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ABSTRACT 

In the self-driving car industry, LIDARs and cameras have been used as sensors to drive 

a car. LIDARs can know the exact distance around a car, but when a car is driven by a 

human, a human does not know the exact distance like LIDARs. This thesis aims to 

create an AI that can drive like a human. Humans see an image when driving. Using 

only a camera was chosen to do this thesis, and the main AI algorithm is a double deep 

Q-network. When using a double deep Q-network, it requires a simulator to train the 

network. It will be hard if the network is trained in the real environment due to giving 

a reward. Training the network in a simulator will not be able to apply to a real car 

because the network has never seen a real environment before. A semantic 

segmentation was chosen to solve the problem. There are several semantic 

segmentation networks. PSPNet is the best choice to use in this case because it can 

provide quality segmented images, and it can run in real-time. In the end, a golf cart 

was used to drive in the left lane of a road. The golf cart has been controlled 

successfully.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

Over the past decades, automobile technology has been developed continuously. It 

began with the invention of the first steam-powered vehicle instead of horses, and the 

next generation of cars was powered by oil and gas. Nowadays, cars have changed to 

electric cars, and every car these days comes with many conventional systems, such as 

GPS and a rear-view camera, to assist the driver in various fields. 

One of the conventional systems that the driver wants is a self-driving capability. The 

popular self-driving capability is a cruise control system that helps the driver without 

stepping on a pedal. In the present day, there is already a self-driving capability for 

automobile technology. The car will be driven and decided by AI. 

1.2 Statement of the Problem 

Since cars are the main vehicle that is used for traveling, the number of accidents has 

increased because of human errors. When an accident occurs, it causes death. Most 

accidents are caused by a driver's lack of focus on driving, such as sleepiness, 

drunkenness, and playing on a mobile phone. A self-driving capability will help a driver 

to prevent these problems. 

Research papers about self-driving cars have been published increasingly, but there is 

no work that is 100 percent safe for today. News about accidents caused by self-driving 

vehicles has been seen periodically, and the self-driving systems of certain car brands, 

such as Tesla, are still not available in some regions of America and all regions of 

Thailand. 

The hardware that is used to build the self-driving system is expensive. For example, 

LIDAR for visualization and distance measuring can be replaced by using cameras, and 

AI’s model optimization can replace expensive calculation hardware. 
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1.3 Objectives of the Study 

This thesis aims to build a self-driving car that can move automatically from one 

location to another, as per the following details: 

1. To create the best semantic segmentation model for road, lane marking, and 

object detection. 

2. To create the best double deep q-learning model to control a car. 

1.4 Scope and Limitations 

Scope and limitations of this research as per the following details: 

1. A car that is used in the real experiment is a golf cart. 

2. A golf cart can be controlled in AIT. 

3. A golf cart can be controlled on roads by having lane markings. 

4. A golf cart can be controlled in the left lane. 

5. A golf cart can be controlled in the daytime. 

6. A camera installation in the front view of a golf cart is a vision for a self-driving 

system. 

7. A driver must stay on the steering wheel for safety, and a golf cart can come 

back to control manually at any time. 

8. The maximum speed of a golf cart is 8 kilometers per hour. 

9. A golf cart can stay in its lane. 

10. An AI’s calculation device in real-time is a laptop.  
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CHAPTER 2 

LITERATURE REVIEW 

Chapter 2 describes algorithms that are used in this thesis and related work. The first 

part is a semantic segmentation to detect roads, lane markings, and objects. The next 

part is deep reinforcement learning, which is an algorithm for an AI to control a car, 

and the final part is simulators to simulate the road environment for training an AI. 

2.1 Semantic Segmentation 

Semantic segmentation is one of the image processing methods using the CNN 

architecture. There are 4 types of image processing methods using a CNN that consist 

of classification, object detection, image segmentation, and instance segmentation (see 

Figure 2.1). 

 

Figure 2.1 

Different Image Processing Methods Using CNN 

  

Note. Classification using CNN can classify only one object, and CNN can predict this image 

as a cat, but CNN does not know the location of the cat in this image. Classification with 

localization is the same as object detection. The difference between them is the detection of a 

single object and multiple objects. Object detection can predict the location of the cat or dog in 

these images, and it can predict what those objects are, but it does not know the shape of the 

object that is detected. Semantic segmentation can predict every object for every pixel in that 

image, and it knows the shape of objects, but if there is more than one cat in that image, it will 

detect one cat. Instance segmentation can detect objects like semantic segmentation, but it can 

separate objects if there is more than one object for each class. 
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2.1.1 Related Work 

Kai-Li Lim, Thomas Drage, and Thomas Bräunl presented a semantic segmentation to 

detect road and lane markings. They used SegNet, which is one of the CNN 

architectures for semantic segmentation. The reason why they use semantic 

segmentation is road and lane marking detection. They could not detect them by using 

only LIDAR. Errors were calculated as a percentage that corresponds to the area of 

each figure’s road segments, as shown in Figure 2.2 and Figure 2.3. 

 

Figure 2.2 

Image Segmentation Result of a Clear Road Image Using SegNet 

 

 Input Output 

Note. This result was predicted by SegNet, which was the lowest error of road pixels at 0.04 

percent because the tested road’s image was clear. 

 

Figure 2.3 

Image Segmentation Result of a Road Junction Image Using SegNet 

 

 Input Output 

Note. The SegNet predicted this outcome, which had the highest road pixel error of 16.16 

percent because of poor road surface and illumination. 
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Ye Li, Lili Guo, Jun Rao, Lele Xu, and Shau Jin presented comparing popular 

architecture to segment roads from satellite images. The CNN architectures that they 

tested are VGG, U-Net, Modified U-Net, FCN, VGG+FCN, VGG+Modified U-Net, 

FCN+ Modified U-Net, SegNet, CasNet, and HCN. For modified nets, they adjusted the 

original architecture of that net by themselves to get the best accuracy. For HCN, they 

called another their architecture, which is the hybrid convolutional network (see Figure 

2.4). 

 

Figure 2.4 

HCN Architecture for Road Segmentation 

 

Note. The HCN architecture includes VGG, FCN, and Modified U-Net. The HCN can give 

the best mean pixel accuracy of 0.8355. 

 

2.1.2 Semantic Segmentation Ranking 

Robert Stojnic, Ross Taylor, Marcin Kardas, Viktor Kerkez, Ludovic Viaud, Elvis 

Saravia, and Guillem Cucurull created the Papers with Code website, which is a website 

to compare machine learning scores, and there is a semantic segmentation category. 

From Table 2.1, the most popular dataset for the contest is the Cityscapes test dataset. 

This thesis did some tests with 3 models, as shown in Table 2.2. 
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Table 2.1 

Semantic Segmentation Dataset on Papers with Code Website 

Dataset Trend 

Cityscapes Test Dataset 94 

PASCAL VOC 2012 Test Dataset 57 

PASCAL Context Dataset 43 

ADE20K Validation Dataset 43 

Cityscapes Validation Dataset 39 

 

Note. The trend shows the number of models that have a benchmark score for each dataset. This 

table does not show all of the datasets on the Papers with Code website. It shows only the top 

5 from 49 datasets. 

 

Table 2.2 

Cityscapes test Benchmark Score on Papers with Code Website 

Rank Model Encoder mIoU 

1 HRNet-OCR Hierarchical Multi-Scale Attention 0.851 

36 DeepLabv3 ResNet-101 0.813 

49 PSPNet ResNet-101 0.784 

 

Note. This table shows only 3 models from 94 models because this thesis tested with these 

models. 

