cannot be used because the

model has never seen images in the CARLA simulator before, but the model can be

used as a pre-trained model for this experiment. The image size is 512x512. It was

trained using the CARLA dataset. Hyperparameters are shown in Table 3.4, which is

the same as experiment 2. The result is shown in Section 4.2.5.3.

3.4 CARLA Simulator

3.4.1 Creating A Golf Cart Model

A golf cart model was created to make it the same spec as the real golf cart (see Figure

3.7). It got the reference from Table 3.1. It was created using the Blender program,

which is a free program for creating three dimensional models.

29

Figure 3.7

Golf Cart Model in CARLA Simulator

3.4.2 Creating the AIT Map

1. Grabbing the AIT Map data from OpenStreetMap as shown in Figure 3.8.

Figure 3.8

AIT Map from OpenStreetMap

2. Importing from the OpenStreetMap to the RoadRunner program. It imported

only a guideline with the real scale as shown in Figure 3.9.

30

Figure 3.9

Guideline from OpenStreetMap

3. Drawing roads using the RoadRunner program (see Figure 3.10).

Figure 3.10

Finished Drawing Roads

31

4. Importing the map from the RoadRunner to CARLA Simulator, and add objects

as shown in Figure 3.11 and 3.12.

Figure 3.11

Add Objects to the Map

Figure 3.12

Finished Adding Objects to the Map

32

3.5 Double Deep Q-Learning

3.5.1 Deep Q-Network Architecture

The deep Q-network architecture is shown in Figure 3.13. There are Conv Blocks

inside of the deep Q-network, which is shown in Figure 3.14.

Figure 3.13

Deep Q-Network Architecture

Note. There are 3 inputs, which are Segmentation State, Past Action State, and Past Angle State.

The Segmentation State contains previous segmentation images. The number of previous

segmentation images depends on each experiment. The #N_IN is the number of all

segmentation images. The Past Action State contains the past actions. The Past Angle State

contains the past level of the throttle paddle, the angle of the steering wheel, and the level of

the brake paddle. The number of past actions and past angles depends on each experiment. The

#N_CON is the number after the concatenation. The #N_ACTION depends on each

experiment. The Conv Block is shown in Figure 3.14.

Segmentaion State

Conv Block, in channel = #N_IN, out channel = 32

Conv Block, in channel = 32, out channel = 64

Conv Block, in channel = 64, out channel = 128

Reshape the result from upper block from 2 dimension to 1 dimension

Concatenate upper block and Past Action State and Past Angle State

Neural Linear Layer, in channel = #N_CON, out channel = 512

Neural Linear Layer, in channel = 512, out channel = 256

Neural Linear Layer, in channel = 256, out channel = #N_ACTION

33

Figure 3.14

Conv Block

3.5.2 Training Scene

There are 3 training scenes as shown in Figures 3.15 to 3.17. The goal is to move from

point A to B in each scene.

Figure 3.15

Training Scene 1

Conv2d, in channel = #N_IN, out channel = #N_OUT, kernel size = 3

BatchNorm2d

ReLU

MaxPool2d, kernel size = 2

Conv2d, in channel = #N_OUT, out channel = #N_OUT, kernel size = 3

BatchNorm2d

ReLU

MaxPool2d, kernel size = 2

34

Figure 3.16

Training Scene 2

Figure 3.17

Training Scene 3

3.5.3 Training

 3.5.3.1 Double DQN Experiment 1. This experiment used training scene 2 as

shown in Figure 3.16. The position of the golf cart was spawned for 5 points as shown

in Figure 3.18. This experiment used segmented images that CARLA provided (see

Figure 2.18) as the input to DQN. The purpose of this experiment is to test the

algorithm. There are 8 actions as shown in Table 3.6. A reward was calculated using

35

Equation 3.2. If the golf cart is out of the road or crashes into something, the reward

will be -2. Hyperparameters are shown in Table 3.7, and hyperparameters for only this

experiment are shown in Table 3.8. The result is shown in Section 4.3.1.1.

