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ABSTRACT 

This master thesis focus on the develops a hybrid mecanum-Omni wheel configuration 

with visual SLAM for an autonomous mobile robot. This mobile robot is able to 

navigate autonomously in an indoor environment. The ORB SLAM 2, the open-source 

SLAM for monocular, stereo, and RGB-D camera is used for Mapping and localization. 

The RGB-D sensor is used to extract the feature for the SLAM and guild the robot 

inside the environment. The robot has the ability to make its own decision to avoid the 

obstacles with the Dynamic window approach (DWA). The robot is programmed based 

on the Robotic Operating System (ROS) which is a set of software and library for 

robotic applications.  
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INTRODUCTION 

1.1 Background of the Study  

Automated guided vehicles (AGVs) become an important device in the industrial 

section. In the manufacturing process, it is used for transportation the material from the 

warehouse to the process or moving the product from the process to another process. 

The vehicle can navigate itself to the destination by following the guide which is 

prepared such as the mark on the floor or the magnet embedded in the ground.   

In development of the navigation system, the mobile robot contains the ability to decide 

how to get to their destination. Simultaneous Localization and Mapping (SLAM) is used 

for creating a map from an unknown environment while localization the position of the 

robot.  Additional path planning algorithm on created map allow the robot to move to 

the destination.  

The transportation of the AGVs in the warehouse or the industrial environment needs 

suitable movement to avoid the collision with the product tray or the manufacturing 

machine. In this research, AGVs will be developed to have the ability to move in 

omnidirectional to expand the different move direction depend on the path and using the 

SLAM algorithm with a visual based for navigation system. 

1.2 Statement of the Problem 

The most mobile robot uses either omni-wheels or mecanum wheels to perform an 

omnidirectional motion. The difference of mecanum drive and omni-drive is that the 

mecanum drive provide more traction and friction than omni-wheel but the friction of 

mecanum wheel make it slower. The omni-wheel are light and fast. However, the friction 

of omni-wheel is low that from roller of wheel. The low friction led to low resistance to 

be pushed from a design direction.  

Generally, for AGVs navigations system is mainly focus on the operation of following 

the path which navigate them. Therefore, the robot needs an ability to generate the 

optimal path in the workspace which is shortest and the collision free path. 
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1.3 Objective 

The main objective of this research is to develop hybrid mecanum-omni-mobile robot 

with visual based SLAM. The list of objectives are as follows: 

1. To design the Omni-direction mobile with hybrid mecanum and omni wheels. 

2. To use SLAM algorithm to create a map for mobile robot. 

3. To use camera for SLAM. 

1.4  Limitations and Scopes 

1. The mobile robot will be designed to operate only in an indoor environment. 

2. The robot will operate only on the flat surface. 
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LITERATURE REVIEW 

2.1 Mobile Robot Wheel Designed 

A robotic could be constructed as a holonomic and non-holonomic system. The 

holonomic system represented to the system that the number of the degree of freedom 

(DOF) of controlled is equal to a total degree of freedom (DOF). For the non-holonomic 

system, it means the total number of DOF of controlled less than the number of DOF. 

The characteristic of holonomic depends on the type of the robot wheel. In one hand, the 

robot with Ackerman wheeled system which cannot advance freely in any direction is 

called non-holonomic car. On the other hand, the robot that contain the ability of moving 

in the omni direction is a holonomic car (Shabalina, 2018).  

The term of omnidirectional mobility describes the ability of a system to move 

instantaneously in any directions (X, Y, 𝜃) at any time. (I. Doroftei et al., 2007) The 

wheel that can perform the omnidirectional movement is able to summaries as follow 

spherical, Swedish or mecanum wheel and universal omni-wheel.  

The spherical wheel which is the ball shape wheel is able to perform an omnidirectional 

movement. The example of using spherical wheel is that the robot is based on the three-

ball wheel with independent power by a motor. It can perform the excellent 

maneuverability. It can apply with other wheel to perform near-omnidirectional 

locomotion. However, the drawback of spherical wheel is that it is limited to flat surfaces 

and small load capacity. (Siegwart,Nourbakhsh, & Scaramuzza, 2011). 