 

2.1.3 Mean Intersection-over-Union 

Mean intersection-over-union or mIoU is the most popular one for scoring semantic 

segmentation. For one class of prediction, it can be scored by IoU as shown in Figure 

2.5. For multi-class prediction, it uses mIoU by averaging the IoU of each class. 
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Figure 2.5 

Intersection-over-Union 

 

Note. Intersection-over-union or IoU is calculated by an area of overlap divided by an area of 

union. These areas mean a ground truth area and a predicted segmentation area. 

 

2.1.4 Pyramid Scene Parsing Network 

Pyramid Scene Parsing Network or PSPNet is one of the semantic segmentation 

networks. PSPNet was invented by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, 

Xiaogang Wang, and Jiaya Jia. In 2017, this network had a new record on the PASCAL 

VOC 2012 test dataset with mIoU 0.854, which is ranked 16th now. The overview of 

PSPNet is shown in Figure 2.6. 

The full architecture of PSPNet can be found in Figure 2.9. The inside of PSPNet 

consists of ResNet-101, which is shown in Figure 2.8, and the inside of ResNet-101 

consists of many Bottleneck blocks, which are shown in Figure 2.7. In this PSPNet, the 

input image size is 512x512 with a RGB channel, and there are 5 classes of objects. 

 

Figure 2.6 

Overview of PSPNet 

 

Note. The input image is fed into a feature map block. The feature map block is ResNet-101 or 

any encoder block. The output from the ResNet-101 is fed into the pyramid pooling module, 
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which is distributed to different sub-regions. At the last of the pyramid pooling module, it is 

upsampled, then concatenates the different sub-regions together. In the end, the output from the 

pyramid pooling module is fed into a convolution layer. 

 

Figure 2.7 

Bottleneck Block 

 

 

 

 

 

 

Note. The bottleneck block contains 3 convolution layers which after each convolution layer, it 

is applied by a batch normalization layer. The bottleneck block is one part of the ResNet-101. 

There are 4 inputs of bottleneck block when used with ResNet-101. #N_IN is a number of the 

input channel, #N_MID is a number of the middle channel, #ST_SIZE is the size of the stride 

size, and #N_OUT is a number of the output channel. 

 

 

 

 

 

 

 

 

 

 

Conv2d, in channel = #N_IN, out channel = #N_MID, kernel size = (1, 1), stride = (1, 1), no bias 

BatchNorm2d, in channel = #N_MID, epsilon = 1e-5, momentum = 0.1 

Conv2d, in channel = #N_MID, out channel = #N_MID, kernel size = (1, 1), 

stride = (#ST_SIZE, #ST_SIZE), padding = (1, 1), no bias 

BatchNorm2d, in channel = #N_MID, epsilon = 1e-5, momentum = 0.1 

Conv2d, in channel = #N_MID, out channel = #N_OUT, kernel size = (1, 1), stride = (1, 1), no bias 

BatchNorm2d, in channel = #N_OUT, epsilon = 1e-5, momentum = 0.1 
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Figure 2.8 

ResNet-101 Block 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. There are bottleneck blocks inside ResNet-101. The bottleneck block is shown in Figure 

2.7. 

 

 

 

Bottleneck Block, #N_IN = 64, 
#N_MID = 64, #ST_SIZE = 1, 

#N_OUT = 256 

Conv2d, in channel = 64, out channel = 256, kernel size = (1, 1), stride = (1, 1), no bias 

BatchNorm2d, in channel = 256, epsilon = 1e-5, momentum = 0.1 

Bottleneck Block, #N_IN = 256, 
#N_MID = 128, #ST_SIZE = 2, 

#N_OUT = 512 

Conv2d, in channel = 256, out channel = 512, kernel size = (1, 1), stride = (1, 1), no bias 
 

BatchNorm2d, in channel = 512, epsilon = 1e-5, momentum = 0.1 
 

Input 

Add blocks above, then ReLU 

Bottleneck Block, #N_IN = 256, #N_MID = 64, #ST_SIZE = 1, #N_OUT = 256 Copy block above 

Add blocks above, then ReLU 

Bottleneck Block, #N_IN = 256, #N_MID = 64, #ST_SIZE = 1, #N_OUT = 256 Copy block above 

Add blocks above, then ReLU 

Add blocks above, then ReLU 

Bottleneck Block, #N_IN = 512, #N_MID = 128, #ST_SIZE = 1, #N_OUT = 512 
 

Copy block above 

Add blocks above, then ReLU 

Bottleneck Block, #N_IN = 512, #N_MID = 128, #ST_SIZE = 1, #N_OUT = 512 
 

Copy block above 

Add blocks above, then ReLU 

Bottleneck Block, #N_IN = 512, #N_MID = 128, #ST_SIZE = 1, #N_OUT = 512 
 

Copy block above 

Add blocks above, then ReLU 
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Figure 2.9 

Full Architecture of PSPNet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Note. The red 3 number at the first convolution block means color channels. The numbers that 

can be changed depend on color channels and the image size of the input is marked in red. The 

AdaptiveAvgPool2d after the ResNet-101 block means resizing of the width and height 

channels of an image by averaging. The resize after that, the red (64, 64) is the original image 

input that is divided by 8. In this case, the original image input is (512, 512). The red 5 number 

at the last convolution block is the number of the object’s class. 

Resize to (64, 64) 

ReLU 

Conv2d, in = 512, out 

= 128, kernel = 1, 

stride = 1 

AdaptiveAvgPool2d, 

size = (1, 1) 

Resize to (64, 64) 

BatchNorm2d, ReLU 

Conv2d, in = 512, out 

= 128, kernel = 1, 

stride = 1 

AdaptiveAvgPool2d, 

size = (2, 2) 

Resize to (64, 64) 

BatchNorm2d, ReLU 

Conv2d, in = 512, out 

= 128, kernel = 1, 

stride = 1 

AdaptiveAvgPool2d, 

size = (3, 3) 

Resize to (64, 64) 

BatchNorm2d, ReLU 

Conv2d, in = 512, out 

= 128, kernel = 1, 

stride = 1 

AdaptiveAvgPool2d, 

size = (6, 6) 

Copy the output from 

the ResNet-101 block 

Input 

Conv2d, in channel = 3, out channel = 64, kernel size = (7, 7), 

stride = (2, 2), padding = (3, 3), no bias 

BatchNorm2d, in channel = 64, epsilon = 1e-5, momentum = 0.1 

ReLU 

MaxPool2d, kernel size = 3, stride = 2, padding = 1 

ResNet-101 Block 

Concatenation 

Conv2d, in channel = 1024, out channel = 512, kernel size = (1, 1), stride = (1, 1), no bias 

BatchNorm2d, ReLU, Dropout2d = 0.2 

Conv2d, in channel = 512, out channel = 5, kernel size = (3, 3), stride = (1, 1), padding = (1, 1) 

UpsamplingBilinear2d, scale factor = 8 
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2.2 Reinforcement Learning 

Reinforcement learning is one type of machine learning. There are 3 types of machine 

learning, which include supervised learning, unsupervised learning, and reinforcement 

learning. The first type is supervised learning. It trains a machine with known data and 

known responses. That machine is trained to predict new data that will give new 

responses. Examples of supervised learning applications are face recognition, weather 

forecasting, and optical character recognition. The second type is unsupervised 

learning. It trains a machine with known data and unknown responses to group the data. 

Examples of unsupervised learning applications are recommendation systems, buying 

habits, and grouping user logs. The last type is reinforcement learning. It learns from 

its mistakes to find the best solution. Examples of reinforcement learning applications 

are AI in video games, industrial simulation, and autonomous vehicles, and the most 

popular reinforcement learning is q-learning and deep q-learning. 