Figure 3.18

5 Position of Spawning the Golf Cart in Training Scene 2

Table 3.6

Actions of Double DQN Experiment 1 and 2

Action

Number
Action Comment

0 T-0.0667, if S<0 S+0.0667 if S>0 S-0.0667, B-0.0667 Release

1 T+0.1, if S<0 S+0.0667 if S>0 S-0.0667, B=0 Forward

2 T-0.0667, S-0.1, B-0.0667 Left

3 T-0.0667, S+0.1, B-0.0667 Right

4 T=0, if S<0 S+0.0667 if S>0 S-0.0667, B+0.1 Brake

5 T=0, if S<0 S+0.0667 if S>0 S-0.0667, B=1 Stop

6 T+0.1, S-0.1, B=0 Forward&Left

7 T+0.1, S+0.1, B=0 Forward&Right

Note. T means level of throttle paddle. S means angle of steering wheel. B means level of break

paddle.

36

The reward equation for every double DQN experiment is:

 𝑟 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑

max 𝑠𝑝𝑒𝑒𝑑
+

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑎𝑟 𝑖𝑛 𝑙𝑒𝑓𝑡 𝑙𝑎𝑛𝑒

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑎𝑟
 (3.2)

Table 3.7

Hyperparameters of Every Double DQN Experiment

Hyperparameters Values

Learning Rate 0.0001

Discount Factor 0.9

Target Update Interval 1000 steps

Play Interval 900 steps

Epsilon 1

Epsilon Decay Rate 0.99999

Minimum Epsilon 0.1

Maximum Replay Memory 100000

Replay Size 32

Table 3.8

Hyperparameters of Double DQN Experiment 1

Hyperparameters Values

Number of Input Segmented Images 14 frames

Number of Past Actions 20

Number of Past Angles 20

Max Speed 20 km/h

Frame Time 0.1 seconds

Action Time 0.2 seconds

37

 3.5.3.2 Double DQN Experiment 2. This experiment used segmented images

from the PSPNet. The position of the camera was changed to the same as the position

of the camera on the real golf cart (see Section 3.2.3). The action time was changed

from 0.2 seconds to 0.4 seconds because the golf cart can be sent a command every 0.4

seconds (see Section 3.2.1). The rest of the setting was the same as experiment 1, which

were training on scene 2, the golf cart was spawned for 5 points as shown in Figure

3.18, using 8 actions is shown in Table 3.6, a reward was calculated using Equation 3.2,

and if the golf cart is out of the road or crashes into something, the reward will be -2.

The reason for using the same setting as in experiment 1 is that the setting gives

acceptable results. The new hyperparameters are shown in Table 3.9. The result is

shown in Section 4.3.1.2.

Table 3.9

Hyperparameters of Double DQN Experiment 2

Hyperparameters Values

Number of Input Segmented Images 14 frames

Number of Past Actions 20

Number of Past Angles 20

Max Speed 20 km/h

Frame Time 0.1 seconds

Action Time 0.4 seconds

 3.5.3.3 Double DQN Experiment 3. This experiment was trained using training

scenes 1, 2, and 3 from Section 3.5.2, and used only 1 spawn point, which is point A in

each scene. If it was trained using 5 spawn points for 3 scenes, it would take a long time

to train. The maximum speed of the golf cart was changed from 20 kilometers per hour

to 8 kilometers per hour because 20 kilometers per hour is too fast for testing. The driver

will not be able to stop the golf cart if it is out of control. When changing the maximum

speed, actions need to change because the actions from experiments 1 and 2 will

decrease the rate of change reward. The DQN will not know if it changed an action.

38

That action will give a reward more or less. The new actions are shown in Table 3.10,

and the new hyperparameters are shown in Table 3.11. The rest of the setting was the

same as experiment 2, which used the PSPNet, a reward was calculated using Equation

3.2, and if the golf cart is out of the road or crashes into something, the reward will be

-2. The result is shown in Section 4.3.1.3.