In 1973, A Mecanum wheel which is designed by Bengt Ilon has rollers at an angle of 

45 degree to the plane of the wheel fastened on the periphery of the wheel.  The angle 

of the rollers translates a portion of the force in the rotational direction of the wheel to a 

force normal to the wheel direction. The force vector from the translation depends on 

the direction and speed of each wheel. The sum of the force vector allows the platform 

to move freely in the direction of the result vector without changing the direction of the 

wheels. (F. Adascalitei and I. Doroftei, 2011) The configuration of the mecanum wheel 

need at least 4 mecanum wheels on square or rectangle shape platform, and angle of the 
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rollers of the opposite wheel must be in the opposite direction of each other to operate 

the omnidirectional motion.  

The omni-wheel has a roller around the periphery of the wheel. The rollers are 

perpendicular to the plane of the wheel. The roller around periphery allows the wheel is 

able to roll with full force and slide laterally. The omni-wheels are employed as powered 

casters for differential drive robots to make turning faster. (S. Soni, 2014) The 

configuration of omni-wheel for omnidirectional movement required at least 3 wheel 

which the angle of each perform 120 degrees to each other like the triangular shape. For 

four-wheel configuration, the wheel locates at the side or corner of the square shape 

platform with the 90-degree angle between the wheel.  

2.2 Kinematic Model of a Four Macanum Wheel 

An omnidirectional motion can be achieved by using the kinematic relation of four 

mecanum wheel. In this paper, they explain about forward kinematic and inverse 

kinematic for four mecanum wheels mobile robot platform (Taheri et al.,2015). 

Figure 2.1                                                  

The Configuration of a Robot with 4 Mecanum Wheel 
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Figure 2.2                                                                                                                       

The Parameter of a Mecanum Wheel 

 

As stated in Figure 2.2, assuming that a wheel is touching the ground. 𝜔 represent a 

wheel angular velocity and 𝑉𝑖𝑟 represent linear velocity of free roller wheel that touching 

to the floor (Taheri et al.,2015).  

Figure 2.3                                                                                                                      

Inverse Kinematic of Mobile Robot with 4 Mecanum Wheel 
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Figure 2.4                                                                                                                     

Jacobian Matrix 

 

After calculation the value for the inverse kinematic, we can rewrite the matrix to a new 

equation. The following inverse and forward kinematic equation were used in velocity 

control program in order to send velocity commands for each wheel to the robot.   

Figure 2.5                                                                                                                        

Inverse Kinematic Equations for 4-Wheel Mobile Robot Platform  
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Figure 2.6                                                                                                                                   

Forward Kinematic Equations for 4-Wheel Mobile Robot Platform  

  

The designed structure of mecanum wheel for mobile robot from Salih et al. which used 

four mecanum wheel with mobile robot chassis. Each mecanum wheel are powered 

independently by using gear DC motor. Figure 2.3 present the design structure of the 

omni-directional mobile robot. 

2.3 Position and Velocity Control for Differential Drive Wheel Mobile Robot 

The differential drive system is a simple system to create a movement for mobile robot. 

This system contains a robot chassis with two or more fixed wheels that are driven by 

an individual electric motor. This paper proposes a control system and navigation system 

of 2-wheel differential drive mobile robot for point-to-point motion without obstacle. 

Odometry is applied to estimate the current position of a navigation system. The PID 

Controller is used to control speed of each wheel for velocity control and position 

control. By using PID controller, robot can reach to desired goal (Cherry Myint et 

al.,2016).   

Figure 2.7                                                                                                                   

Block Diagram of DC Motor with PID Controller 
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2.4 Mobile Robot Navigation 

The problem of navigation of mobile robot can be summarized into two problems. The 

first problem is localization which provide robot an information of the current positions 

in that environment. The second problem is mapping which the ability to build the map 

of the surrounding area. The localization is a fundamental which is important for an 

autonomous mobile robot to navigate their own path.  There are various techniques to 

achieve the localization. 

The map-based method is that the method uses the map as a reference. The map-based 

technique can optimize the error by using loop-closure which know the area when it 

visits that area again. The error is reset when it returns to previously known map. (S. 