2.2.1 Related Work 

Abdur Razzaq Fayjie, Sabir Hossain, Doukhi Oualid and Deok Jin Lee presented a 

driverless car using deep q-learning. They have 2 inputs. The first input is 4 images 

from a front camera, which is an RGB image of size 80x80, and the second input is 4 

data from LIDAR, which has a size of 80x80. Their overview is shown in Figure 2.10. 

They updated the network every 6000 steps. There are 5 actions for an agent to be 

trained, which are go straight, right, left, accelerate and brake. Keep going is doing 

nothing, and collect the reward at the current speed divided by 5. The Left collected a 

reward of -0.6. The right collected a reward of -0.2. Accelerate collected reward of +1. 

The brake collected a reward of -0.4, and if the car hit, the reward was -6. From these 

rewards, the network would learn how to accelerate and decelerate. They trained the 

network by simulation of an urban environment in the Unity Game Engine. Finally, 

they designed a car prototype based on their simulation experiments, which is capable 

of running a deep q-network in real-time. 
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Figure 2.10 

Deep Q-Network Architecture by Based on Fully Connected CNN 

 

Note. Both inputs are fed into the neural network, and processed using the convolutional layers. 

After that, they concatenated them using flatten layers, preceded by a dense layer and a pooling 

layer. 

 

Figure 2.11 

CNN Architecture Gives Q Values 

 

Note. An image was fed into CNN to get Q-values. 
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Takafumi Okuyama, Tad Gonsalves and Jaychand Upadhay presented an autonomous 

driving system based on deep q-learning. The input of the network is an RGB image as 

shown in Figure 2.11. They trained on a simulator which has a straight road bounded 

by footpaths on both sides, and obstacles are placed in random positions every 30 

meters. There are 3 actions, which are steering 10 degrees to the left, keeping straight 

and steering 10 degrees to the right. They trained by repeating till the agent reaches the 

goal. In the state-action cycle, if the agent hits an obstacle or crosses one of the 

bounding lanes, the learning episode is discontinued, and the agent begins a new 

episode. The reward is the number of obstacles that it overcomes. They trained agents 

to avoid obstacles when driving at a constant speed of 10 meters per second, 15 meters 

per second and 20 meters per second. The highest distance of car speed at 10 meters 

per second is 10077 meters. The highest distance of car speed at 15 meters per second 

is 4907 meters, and the highest distance of car speed at 20 meters per second is 2173 

meters. 

Syed Owais Ali Chishti, Sana Riaz, Muhammad Bilal Zaib, and Mohammad Nauman 

presented self-driving cars using CNN and q-learning. The input of the CNN is an RGB 

image of size 32x24 that is resized from 320x240. There are 3 actions, which are 

forward, left and right. They tested it with signs on the road. There are 3 signs in this 

paper, which are the stop sign, the no-left sign and the traffic light for deep q-network. 

First, they used OpenCV cascade classifiers for sign detection. The results from 

OpenCV cascade classifiers would be the reward inspector, would not feed them into 

the deep q-network. For stop signs, if the stop sign was detected, and the car was 

moving forward, the reward value was -0.5, but if the car was stopped, the reward value 

was +2. If the stop sign was not detected, and the car was moving forward, the reward 

value was +0.05, but if the car was stopped, the reward value was -0.5. For a traffic 

light, if the red light was detected, and the car was moving forward, the reward value 

was -1, but if the car was stopped, the reward value was +0.01. If a green light or yellow 

light was detected, and the car was moving forward, the reward value was +0.01, but if 

the car was stopped, the reward value was -0.1. If no light was detected, and the car 

was moving forward, the reward value was +0.01, but if the car was stopped, the reward 

value was -0.1. Finally, they achieved 89 percent of training accuracy and 73 percent 

of testing accuracy from supervised learning. 



 

14 

2.2.2 Q-Learning 

Q-learning is one of the reinforcement learning. It is an algorithm to optimize a Q-value 

by random action. The Q-value is changed for every learning step. An example of a Q-

value is shown in Table 2.3 as a Q-table. The Q-table gives an action or output when a 

state or input comes in. The action is selected by the maximum of the Q-values in that 

state. For example, if the robot detects a range of 2.1, an action that will be selected is 

going right because 0.91 is the maximum number of the second row. The Q-learning 

equation is shown in Equation 2.1. If it is the last step or reaching the goal, the new Q-

value is equal to the reward (see Equation 2.2). 

 

Table 2.3 

An Example of a Q-Table 

Q(s, a) Go Up Go Down Go Left Go Right 

[0, 2] 0.23 0.57 0.82 0.11 

(2, 4] 0.15 0.08 0.51 0.91 

(4, 6] 0.92 0.52 0.22 0.02 

> 6 0.17 1.22 0.75 0.59 

 

Note. The Q-table represents Q-values for states (s) and actions (a). This table is an example of 

an environment. The states are the range of a sensor or some information, and the actions are 

the direction of what it should go. 

 

The Q-learning equation that is not the last step is: 

 𝑄(𝑠, 𝑎)𝑛𝑒𝑤 = 𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) (2.1) 

Where, 𝑄(𝑠, 𝑎)𝑛𝑒𝑤 is a new Q-value of state and action that is changed, 

 𝑄(𝑠, 𝑎) is an old Q-value of state and action that is changed, 

 𝛼 is a learning rate or alpha, 

 𝑟 is a reward for a step, 

 𝛾 is a discount factor or gamma, 

 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) is a maximum of old Q-value of a next state. 
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The Q-learning equation that is the last step is: 

 𝑄(𝑠, 𝑎)𝑛𝑒𝑤 = 𝑟 (2.2) 

 

The training algorithm steps of Q-learning are as follows: 

1. Design a Q-table, and initialize an epsilon to 1. 

2. Random a number between 0 and 1, and if the number is less than or equal to 

the epsilon, the action will be random. If the number is greater than the epsilon, 

the action will be picked from the Q-table. 

3. Do the action that it gets from number 2, and it will give a new state. 

4. Update Q-table from Equation 2.1 or 2.2. 

5. Reduce the epsilon, and repeat number 2. 

2.2.3 Deep Q-Learning 

From Table 2.3, if the state consists of many sensors and many states of each sensor or 

an image, it is hard to find all the Q-values of those states and actions, and it will not 

be possible to find all the Q-values if the state is an image. Thus, deep q-learning was 

created to solve this problem. A Q-table is replaced by a neural network. The input of 

the neural network is a state, and the output is q-values that will provide an action. The 

neural network is called a deep Q-network or DQN (see Figure 2.12). 

 

Figure 2.12 

An example of a DQN  

 

Note. If an input is an image, a CNN can be applied at the first layer. 

 

The training algorithm for deep Q-learning is the same as Q-learning, but the getting 

value from the Q-table is replaced by prediction of DQN, and the updating of the Q-

table is replaced by updating or training of DQN. 
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2.2.4 Double Deep Q-Learning 

From deep Q-learning, when it calculates Q-values of the current state and Q-values of 

the next state, it uses the same neural network. It causes a divergence because the Q-

values of the next state keep on changing, and the Q-values of the current state will 

chase the Q-values of the next state that is always changing. 

The problem will be solved by using double DQN. The Double DQN method uses two 

neural networks. The first neural network is used for calculating Q-values of the current 

state, and this network is always changing by training or updating it. The second neural 

network is used for calculating Q-values of the next state, and this network is changed 

every T step, where T is a hyperparameter. The second network is changed by copying 

the first neural network. 

2.2.5 Experience Replay 

In DQN and double DQN, having one current step is not stable for training neural 

networks because the neural networks are always changing. The experience replay 

algorithm is used to improve stability. It stores every step in replay memory. The replay 

memory is limited by a number. When the replay memory is full, the new one will 

replace the oldest one in the replay memory. When in the training step, it will randomly 

pick in replay memories by a number that is more than one. It is not trained by the state 

of the current step. 