Table 3.10

Actions of Double DQN Experiment 3

Action

Number
Action Comment

0 T-0.2, if S<0 S+0.1333 if S>0 S-0.1333, B-0.2 Release

1 T+0.2, if S<0 S+0.1333 if S>0 S-0.1333, B=0 Forward

2 T-0.2, S-0.1333, B-0.2 Left

3 T-0.2, S+0.1333, B-0.2 Right

4 T=0, if S<0 S+0.1333 if S>0 S-0.1333, B+0.2 Brake

5 T=0, if S<0 S+0.1333 if S>0 S-0.1333, B=1 Stop

6 T+0.2, S-0.1333, B=0 Forward&Left

7 T+0.2, S+0.1333, B=0 Forward&Right

 3.5.3.4 Double DQN Experiment 4. This experiment wants to try a new way to

give the reward by adding deducting 1 when the golf cart goes outside the left lane

because I want to make the golf cart focus on staying in the left lane. If the area of the

car in the left lane divided by the area of the car is more than or equal to 0.98, the reward

will be calculated using the same equation as previously, which is Equation 3.2. If the

area of the car in the left lane divided by the area of the car is less than 0.98, the reward

will be calculated using the new equation, which is Equation 3.3, and if the golf cart is

out of the road or crashes into something, the reward will be -4, which was changed

from -2. The actions were decreased from 8 actions to 3 actions because I want to

improve the speed of training. Driving in the left lane requires only 3 actions. When

testing the golf cart with the model from experiment 3, it took a long time to control the

39

steering wheel from the left position to the right position. The new actions are shown

in Table 3.12. The rest of the setting was the same as experiment 3, which used the

PSPNet, it was trained using training scenes 1, 2, and 3, hyperparameters are shown in

Table 3.11. The result is shown in Section 4.3.1.4.

Table 3.11

Hyperparameters of Double DQN Experiment 3 and 4

Hyperparameters Values

Number of Input Segmented Images 14 frames

Number of Past Actions 20

Number of Past Angles 20

Max Speed 8 km/h

Frame Time 0.1 second

Action Time 0.4 second

The reward equation for the double DQN experiment 4 and 5, if the area of the car in

the left lane divided by the area of the car is less than 0.98, is:

 𝑟 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑

max 𝑠𝑝𝑒𝑒𝑑
+

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑎𝑟 𝑖𝑛 𝑙𝑒𝑓𝑡 𝑙𝑎𝑛𝑒

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑎𝑟
− 1 (3.3)

Table 3.12

Actions of Double DQN Experiment 4 and 5

Action

Number
Action Comment

0 T+0.2, if S<0 S+0.2 if S>0 S-0.2, B=0 Forward

1 T+0.2, if S<0 S-0.1 if S>0 S-0.4, B=0 Forward+Left

2 T+0.2, if S<0 S+0.4 if S>0 S+0.1, B=0 Forward+Right

40

 3.5.3.5 Double DQN Experiment 5. When testing the golf cart with the model

from experiment 3, the steering wheel was controlled when the golf cart was close to

the lane marking. In this experiment, the left lane of the road was decreased the width

to make it drive in the center (see Figure 3.19). There was a time peak more than 0.1

seconds when testing with the real golf cart from experiment 3, as shown in Section

4.3.2.1. Thus, this experiment was increased the frame time from 0.1 seconds to 0.2

seconds, as shown in Table 3.13. There was a bit of change in giving a reward from

experiment 4. There was too much control over the steering wheel. To fix that problem,

the reward will be deducted by 0.2 when moving the steering wheel. The rest of the

setting was the same as experiment 4, which was giving a reward, if the area of the car

in the left lane divided by the area of the car is more than or equal to 0.98, the reward

will be calculated using Equation 3.2. If the area of the car in the left lane divided by

the area of the car is less than 0.98, the reward will be calculated using Equation 3.3, if

the golf cart is out of the road or crashes into something, the reward will be -4, the

PSPNet was used, it was trained using training scenes 1, 2, and 3, and the actions were

shown in Table 3.12. The result is shown in Section 4.3.1.5.

Figure 3.19

Changing Reward Mask for Double DQN Experiment 5

 (a) The old reward mask (b) The new reward mask

41

Table 3.13

Hyperparameters of Double DQN Experiment 5

Hyperparameters Values

Number of Input Segmented Images 15 frames

Number of Past Actions 8

Number of Past Angles 8

Max Speed 8 km/h

Frame Time 0.2 seconds

Action Time 0.4 seconds

42

CHAPTER 4

RESULTS

4.1 Camera Setting

From Section 4.2.5.2, the resolution that makes the PSPNet get the best quality is