Campbell, 2020) However, the map of environment is not always realized, that is the 

drawback of the map-based method. The technique that can perform an accurate 

localization without the priori map is known as Simultaneous Localization and Mapping 

(SLAM). 

2.5 Dynamic Window Approach 

They describe the dynamic window approach that is They describe the dynamic window 

approach that is the obstacle avoidance approach for a mobile robot. The approach is 

obtained from the motion dynamics of the robot. It creates a dynamic window that 

consist of reachable linear velocity and angular velocity with in the short time limit. The 

dynamic window approach considers only admissible velocities that affect a robot 

trajectory which safe from crashing. From velocities in a dynamic window, the 

combination of angular velocity and linear velocity is selected from cost function. The 

cost function contains an estimation angle between the current robot angle and goal 

location, the current forward velocity of the robot and the distance to the obstacle (Dieter 

Fox et al.,1997).      

2.5.1 Search Space 

Search space carried out the space of velocities that robot can reach. Thus, a dynamic 

window approach can select a proper velocity from reducing a velocity in search space. 

The reduction of search space work in 3 steps. In the first step, velocity in this approach 

is only in 2-dimensional space that is pair of angular velocity and linear velocity. In the 
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second step, the velocities that free from obstacle is considered admissible. In third step, 

the dynamic window is created from admissible velocity that robot can reach within a 

short time interval and limited acceleration. 

Figure 2.8                                                                                                                                                                        

Velocity Space and Dynamic Window 

 

Following in Figure 2.8, the velocities range of the robot is 0 cm/sec to 90 cm/sec for 

linear velocity and -90 deg/sec to 90 deg/sec for angular velocity. It shows in big 

rectangle that is velocity space. On the other hand, the dynamic window is the small 

rectangle. 

2.5.2 The Cost Functions  

The cost function is the function for choosing the best velocity. The function considers 

3 values that are Target heading, Clearance and Velocity. Target heading or function 

𝑎𝑛𝑔𝑙𝑒 is an angle between goal location and robot heading. If the robot moves directly 

to goal, the value is maximum. Clearance is the distance to the closest obstacle on the 

trajectory. The value is smallest when the trajectory desire to move around the obstacle. 

Velocity is a forward velocity of the robot. The function 𝜎 smooth is the sum of the three 

functions.   

              𝐺(𝑣, 𝜔) =  𝜎(𝛼 ∙ 𝑎𝑛𝑔𝑙𝑒(𝑣, 𝜔)  +  𝛽 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔)  +  𝛾 ∙ 𝑣𝑒𝑙(𝑣, 𝜔))  (2.1) 
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Where 𝑎𝑛𝑔𝑙𝑒(𝑣, 𝜔) is function of target heading,  𝑑𝑖𝑠𝑡(𝑣, 𝜔) is a Clearance and 

𝑣𝑒𝑙(𝑣, 𝜔)) is a velocity. 𝛼, 𝛽 and 𝛾 are the weight.  

2.5.3 The Result of Dynamic Window Approach  

They demonstrate the robot with various experiment. The experiments show that the 

dynamic window approach is a robust obstacle avoidance technique. The robot can move 

safely without human supervision. 

2.6 Simultaneous Localization and Mapping (SLAM) 

Simultaneous Localization and Mapping (SLAM) is a method for estimating the sensor 

motion, create a map of an unfamiliar area and pinpoint the sensor's location. The major 

advantage of the SLAM is that it can accomplish localization without any prior 

knowledge about the surroundings. (Dissanayake et al., 2001) The several types of the 

sensor are able to perform a SLAM such as laser range, GPS, IMU and camera. From 

the different type of the sensor for SLAM, the price of the cameras is low and present 

the ton of information of the environment. The SLAM which the main sensor is cameras 

is known as Visual SLAM (VSLAM). The technique of visual SLAM is able to 

categorize into two main approaches: Feature-based approach which work on the key 

point from image and direct-based approach which work on the hold image.                       

(T. Taketomi ei at. 2017) 

2.6.1 Feature-Based Method 

The feature-based method is based on keyframes and bundle adjustment optimization. 