2.3 Simulator 

When reinforcement learning is used in one project, there is always a simulator for 

training reinforcement learning networks. For autonomous driving, there are many 

simulators. 

2.3.1 Related Work 

When reinforcement learning is used in one project, there is always a simulator for 

training reinforcement learning networks. For autonomous driving, there are many 

simulators. 

Samuel Arzt presented deep learning cars using Unity in two-dimensional as shown in 

Figure 2.13. Unity is a game engine. He used Unity to train his reinforcement learning 

network. When he uses a game engine, he has to build a game by himself because it is 

not ready to use. 



 

17 

Abdur Razzaq Fayjie, Sabir Hossain, Doukhi Oualid, and Deok Jin Lee presented 

driverless cars using Unity to simulate the urban environment in three-dimensional 

space, as shown in Figure 2.14. 

 

Figure 2.13 

Driving Cars on Unity Game Engine in a Two-Dimensional Simulator 

 

 

Figure 2.14 

Driving Cars on Unity Game Engine in a Three-Dimensional Simulator 

 

 

Takafumi Okuyama, Tad Gonsalves, and Jaychand Upadhay presented an autonomous 

driving system using Unity to simulate straight road boundaries and obstacles in three-

dimensional. 

Syed Owais Ali Chishti, Sana Riaz, Muhammad Bilal Zaib and Mohammad Nauman 

presented self-driving cars in a real environment. This method has a disadvantage, 

which is the training time because it was not trained in parallel. There is only one agent 

at one time, as shown in Figure 2.15. 
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Harrison Kinsley presented driving cars in a video game called Grand Theft Auto V. 

The advantage of this method is that the environment in the game looks real, but using 

a video game that is always generating high graphics cannot be trained by parallel as 

shown in Figure 2.16. 

 

Figure 2.15 

Driving Cars in the Real Environment 

 

 

Figure 2.16 

Driving Cars in Grand Theft Auto V 
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2.3.2 CARLA Simulator 

CARLA is one of the driving simulators for autonomous driving. It was built by Alexey 

Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. It is 

based on the Unreal Engine 4. CARLA has been developed from the ground up to 

support the development, training, and validation of autonomous urban driving 

systems. CARLA provides open digital assets (urban layouts, buildings, and vehicles) 

that were created for this purpose and can be used freely. From Figure 2.17, CARLA 

can change weather conditions. Changing weather conditions will improve training. It 

will make a variety of training sets. From Figure 2.18, CARLA has a semantic 

segmentation function. This function will be useful for training image segmentation 

networks before data gets into the deep q-network. CARLA can also run without 

rendering graphics. 

 

Figure 2.17 

Changing of Four Weather Conditions in CARLA 

 

 

Harrison Kinsley used CARLA for training self-driving cars using a reinforcement 

network. He coded the network using Python and used the Python API to control 

CARLA. Figure 2.19 shows the result of a self-driving car using CARLA. He could 

make cars stay in lanes, and the cars could change lanes. 
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Figure 2.18 

Semantic Segmentation Function in CARLA 

 

 

Figure 2.19 

Showing of Self-Driving Car Using CARLA 
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CHAPTER 3 

METHODOLOGY 

3.1 Overview 

This thesis uses only one sensor for controlling a car. The sensor is a camera. The main 

control algorithm is a double DQN. It learns to drive a car in a simulator. The CARLA 

simulator was selected to be used in this thesis. Because when training double DQN in 

a simulator, the network needs the same input image between the simulator and the real 

world. Semantic segmentation is selected to convert images to make them the same. 

The real-world images are converted to segmented images, then segmented images are 

fed to a double DQN to predict an action to control a golf cart. 

3.2 Equipment Selection 

3.2.1 Golf Cart 

A model of golf cart that is used in this thesis is the EVT Echo 4s (see Figure 3.1). The 

EVT Echo 4s is an electric golf cart. A specification is shown in Table 3.1. 

 

Figure 3.1 

A Golf Cart Model EVT Echo 4s 
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Table 3.1 

A specification for EVT Echo 4s 

Maximum Speed 45 kilometers per hour 

Turning Radius 5 meters 

Overall Length 3160 millimeters 

Overall Width 1220 millimeters 

Overall Height 1830 millimeters 

Wheelbase Dimension 2410 millimeters 

Tire Size 205/50 R10 

 

The maximum speed is limited at 8 kilometers per hour because the golf cart easily 

stops with this speed limit when out of control the golf cart when testing. 

The golf cart can be controlled by a digital signal via a USB serial port. It can control 

the position of the steering wheel from far-left to far-right, the level of the throttle 

paddle from 0 percent to 100 percent, and the level of the brake paddle from 0 percent 

to 100 percent. USB sends serial to the golf cart with a bytes array [36, position of 

steering wheel, level of throttle paddle, level of brake paddle, 64] which are all decimal 

numbers. The first and last position of the array is the head and tail value. The position 

of the steering wheel is in the range of 0 to 255, where 0 means the far-left position, 

255 means the far-right position, and the middle position is 128. The level of the throttle 

paddle and brake paddle is in the range of 0 to 255, which is converted from the range 

of 0 to 100. The bytes array is converted from decimal numbers to hexadecimal 

numbers before being sent to the golf cart. The golf cart can receive a command to 

change an action every 400 milliseconds. 

3.2.2 Computing Hardware 

The first computer was a desktop. The specifications of this desktop are an Intel I3-

8100 CPU, a GTX 1660 Ti GPU, 24 gigabytes of RAM, and Windows 10 OS. It is for 

training a double DQN. 
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The second computer is a desktop. The specifications of this desktop are a Ryzen 5-

2600 CPU, a GTX 1050 Ti GPU, 16 gigabytes of RAM, and Windows 10 OS. It is for 

running a simulator when training a double DQN. The first computer and the second 

computer cannot train a double DQN and run a simulator at the same time on a single 

computer due to a GPU’s out of memory. 

The third computer is a laptop. The specifications of this laptop are an Intel I7-9750H 

CPU, a RTX 2070 GPU, 32 gigabytes of RAM, and Windows 10 OS. It is for training 

a semantic segmentation network and running a double DQN to control a golf cart in a 

real-world experiment. 

3.2.3 Camera 

This thesis uses a webcam. A model of this webcam is the Logitech C525 (see Figure 

3.2). A specification is shown in Table 3.2. 

From Section 4.1, the resolution of the camera is fixed at 864x480 pixels, then it is 

cropped and resized to 512x512 pixels, and the frame rate is fixed at 5 fps due to the 

system performance (see Section 4.3.2.1). 

The camera is installed on the golf cart at a height of 1675 millimeters from the ground, 

450 millimeters from the front of the golf cart, and 77.5 degrees to the ground. These 

positions were roughly measured by a tape measure. 

 

Figure 3.2 

Logitech C525 
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Table 3.2 

A specification for the Logitech C525 

Resolution 1280x720 pixels 

Frame Rate 30 frames per second 

Field of View 69 degrees 

 

3.3 Semantic Segmentaion 

3.3.1 Model Selection 

From Table 2.2, it shows the HRNet-OCR model is the best choice for semantic 

segmentation, but it cannot be trained on my computers due to GPU’s out of memory 

(see Section 4.2.1). 