512x512. The ratio of the AIT dataset is 16:9. The resolution of the Logitech C525 can

be set by OpenCV at 1280x720 or 864x480, where the ratio of 864x480 is not 16:9. It

should be 853x480. It can be cropped from the center. This thesis chooses a resolution

of 864x480 because it takes a shorter response time than 1280x720, as shown in Figure

4.1. It was tested on my laptop that will be used when testing with the real golf cart.

The average response time of 1280x720 is 122.97 milliseconds or 8.13 frames per

second. The average response time of 864x480 is 40.07 milliseconds or 24.96 frames

per second. The resolution of 864x480 was chosen to be used in this thesis because it

took less response time around 3.07 times. This is the time that only captures an image

from the camera. There is more processing time, such as time to process the PSPNet

and DQN. Using a setting that takes less time as possible is the best choice.

Figure 4.1

Response Time of Camera for Each Resolution

43

4.2 Semantic Segmentaion

4.2.1 HRNet-OCR

The HRNet-OCR consists of many layers. When I try to train it with one epoch on the

RTX 2070, which has 8 gigabytes of memory, it cannot train due to being out of

memory, as shown in Figure 4.2. It tried to allocate 1.39 gigabytes, but the model

already used 5.56 gigabytes. It is available only 148.12 megabytes. Thus, it can be

assumed that it uses more than 8 gigabytes of memory. This network cannot use due to

hardware limitation.

Figure 4.2

GPU’s Out of Memory When Running HRNet-OCR

4.2.2 Response Time Testing

The response time was tested on my laptop that will be used when testing with the real

golf cart.

 4.2.2.1 DeepLabv3. The average time of the DeepLabv3 at 272x272 is 27.80

milliseconds or 35.97 frames per second, and the maximum time is 59.07 milliseconds

or 16.93 frames per second, as shown in Figure 4.3. The average time of DeepLabv3 at

512x512 is 30.06 milliseconds or 33.27 frames per second, and the maximum time is

74.98 milliseconds or 13.34 frames per second, as shown in Figure 4.4.

 4.2.2.2 PSPNet. The average time of the PSPNet at 272x272 is 9.00 milliseconds

or 111.11 frames per second, and the maximum time is 26.84 milliseconds or 37.26

frames per second, as shown in Figure 4.5. The average time of DeepLabv3 at PSPNet

is 9.23 milliseconds or 108.34 frames per second, and the maximum time is 48.19

milliseconds or 20.75 frames per second, as shown in Figure 4.6.

The PSPNet was chosen for this thesis. At the resolution of 272x272, the DeepLabv3

took the average response time more than the PSPNet 4.00 times, and the DeepLabv3

took the response time more than the PSPNet 2.20 times in the worst case. At the

resolution of 512x512, the DeepLabv3 took the average response time more than the

44

PSPNet 3.26 times, and the DeepLabv3 took the response time more than the PSPNet

1.56 times in the worst case. From Table 2.2, the DeepLabv3 achieved a mIoU score of

0.813 on the Cityscapes test dataset, and the PSPNet achieved a mIoU score of 0.784.

It does not differ much in terms of the mIoU score and quality. Using the PSPNet that

takes less response time is the best choice.

Figure 4.3

Response Time of DeepLabv3 at 272x272

Figure 4.4

Response Time of DeepLabv3 at 512x512

45

Figure 4.5

Response Time of PSPNet at 272x272

Figure 4.6

Response Time of PSPNet at 512x512

4.2.3 Preprocessing

The mean and standard values that were found from the AIT dataset in each color

channel are shown in Table 4.1.

46

Table 4.1

Mean and Standard Values for Normalization

 Red Green Blue

Mean 105.6152 115.1326 118.1004

Standard 68.2132 70.9628 78.0216

4.2.4 Training

 4.2.4.1 PSPNet Experiment 1. The result of experiment 1 from Section 3.3.4.1

is shown in Figure 4.7. It was trained for 10354 epochs, which took 55.24 hours. The

best mIoU is 0.6824 at epoch 5120. The training was stopped because the mIoU score

stopped increasing. Examples of the results of the validation set are shown in Figure

4.8. The result is not good, especially the lane markings. The lane markings are hard to

detect in the shadows and the far-view.