Pavel Yakubovskiy, or username Qubvel on GitHub, created a high-level API for 

segmentation models based on Pytorch. I decided to use this API because it took less 

time when compared with using source codes. Most of the source codes were created 

for training with mixed-precision training that is available only on Ubuntu OS. All my 

computers are Windows 10 OS. It took a long time to modify their codes. This Qubvel’s 

API consists of DeepLabv3 and PSPNet. These two models have high scores on the 

Cityscapes test dataset (see Table 2.2). The PSPNet was chosen for this thesis because 

the DeepLabv3 takes more time than the PSPNet (see Section 4.2.2 and 4.2.3). 

3.3.2 Dataset 

There are 2 semantic segmentation models in this thesis. The first model is used to 

segment real images, and the second model is used to segment images in the CARLA 

simulator. The dataset that was used in this thesis is shown in Table 3.3. The first model 

was trained by the AIT dataset, the augmented AIT dataset, and the Mapillary Vistas 

dataset. The second model was trained by the CARLA dataset. 

The reason for adding the augmented AIT dataset and the Mapillary Vistas dataset is to 

avoid dataset overfitting of the main dataset. 

The AIT dataset was recorded by a front-view camera. The images were labeled into 5 

classes, which are roads, lane markings, vehicles, humans, and others (see Figure 3.3). 
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Table 3.3 

The Number of Images in Each Dataset 

Name Training Dataset Validation Dataset All 

AIT 1607 689 2296 

Augmented AIT 11249 0 11249 

Mapillary Vistas 3000 0 3000 

CARLA 1121 481 1602 

 

Note. It was split 30 percent for the validation set on the AIT and the CARLA dataset. The 

Augmented AIT and the Mapillary Vistas do not require to split for validation set because they 

are not the main dataset for use. 

 

Figure 3.3 

Example of the AIT Dataset 

 

 
 

The augmented AIT dataset was augmented from the AIT training set with 7 times 

which it was randomly cropped, rotated, flipped, blurred, and added Gaussian noise 

(see Figure 3.4). 
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Figure 3.4 

Example of the Augmented AIT Dataset 

 

 

The Mapillary Vistas dataset is a public dataset that is free to use. There are 20000 

images in the training set. They were randomly selected from 3000 images. There are 

124 classes in the Mapillary Vistas dataset. The 124 classes were converted into 5 

classes, which are roads, lane markings, vehicles, humans, and others. The original is 

shown in Figure 3.5. 

 

Figure 3.5 

Example of the Mapillary Vistas Dataset 

 
 

The CARLA dataset was recorded in the simulator. The CARLA dataset has 24 

different classes. The 24 classifications were reduced to 5, which are roads, lane 

markers, cars, humans, and others. Figure 3.6 represents the original. 
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Figure 3.6 

Example of the CARLA Dataset 

 

 

3.3.3 Preprocessing 

The normalization method was selected to preprocess images as shown in Equation 3.1. 

Normalization is used after receiving an image from the camera. Mean and standard 

values were found from the AIT dataset for each color channel. The values are shown 

in Section 4.2.3. 

 

The normalization equation is: 

 𝑋𝑁𝑜𝑟𝑚 =
𝑋−𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑(𝑥)
 (3.1) 

3.3.4 Training 

The PSPNet experiment 1 and 2 is to segment real images. The PSPNet experiment 3 

is to segment images in the CARLA simulator. 

 3.3.4.1 PSPNet Experiment 1. This experiment was created to train the PSPNet. 

The image size is 272x272. It was trained using the AIT dataset, the augmented AIT 

dataset, and the Mapillary Vistas dataset. Hyperparameters are shown in Table 3.4. The 

result is shown in Section 4.2.5.1. 

 3.3.4.2 PSPNet Experiment 2. The trained model from experiment 1 provides 

poor quality segmented images, especially the lane markings. This experiment wants to 

improve them by increasing the image size from 272x272 to 512x512. The purpose of 

this experiment was to train the PSPNet. It was trained using the AIT dataset, the 

augmented AIT dataset, and the Mapillary Vistas dataset. Hyperparameters are shown 

in Table 3.5. The result is shown in Section 4.2.5.2. 
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Table 3.4 

Hyperparameters of Semantic Segmentation Experiment 1 

Hyperparameter Value 

Loss Function Cross Entropy 

Optimization Adam 

Learning Rate 0.0001 

Batch Size 32 

 

Table 3.5 

Hyperparameters of Semantic Segmentation Experiment 2 and 3 

Hyperparameter Value 

Loss Function Cross Entropy 

Optimization Adam 

Learning Rate 0.0001 

Batch Size 8 

 

 3.3.4.3 PSPNet Experiment 3. This experiment was created to want a model to 

use in the CARLA simulator. The model from experiment 2 cannot be used because the 

model has never seen images in the CARLA simulator before, but the model can be 

used as a pre-trained model for this experiment. The image size is 512x512. It was 

trained using the CARLA dataset. Hyperparameters are shown in Table 3.4, which is 

the same as experiment 2. The result is shown in Section 4.2.5.3. 

3.4 CARLA Simulator 

3.4.1 Creating A Golf Cart Model 

A golf cart model was created to make it the same spec as the real golf cart (see Figure 

3.7). It got the reference from Table 3.1. It was created using the Blender program, 

which is a free program for creating three dimensional models. 
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Figure 3.7 

Golf Cart Model in CARLA Simulator 

 

 

3.4.2 Creating the AIT Map 

1. Grabbing the AIT Map data from OpenStreetMap as shown in Figure 3.8. 

 

Figure 3.8 

AIT Map from OpenStreetMap 

 

 

2. Importing from the OpenStreetMap to the RoadRunner program. It imported 

only a guideline with the real scale as shown in Figure 3.9. 



 

30 

Figure 3.9 

Guideline from OpenStreetMap 

 

 

3. Drawing roads using the RoadRunner program (see Figure 3.10). 

 

Figure 3.10 

Finished Drawing Roads 
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4. Importing the map from the RoadRunner to CARLA Simulator, and add objects 

as shown in Figure 3.11 and 3.12. 

 

Figure 3.11 

Add Objects to the Map 

 

 

Figure 3.12 

Finished Adding Objects to the Map 
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3.5 Double Deep Q-Learning 

3.5.1 Deep Q-Network Architecture 

The deep Q-network architecture is shown in Figure 3.13. There are Conv Blocks 

inside of the deep Q-network, which is shown in Figure 3.14. 

 

Figure 3.13 

Deep Q-Network Architecture 

 

 

 

 

 

 

 

 

Note. There are 3 inputs, which are Segmentation State, Past Action State, and Past Angle State. 

The Segmentation State contains previous segmentation images. The number of previous 

segmentation images depends on each experiment. The #N_IN is the number of all 

segmentation images. The Past Action State contains the past actions. The Past Angle State 

contains the past level of the throttle paddle, the angle of the steering wheel, and the level of 

the brake paddle. The number of past actions and past angles depends on each experiment. The 

#N_CON is the number after the concatenation. The #N_ACTION depends on each 

experiment. The Conv Block is shown in Figure 3.14. 

 

 

Segmentaion State 

Conv Block, in channel = #N_IN, out channel = 32 

Conv Block, in channel = 32, out channel = 64 

Conv Block, in channel = 64, out channel = 128 

Reshape the result from upper block from 2 dimension to 1 dimension 

Concatenate upper block and Past Action State and Past Angle State 

Neural Linear Layer, in channel = #N_CON, out channel = 512 

Neural Linear Layer, in channel = 512, out channel = 256 

 

Neural Linear Layer, in channel = 256, out channel = #N_ACTION 
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Figure 3.14 

Conv Block 

 

 

 

 

 

 

 

 

 

3.5.2 Training Scene 

There are 3 training scenes as shown in Figures 3.15 to 3.17. The goal is to move from 

point A to B in each scene. 

 

Figure 3.15 

Training Scene 1 

 

Conv2d, in channel = #N_IN, out channel = #N_OUT, kernel size = 3 

BatchNorm2d 

ReLU 

MaxPool2d, kernel size = 2 

Conv2d, in channel = #N_OUT, out channel = #N_OUT, kernel size = 3 

 

BatchNorm2d 

ReLU 

MaxPool2d, kernel size = 2 
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Figure 3.16 

Training Scene 2 

 

 

Figure 3.17 

Training Scene 3 

 

 

3.5.3 Training 

 3.5.3.1 Double DQN Experiment 1. This experiment used training scene 2 as 

shown in Figure 3.16. The position of the golf cart was spawned for 5 points as shown 

in Figure 3.18. This experiment used segmented images that CARLA provided (see 

Figure 2.18) as the input to DQN. The purpose of this experiment is to test the 

algorithm. There are 8 actions as shown in Table 3.6. A reward was calculated using 
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Equation 3.2. If the golf cart is out of the road or crashes into something, the reward 

will be -2. Hyperparameters are shown in Table 3.7, and hyperparameters for only this 

experiment are shown in Table 3.8. The result is shown in Section 4.3.1.1. 

 

Figure 3.18 

5 Position of Spawning the Golf Cart in Training Scene 2 

 

 

Table 3.6 

Actions of Double DQN Experiment 1 and 2 

Action 

Number 
Action Comment 

0 T-0.0667, if S<0 S+0.0667 if S>0 S-0.0667, B-0.0667 Release 

1 T+0.1, if S<0 S+0.0667 if S>0 S-0.0667, B=0 Forward 

2 T-0.0667, S-0.1, B-0.0667 Left 

3 T-0.0667, S+0.1, B-0.0667 Right 

4 T=0, if S<0 S+0.0667 if S>0 S-0.0667, B+0.1 Brake 

5 T=0, if S<0 S+0.0667 if S>0 S-0.0667, B=1 Stop 

6 T+0.1, S-0.1, B=0 Forward&Left 

7 T+0.1, S+0.1, B=0 Forward&Right 

 

Note. T means level of throttle paddle. S means angle of steering wheel. B means level of break 

paddle. 
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The reward equation for every double DQN experiment is: 

 𝑟 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑

max 𝑠𝑝𝑒𝑒𝑑
+

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑎𝑟 𝑖𝑛 𝑙𝑒𝑓𝑡 𝑙𝑎𝑛𝑒

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑎𝑟
 (3.2) 

 

Table 3.7 

Hyperparameters of Every Double DQN Experiment 

Hyperparameters Values 

Learning Rate 0.0001 

Discount Factor 0.9 

Target Update Interval 1000 steps 

Play Interval 900 steps 

Epsilon 1 

Epsilon Decay Rate 0.99999 

Minimum Epsilon 0.1 

Maximum Replay Memory 100000 

Replay Size 32 

 

Table 3.8 

Hyperparameters of Double DQN Experiment 1 

Hyperparameters Values 

Number of Input Segmented Images 14 frames 

Number of Past Actions 20 

Number of Past Angles 20 

Max Speed 20 km/h 

Frame Time 0.1 seconds 

Action Time 0.2 seconds 
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 3.5.3.2 Double DQN Experiment 2. This experiment used segmented images 

from the PSPNet. The position of the camera was changed to the same as the position 

of the camera on the real golf cart (see Section 3.2.3). The action time was changed 

from 0.2 seconds to 0.4 seconds because the golf cart can be sent a command every 0.4 

seconds (see Section 3.2.1). The rest of the setting was the same as experiment 1, which 

were training on scene 2, the golf cart was spawned for 5 points as shown in Figure 

3.18, using 8 actions is shown in Table 3.6, a reward was calculated using Equation 3.2, 

and if the golf cart is out of the road or crashes into something, the reward will be -2. 

The reason for using the same setting as in experiment 1 is that the setting gives 

acceptable results. The new hyperparameters are shown in Table 3.9. The result is 

shown in Section 4.3.1.2. 

 

Table 3.9 

Hyperparameters of Double DQN Experiment 2 

Hyperparameters Values 

Number of Input Segmented Images 14 frames 

Number of Past Actions 20 

Number of Past Angles 20 

Max Speed 20 km/h 

Frame Time 0.1 seconds 

Action Time 0.4 seconds 

 

 3.5.3.3 Double DQN Experiment 3. This experiment was trained using training 

scenes 1, 2, and 3 from Section 3.5.2, and used only 1 spawn point, which is point A in 

each scene. If it was trained using 5 spawn points for 3 scenes, it would take a long time 

to train. The maximum speed of the golf cart was changed from 20 kilometers per hour 

to 8 kilometers per hour because 20 kilometers per hour is too fast for testing. The driver 

will not be able to stop the golf cart if it is out of control. When changing the maximum 

speed, actions need to change because the actions from experiments 1 and 2 will 

decrease the rate of change reward. The DQN will not know if it changed an action. 
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That action will give a reward more or less. The new actions are shown in Table 3.10, 

and the new hyperparameters are shown in Table 3.11. The rest of the setting was the 

same as experiment 2, which used the PSPNet, a reward was calculated using Equation 

3.2, and if the golf cart is out of the road or crashes into something, the reward will be 

-2. The result is shown in Section 4.3.1.3. 

 

Table 3.10 

Actions of Double DQN Experiment 3 

Action 

Number 
Action Comment 

0 T-0.2, if S<0 S+0.1333 if S>0 S-0.1333, B-0.2 Release 

1 T+0.2, if S<0 S+0.1333 if S>0 S-0.1333, B=0 Forward 

2 T-0.2, S-0.1333, B-0.2 Left 

3 T-0.2, S+0.1333, B-0.2 Right 

4 T=0, if S<0 S+0.1333 if S>0 S-0.1333, B+0.2 Brake 

5 T=0, if S<0 S+0.1333 if S>0 S-0.1333, B=1 Stop 

6 T+0.2, S-0.1333, B=0 Forward&Left 

7 T+0.2, S+0.1333, B=0 Forward&Right 

 

 3.5.3.4 Double DQN Experiment 4. This experiment wants to try a new way to 

give the reward by adding deducting 1 when the golf cart goes outside the left lane 

because I want to make the golf cart focus on staying in the left lane. If the area of the 

car in the left lane divided by the area of the car is more than or equal to 0.98, the reward 

will be calculated using the same equation as previously, which is Equation 3.2. If the 

area of the car in the left lane divided by the area of the car is less than 0.98, the reward 

will be calculated using the new equation, which is Equation 3.3, and if the golf cart is 

out of the road or crashes into something, the reward will be -4, which was changed 

from -2. The actions were decreased from 8 actions to 3 actions because I want to 

improve the speed of training. Driving in the left lane requires only 3 actions. When 

testing the golf cart with the model from experiment 3, it took a long time to control the 
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steering wheel from the left position to the right position. The new actions are shown 

in Table 3.12. The rest of the setting was the same as experiment 3, which used the 

PSPNet, it was trained using training scenes 1, 2, and 3, hyperparameters are shown in 

Table 3.11. The result is shown in Section 4.3.1.4. 