Figure 4.7

Validation mIoU of PSPNet Experiment 1

47

Figure 4.8

Example of the Prediction Result of Validation Set from PSPNet Experiment 1

Note. The left column is input images. The middle column is ground truth images. The last

column is prediction images.

 4.2.4.2 PSPNet Experiment 2. The result of experiment 2 from Section 3.3.4.2

is shown in Figure 4.9. It was trained for 697 epochs, which took 101.41 hours. The

best mIoU is 0.7720 at epoch 407. The training was stopped because the mIoU score

stopped increasing. Examples of the results of the validation set are shown in Figure

4.11. The result is good even in the shadows and far-view.

48

Figure 4.9

Validation mIoU of PSPNet Experiment 2

Figure 4.10

Validation mIoU of PSPNet Experiment 3

 4.2.4.3 PSPNet Experiment 3. The result of experiment 3 from Section 3.3.4.3

is shown in Figure 4.10. It was trained for 347 epochs, which took 6.37 hours. The best

mIoU is 0.7925 at epoch 180. The training was stopped because the mIoU score stopped

increasing. Examples of the results of the validation set are shown in Figure 4.12. The

result is good. It can segment images in the CARLA simulator.

49

Figure 4.11

Example of the Prediction Result of Validation Set from PSPNet Experiment 2

Note. The left column is input images. The middle column is ground truth images. The last

column is prediction images.

50

Figure 4.12

Example of the Prediction Result of Validation Set from PSPNet Experiment 3

Note. The left column is input images. The middle column is ground truth images. The last

column is prediction images

4.3 Double Deep Q-Learning

4.3.1 Training

 4.3.1.1 Double DQN Experiment 1. The result of experiment 1 from Section

3.5.3.1 is shown in Figure 4.13. It was trained for 172000 steps, which took 86.88 hours.

The best mean play score is 0.8231 at step 123300. It can play to the end of 5 scenes at

step 14400. This experiment proves that the double DQN algorithm can control a car

51

using segmented images. The golf cart could drive in the left lane. When it went outside

of the left lane, it controlled the steering wheel to come back into the left lane.

Figure 4.13

Mean Play Score of Double DQN Experiment 1

Figure 4.14

Mean Play Score of Double DQN Experiment 2

 4.3.1.2 Double DQN Experiment 2. The result of experiment 2 from Section

3.5.3.2 is shown in Figure 4.14. It was trained for 15300 steps, which took 5.47 hours.

The best mean play score is 0.7946 at step 13500. It can play to the end of 5 scenes at

52

step 10800. The training was stopped because it was concluded that we could use

segmented images from the PSPNet instead of perfect segmented images. The PSPNet

has more noise than perfect segmented images. Changing the position of the camera

and action time have no effect on training the double DQN. The golf cart could drive

in the left lane. When it went outside of the left lane, it controlled the steering wheel to

come back into the left lane.

 4.3.1.3 Double DQN Experiment 3. The result of experiment 3 from Section

3.5.3.3 is shown in Figure 4.15. It was trained for 180000 steps, which took 130.96

hours. The best mean play score is 0.9409 at step 103500. It can play to the end of 3

scenes at step 75600. It took more time than previous experiments. The experiments 1

and 2 used 14400 and 10800 steps respectively. This experiment is hard because it has

to learn how to drive on left and right curvy roads. The experiments 1 and 2 have only

right curvy road. This experiment proves that it can drive on left and right curvy roads,

and when doing an action, the action must give a reward that differs from the previous

reward. Changing the speed of the golf cart has to change actions. The golf cart could

drive in the left lane. It can drive on left and right-curvy roads. When it went outside of

the left lane, it controlled the steering wheel to come back into the left lane.

Figure 4.15

Mean Play Score of Double DQN Experiment 3

53

 4.3.1.4 Double DQN Experiment 4. The result of experiment 4 from Section

3.5.3.4 is shown in Figure 4.16. It was trained for 48100 steps, which took 19.06 hours.

The best mean play score is 0.9368 at step 26100. It can play to the end of 3 scenes at

step 1800, which is very fast because it was reduced the number of actions from 8

actions to 3 actions. The experiment 3 took 75600 steps. Giving a reward in this

experiment differs from the previous experiment. The golf cart moved too much on the

steering wheel, but it was still in the left lane.