 

Table 3.11 

Hyperparameters of Double DQN Experiment 3 and 4 

Hyperparameters Values 

Number of Input Segmented Images 14 frames 

Number of Past Actions 20 

Number of Past Angles 20 

Max Speed 8 km/h 

Frame Time 0.1 second 

Action Time 0.4 second 

 

The reward equation for the double DQN experiment 4 and 5, if the area of the car in 

the left lane divided by the area of the car is less than 0.98, is: 

 𝑟 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑

max 𝑠𝑝𝑒𝑒𝑑
+

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑎𝑟 𝑖𝑛 𝑙𝑒𝑓𝑡 𝑙𝑎𝑛𝑒

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑎𝑟
− 1 (3.3) 

 

Table 3.12 

Actions of Double DQN Experiment 4 and 5 

Action 

Number 
Action Comment 

0 T+0.2, if S<0 S+0.2 if S>0 S-0.2, B=0 Forward 

1 T+0.2, if S<0 S-0.1 if S>0 S-0.4, B=0 Forward+Left 

2 T+0.2, if S<0 S+0.4 if S>0 S+0.1, B=0 Forward+Right 
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 3.5.3.5 Double DQN Experiment 5. When testing the golf cart with the model 

from experiment 3, the steering wheel was controlled when the golf cart was close to 

the lane marking. In this experiment, the left lane of the road was decreased the width 

to make it drive in the center (see Figure 3.19). There was a time peak more than 0.1 

seconds when testing with the real golf cart from experiment 3, as shown in Section 

4.3.2.1. Thus, this experiment was increased the frame time from 0.1 seconds to 0.2 

seconds, as shown in Table 3.13. There was a bit of change in giving a reward from 

experiment 4. There was too much control over the steering wheel. To fix that problem, 

the reward will be deducted by 0.2 when moving the steering wheel. The rest of the 

setting was the same as experiment 4, which was giving a reward, if the area of the car 

in the left lane divided by the area of the car is more than or equal to 0.98, the reward 

will be calculated using Equation 3.2. If the area of the car in the left lane divided by 

the area of the car is less than 0.98, the reward will be calculated using Equation 3.3, if 

the golf cart is out of the road or crashes into something, the reward will be -4, the 

PSPNet was used, it was trained using training scenes 1, 2, and 3, and the actions were 

shown in Table 3.12. The result is shown in Section 4.3.1.5. 

 

Figure 3.19 

Changing Reward Mask for Double DQN Experiment 5 

 

 (a) The old reward mask (b) The new reward mask 
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Table 3.13 

Hyperparameters of Double DQN Experiment 5 

Hyperparameters Values 

Number of Input Segmented Images 15 frames 

Number of Past Actions 8 

Number of Past Angles 8 

Max Speed 8 km/h 

Frame Time 0.2 seconds 

Action Time 0.4 seconds 
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CHAPTER 4 

RESULTS 

4.1 Camera Setting 

From Section 4.2.5.2, the resolution that makes the PSPNet get the best quality is 

512x512. The ratio of the AIT dataset is 16:9. The resolution of the Logitech C525 can 

be set by OpenCV at 1280x720 or 864x480, where the ratio of 864x480 is not 16:9. It 

should be 853x480. It can be cropped from the center. This thesis chooses a resolution 

of 864x480 because it takes a shorter response time than 1280x720, as shown in Figure 

4.1. It was tested on my laptop that will be used when testing with the real golf cart. 

The average response time of 1280x720 is 122.97 milliseconds or 8.13 frames per 

second. The average response time of 864x480 is 40.07 milliseconds or 24.96 frames 

per second. The resolution of 864x480 was chosen to be used in this thesis because it 

took less response time around 3.07 times. This is the time that only captures an image 

from the camera. There is more processing time, such as time to process the PSPNet 

and DQN. Using a setting that takes less time as possible is the best choice. 

 

Figure 4.1 

Response Time of Camera for Each Resolution 
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4.2 Semantic Segmentaion 

4.2.1 HRNet-OCR 

The HRNet-OCR consists of many layers. When I try to train it with one epoch on the 

RTX 2070, which has 8 gigabytes of memory, it cannot train due to being out of 

memory, as shown in Figure 4.2. It tried to allocate 1.39 gigabytes, but the model 

already used 5.56 gigabytes. It is available only 148.12 megabytes. Thus, it can be 

assumed that it uses more than 8 gigabytes of memory. This network cannot use due to 

hardware limitation. 

 

Figure 4.2 

GPU’s Out of Memory When Running HRNet-OCR 

  

 

4.2.2 Response Time Testing 

The response time was tested on my laptop that will be used when testing with the real 

golf cart. 

 4.2.2.1 DeepLabv3. The average time of the DeepLabv3 at 272x272 is 27.80 

milliseconds or 35.97 frames per second, and the maximum time is 59.07 milliseconds 

or 16.93 frames per second, as shown in Figure 4.3. The average time of DeepLabv3 at 

512x512 is 30.06 milliseconds or 33.27 frames per second, and the maximum time is 

74.98 milliseconds or 13.34 frames per second, as shown in Figure 4.4. 

 4.2.2.2 PSPNet. The average time of the PSPNet at 272x272 is 9.00 milliseconds 

or 111.11 frames per second, and the maximum time is 26.84 milliseconds or 37.26 

frames per second, as shown in Figure 4.5. The average time of DeepLabv3 at PSPNet 

is 9.23 milliseconds or 108.34 frames per second, and the maximum time is 48.19 

milliseconds or 20.75 frames per second, as shown in Figure 4.6. 

The PSPNet was chosen for this thesis. At the resolution of 272x272, the DeepLabv3 

took the average response time more than the PSPNet 4.00 times, and the DeepLabv3 

took the response time more than the PSPNet 2.20 times in the worst case. At the 

resolution of 512x512, the DeepLabv3 took the average response time more than the 
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PSPNet 3.26 times, and the DeepLabv3 took the response time more than the PSPNet 

1.56 times in the worst case. From Table 2.2, the DeepLabv3 achieved a mIoU score of 

0.813 on the Cityscapes test dataset, and the PSPNet achieved a mIoU score of 0.784. 

It does not differ much in terms of the mIoU score and quality. Using the PSPNet that 

takes less response time is the best choice. 

 

Figure 4.3 

Response Time of DeepLabv3 at 272x272 

 

 

Figure 4.4 

Response Time of DeepLabv3 at 512x512 
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Figure 4.5 

Response Time of PSPNet at 272x272 

 

 

Figure 4.6 

Response Time of PSPNet at 512x512 

 

 

4.2.3 Preprocessing 

The mean and standard values that were found from the AIT dataset in each color 

channel are shown in Table 4.1. 
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Table 4.1 

Mean and Standard Values for Normalization 

 Red Green Blue 

Mean 105.6152 115.1326 118.1004 

Standard 68.2132 70.9628 78.0216 

 

4.2.4 Training 

 4.2.4.1 PSPNet Experiment 1. The result of experiment 1 from Section 3.3.4.1 

is shown in Figure 4.7. It was trained for 10354 epochs, which took 55.24 hours. The 

best mIoU is 0.6824 at epoch 5120. The training was stopped because the mIoU score 

stopped increasing. Examples of the results of the validation set are shown in Figure 

4.8. The result is not good, especially the lane markings. The lane markings are hard to 

detect in the shadows and the far-view. 

 

Figure 4.7 

Validation mIoU of PSPNet Experiment 1 
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Figure 4.8 

Example of the Prediction Result of Validation Set from PSPNet Experiment 1 

 

 

 

Note. The left column is input images. The middle column is ground truth images. The last 

column is prediction images. 

 

 4.2.4.2 PSPNet Experiment 2. The result of experiment 2 from Section 3.3.4.2 

is shown in Figure 4.9. It was trained for 697 epochs, which took 101.41 hours. The 

best mIoU is 0.7720 at epoch 407. The training was stopped because the mIoU score 

stopped increasing. Examples of the results of the validation set are shown in Figure 

4.11. The result is good even in the shadows and far-view. 
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Figure 4.9 

Validation mIoU of PSPNet Experiment 2 

 

 

Figure 4.10 

Validation mIoU of PSPNet Experiment 3 

 

 

 4.2.4.3 PSPNet Experiment 3. The result of experiment 3 from Section 3.3.4.3 

is shown in Figure 4.10. It was trained for 347 epochs, which took 6.37 hours. The best 

mIoU is 0.7925 at epoch 180. The training was stopped because the mIoU score stopped 

increasing. Examples of the results of the validation set are shown in Figure 4.12. The 

result is good. It can segment images in the CARLA simulator. 
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Figure 4.11 

Example of the Prediction Result of Validation Set from PSPNet Experiment 2 

 

 

 

Note. The left column is input images. The middle column is ground truth images. The last 

column is prediction images. 
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Figure 4.12 

Example of the Prediction Result of Validation Set from PSPNet Experiment 3 

 

 

 

Note. The left column is input images. The middle column is ground truth images. The last 

column is prediction images 

 

4.3 Double Deep Q-Learning 

4.3.1 Training 

 4.3.1.1 Double DQN Experiment 1. The result of experiment 1 from Section 

3.5.3.1 is shown in Figure 4.13. It was trained for 172000 steps, which took 86.88 hours. 

The best mean play score is 0.8231 at step 123300. It can play to the end of 5 scenes at 

step 14400. This experiment proves that the double DQN algorithm can control a car 
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using segmented images. The golf cart could drive in the left lane. When it went outside 

of the left lane, it controlled the steering wheel to come back into the left lane. 

 

Figure 4.13 

Mean Play Score of Double DQN Experiment 1 

 

 

Figure 4.14 

Mean Play Score of Double DQN Experiment 2 

 

 

 4.3.1.2 Double DQN Experiment 2. The result of experiment 2 from Section 

3.5.3.2 is shown in Figure 4.14. It was trained for 15300 steps, which took 5.47 hours. 

The best mean play score is 0.7946 at step 13500. It can play to the end of 5 scenes at 
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step 10800. The training was stopped because it was concluded that we could use 

segmented images from the PSPNet instead of perfect segmented images. The PSPNet 

has more noise than perfect segmented images. Changing the position of the camera 

and action time have no effect on training the double DQN. The golf cart could drive 

in the left lane. When it went outside of the left lane, it controlled the steering wheel to 

come back into the left lane. 

 4.3.1.3 Double DQN Experiment 3. The result of experiment 3 from Section 

3.5.3.3 is shown in Figure 4.15. It was trained for 180000 steps, which took 130.96 

hours. The best mean play score is 0.9409 at step 103500. It can play to the end of 3 

scenes at step 75600. It took more time than previous experiments. The experiments 1 

and 2 used 14400 and 10800 steps respectively. This experiment is hard because it has 

to learn how to drive on left and right curvy roads. The experiments 1 and 2 have only 

right curvy road. This experiment proves that it can drive on left and right curvy roads, 

and when doing an action, the action must give a reward that differs from the previous 

reward. Changing the speed of the golf cart has to change actions. The golf cart could 

drive in the left lane. It can drive on left and right-curvy roads. When it went outside of 

the left lane, it controlled the steering wheel to come back into the left lane. 

 

Figure 4.15 

Mean Play Score of Double DQN Experiment 3 
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 4.3.1.4 Double DQN Experiment 4. The result of experiment 4 from Section 

3.5.3.4 is shown in Figure 4.16. It was trained for 48100 steps, which took 19.06 hours. 

The best mean play score is 0.9368 at step 26100. It can play to the end of 3 scenes at 

step 1800, which is very fast because it was reduced the number of actions from 8 

actions to 3 actions. The experiment 3 took 75600 steps. Giving a reward in this 

experiment differs from the previous experiment. The golf cart moved too much on the 

steering wheel, but it was still in the left lane. 

 

Figure 4.16 

Mean Play Score of Double DQN Experiment 4 

 

 

 4.3.1.5 Double DQN Experiment 5. The result of experiment 5 from Section 

3.5.3.5 is shown in Figure 4.17. It was trained for 94500 steps, which took 58.64 hours. 

The best mean play score is 0.9196 at step 86400. It can play to the end of 3 scenes at 

step 24300. Changing the frame time did not affect the result. The golf cart can be 

driven at 5 frames per second. Giving a reward for this experiment and changing the 

width of the left lane can improve the results. The golf cart was driven perfectly. It can 

drive in the middle of the road. 
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Figure 4.17 

Mean Play Score of Double DQN Experiment 5 

 

 

Figure 4.18 

Response Time of PSPNet when Real Test 

 

 

4.3.2 Testing 

 4.3.2.1 Testing from Experiment 3. Testing the real golf cart using the trained 

model from experiment 3, the golf cart was almost driven successfully. It was controlled 

well on straight roads, but not well on curvy roads. In the end, it drove off the road. 

This model takes too long time to make a decision. Figure 4.18 shows response times 

when processed by the PSPNet. This experiment set the frame time at 0.1 seconds, but 

when running in the real test, it was run with the DQN every 0.4 seconds. This may be 

the reason why it processed for more than 0.1 seconds, and from Figure 4.19, almost 
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all of them processed more than 0.1 seconds. Setting the frame time to 0.2 seconds is 

the best way to process the networks. 

 

Figure 4.19 

Response Time of PSPNet and DQN when Real Test 

 

 

 4.3.2.2 Testing from Experiment 5. The golf cart was tested using the trained 

model from experiment 5. The golf cart was driven perfectly on the road that was 

trained. It was not just driving in the left lane, but it could drive in the middle of the left 

lane as well. It can still drive on a road that it has never seen, and it can drive on a road 

without line markings.  
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CHAPTER 5 

CONCLUSIONS 

5.1 Conclusion 

The golf cart is controlled using the double DQN algorithm. The input of the double 

DQN is segmented images which come from a semantic segmentation model. The 

PSPNet and DeepLabv3 were chosen for testing. At a resolution of 272x272, the 

PSPNet can run 37.26 frames per second, and the DeepLabv3 can run 5.25 frames per 

second in the worst case. At a resolution of 512x512, the PSPNet can run at 20.75 

frames per second, and the DeepLabv3 can run at 5.97 frames per second in the worst 

case. The PSPNet was chosen to be used in this thesis because it can provide better 

times on both resolutions. The PSPNet was trained using the AIT dataset and the 

Mapillary Vistas dataset, which is a public dataset. The best mIoU of the PSPNet 

training at the resolution of 272x272 is 0.6824, and the best mIoU of the PSPNet 

training at the resolution of 512x512 is 0.7925. The resolution of 512x512 was chosen 

because it provides a better score and quality of segmented images. When the PSPNet 

was applied at the same time as the DQN, it took more than 0.1 seconds to process. 

Thus, the frame time was set at 0.2 seconds or 5 frames per second. An action will be 

predicted and sent every 0.4 seconds. From a lot of trial and error of training the double 

DQN, reducing the reward mask of the left lane can provide a driving in the middle of 

the left lane. The reward will be deducted by 0.2 when moving the steering wheel to 

make it move the steering wheel as less as possible. Giving the reward -1 when it goes 

outside the left lane to make it more afraid to move to the outside. 

To summarize, this thesis finds the best semantic segmentation model to segment 

images, and finds the best way to give a reward to the double DQN to control the golf 

cart in the left lane. The hardest part about using the double DQN is designing a reward 

function. 

5.2 Recommendations 

1. Train the semantic segmentation network with more data from the public 

dataset, and augment the dataset by adding low brightness and high brightness 

to make the network run on every road and light condition. 
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2. Train the double DQN with more scenes to make the car can be driven on every 

road. 

3. Use an encoder network, such as ResNet, instead of my designed network in the 

double DQN part, and try to adjust the hyperparameters. It may improve the 

speed of training. 
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