Figure 4.16

Mean Play Score of Double DQN Experiment 4

 4.3.1.5 Double DQN Experiment 5. The result of experiment 5 from Section

3.5.3.5 is shown in Figure 4.17. It was trained for 94500 steps, which took 58.64 hours.

The best mean play score is 0.9196 at step 86400. It can play to the end of 3 scenes at

step 24300. Changing the frame time did not affect the result. The golf cart can be

driven at 5 frames per second. Giving a reward for this experiment and changing the

width of the left lane can improve the results. The golf cart was driven perfectly. It can

drive in the middle of the road.

54

Figure 4.17

Mean Play Score of Double DQN Experiment 5

Figure 4.18

Response Time of PSPNet when Real Test

4.3.2 Testing

 4.3.2.1 Testing from Experiment 3. Testing the real golf cart using the trained

model from experiment 3, the golf cart was almost driven successfully. It was controlled

well on straight roads, but not well on curvy roads. In the end, it drove off the road.

This model takes too long time to make a decision. Figure 4.18 shows response times

when processed by the PSPNet. This experiment set the frame time at 0.1 seconds, but

when running in the real test, it was run with the DQN every 0.4 seconds. This may be

the reason why it processed for more than 0.1 seconds, and from Figure 4.19, almost

55

all of them processed more than 0.1 seconds. Setting the frame time to 0.2 seconds is

the best way to process the networks.

Figure 4.19

Response Time of PSPNet and DQN when Real Test

 4.3.2.2 Testing from Experiment 5. The golf cart was tested using the trained

model from experiment 5. The golf cart was driven perfectly on the road that was

trained. It was not just driving in the left lane, but it could drive in the middle of the left

lane as well. It can still drive on a road that it has never seen, and it can drive on a road

without line markings.

56

CHAPTER 5

CONCLUSIONS

5.1 Conclusion

The golf cart is controlled using the double DQN algorithm. The input of the double

DQN is segmented images which come from a semantic segmentation model. The

PSPNet and DeepLabv3 were chosen for testing. At a resolution of 272x272, the

PSPNet can run 37.26 frames per second, and the DeepLabv3 can run 5.25 frames per

second in the worst case. At a resolution of 512x512, the PSPNet can run at 20.75

frames per second, and the DeepLabv3 can run at 5.97 frames per second in the worst

case. The PSPNet was chosen to be used in this thesis because it can provide better

times on both resolutions. The PSPNet was trained using the AIT dataset and the

Mapillary Vistas dataset, which is a public dataset. The best mIoU of the PSPNet

training at the resolution of 272x272 is 0.6824, and the best mIoU of the PSPNet

training at the resolution of 512x512 is 0.7925. The resolution of 512x512 was chosen

because it provides a better score and quality of segmented images. When the PSPNet

was applied at the same time as the DQN, it took more than 0.1 seconds to process.

Thus, the frame time was set at 0.2 seconds or 5 frames per second. An action will be

predicted and sent every 0.4 seconds. From a lot of trial and error of training the double

DQN, reducing the reward mask of the left lane can provide a driving in the middle of

the left lane. The reward will be deducted by 0.2 when moving the steering wheel to

make it move the steering wheel as less as possible. Giving the reward -1 when it goes

outside the left lane to make it more afraid to move to the outside.

To summarize, this thesis finds the best semantic segmentation model to segment

images, and finds the best way to give a reward to the double DQN to control the golf

cart in the left lane. The hardest part about using the double DQN is designing a reward

function.

5.2 Recommendations

1. Train the semantic segmentation network with more data from the public

dataset, and augment the dataset by adding low brightness and high brightness

to make the network run on every road and light condition.

57

2. Train the double DQN with more scenes to make the car can be driven on every

road.

3. Use an encoder network, such as ResNet, instead of my designed network in the

double DQN part, and try to adjust the hyperparameters. It may improve the

speed of training.

58

REFERENCES

Arzt, S. (2016, October 23). Deep Learning Cars [Video]. YouTube. https://youtu.be/

Aut32pR5PQA

Chishti, S. O. A., Riaz, S., Zaib, M. B., & Nauman, M. (2018, November 1-2). Self-

Driving Cars Using CNN and Q-Learning [Conference session]. 2018 IEEE

21st International Multi-Topic Conference (INMIC), Karachi, Pakistan.

https://doi.org/10.1109/INMIC.2018.8595684

Choudhary, A. (2019, April 18). A Hands-On Introduction to Deep Q-Learning using

OpenAI Gym in Python. Analytics Vidhya. https://www.analyticsvidhya.com/

blog/2019/04/introduction-deep-q-learning-python/

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017, November 13-

15). CARLA: An Open Urban Driving Simulator [Conference session]. the 1st

Conference on Robot Learning (CoRL), Mountain View, California, United

States of America. https://arxiv.org/abs/1711.03938

Fayjie, A. R., Hossain, S., Oualid, D., & Lee, D. J. (2018, June 26-30). Driverless Car:

Autonomous Driving Using Deep Reinforcement Learning in Urban

Environment [Conference session]. 2018 15th International Conference on

Ubiquitous Robots (UR), Honolulu, Hawaii, United States. https://doi.org/

10.1109/URAI.2018.8441797

Gulli, A., Kapoor, A., & Pal, S. (2020, January 9). Using the CNN Architecture in

Image Processing. Open Data Science. https://opendatascience.com/using-the-

cnn-architecture-in-image-processing

Heidenreich, H. (2018, December 5). What are the types of machine learning? Towards

Data Science. https://towardsdatascience.com/what-are-the-types-of-machine-

learning-e2b9e5d1756f

Kinsley, H. (2017, April 10). Python Plays: Grand Theft Auto V [Video]. YouTube.

https://www.youtube.com/playlist?list=PLQVvvaa0QuDeETZEOy4VdocT7T

OjfSA8a

Kinsley, H. (2019, September 16). Self-driving cars with Carla and Python [Video].

YouTube. https://www.youtube.com/playlist?list=PLQVvvaa0QuDeI12McNQ

dnTlWz9XlCa0uo

59

Li, Y., Guo, L., Rao, J., Xu, L., & Jin, S. (2018). Road Segmentation Based on Hybrid

Convolutional Network for High-Resolution Visible Remote Sensing Image.

IEEE Geoscience and Remote Sensing Letters, 16(4), 613-617. https://doi.org/

10.1109/LGRS.2018.2878771

Lim, K. L., Drage, T., & Bräunl, T. (2017, November 16-18). Implementation of

semantic segmentation for road and lane detection on an autonomous ground

vehicle with LIDAR [Conference session]. 2017 IEEE International Conference

on Multisensor Fusion and Integration for Intelligent Systems (MFI), Daegu,

South Korea. https://doi.org/10.1109/MFI.2017.8170358

Liu, Y. H. (2019). PyTorch 1.x Reinforcement Learning Cookbook. Packt.

Neuhold, G., Ollmann, T., Bulò, S. R., & Kontschieder, P. (2017, October 22-29). The

Mapillary Vistas Dataset for Semantic Understanding of Street Scenes

[Conference session]. 2017 IEEE International Conference on Computer Vision

(ICCV), Venice, Italy. https://doi.org/10.1109/ICCV.2017.534

Okuyama, T., Okuyama, T., & Upadhay, J. (2018, March 1-3). Autonomous Driving

System based on Deep Q Learnig [Conference session]. 2018 International

Conference on Intelligent Autonomous Systems (ICoIAS), Singapore,

Singapore. https://doi.org/10.1109/ICoIAS.2018.8494053

Stojnic, R., Taylor, R., Kardas, M., Kerkez, V., Viaud, L., Saravia, E., & Cucurull, G.

(2021, May 31). Semantic Segmentation. Papers with Code. https://paperswith

code.com/task/semantic-segmentation

Tiu, E. (2019, August 10). Metrics to Evaluate your Semantic Segmentation Model.

Towards Data Science. https://towardsdatascience.com/metrics-to-evaluate-

your-semantic-segmentation-model-6bcb99639aa2

Yakubovskiy, P. (2019, April 20). segmentation_models.pytorch. GitHub. https://git

hub.com/qubvel/segmentation_models.pytorch

Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017, July 21-26). Pyramid Scene Parsing

Network [Conference session]. 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Honolulu, HI, United States. https://doi.org/

10.1109/CVPR.2017.660