These approaches extract the feature from the image and pick keypoints from the frame 

with diverse viewpoints through repetition and individuality. The map that is created by 

the feature-base technique is a very sparse map. However, the system can recieve the 

camera position from the map. (R. Mur-Artal, J. D. Tardos, 2015). The feature-base 

technique is developed in three techniques. MonoSLAM, The Parallel Tracking and 

Mapping (PTAM) an ORB-SLAM. (Taketomi T. ei at. 2017)  

MonoSLAM which use Extended Kalmal filter (EKF) to estimate the unknown 

environments. The EKF's disadvantage is that the cost of computing rises in proportion 

to the size of an environment. In large surrounding area the size of the state vector 
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become large. Thus, the task of the real-time SLAM is difficult to achieve (Taketomi T. 

ei at., 2017).  The issue of MonoSLAM is solved by using Parallel Tracking and 

Mapping (PTAM) technique which use two thread to perform the task in parallel. A 

foreground thread handles the feature tracking and camera registration, while a 

background thread operates the bundle adjustment (BA) to minimize the map which it 

can handle the more feature point in the map. However, in a large environment, it is 

difficult to get the global minimize. (G. Klein and D. Murray, 2009) In the case of 

Monocular VSLAM, the large problem is scale ambiguity if the global BA is not 

performed.  In 2015, Ra ́ul Mur-Arta et al. propose the ORB-SLAM which is able to 

perform the SLAM in the large environment with real-time performance.  The ORB 

features are used to track the feature in changing of the viewpoint. The pose graph 

optimization is applied to global optimize the loop closing in real-time. (R. Mur-Artal et 

al., 2015)  

The ORB-SLAM method is extended to stereo VSLAM and RGB-D VSLAM. From the 

implement of ORB-SLAM, Raul Mur-Artal and Juan D. Tardos developed the ORB-

SLAM techniques into ORB-SLAM2 is an open-source SLAM system for monocular 

camera, stereo camera and RGB-D cameras. The advantage of using stereo camera or 

RGB-D camera is that each camera type contains the information of the depth from the 

first frame. Thus, it does not need the specific structure from the camera movement 

initialization same as the monocular camera. (Mur-Artal R. et al., 2017)  

Form the analyzed of M. Filipenko and I. Afanasyev that compare various SLAM system 

which the method base on ROS-base SLAM for the mobile robot in an indoor 

environment.  The experiment was conducted with a mobile robot operated on known 

perimeter of the square shape, and the surrounding area is typical office. The result of 

the experiment shows that the ORB-SLAM with a stereo camera perform a good result 

among the other is ORB-SLAM with RMSE ATE of 0.190 m. (M. Filipenko and I. 

Afanasyev., 2018). Moreover, the table and trajectory result of the demonstration of 

comparison show in table 2.1, Figure 2.9 
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Table 2.1                                                                                                                          

Comparison Table of the Different SLAM Method 

 

Figure 2.9                                                                                                                  

Comparison Image of the Different SLAM Method 
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The result that the LIDAR-base SLAM with cartographer is the best result of the among 

the SLAM method. However, the cost of the LIDAR is very expensive compare with the 

cost of the camera. For the industrial applications, the visual SLAM is able to reduce the 

cost of developed the mobile robot which use for transportation the package with SLAM 

algorithm. Therefore, The ORB-SLAM is the techniques which match the task which 

use SLAM to localization. The drawback of the LIDAR is that the map from LIDAR is 

in 2D. Thus, some of the obstacle which lay on the different level of laser scanner will 

be invisible from LIDAR, and it led to accident. In case of camera-base SLAM, it 

provides the map in 3D which is more information than the LIDAR provided. The 

obstacles will be detected easily.  

2.7 ORB-SLAM 2 Open-source SLAM System  

In 2017, Raul Mur-Artal et al., they present complete SLAM system for monocular, 

stereo and RGB-D camera. The ORB-SLAM 2 is an open-source SLAM system that can 

operate in real-time with ordinary CPUs in large environment. The drawbacks of 

monocular ORB-SLAM are scale drift and performing a pure rotation in the 

investigation. Those issues are solved by using a stereo or RGB-D camera. 

2.7.1 ORB-SLAM 2 System Overview 

The ORB-SLAM 2 operates on three parallel threads. The first thread is the tracking 

threads. Every frame, the tracking thread detects a feature point and uses it to localize 

the camera. The local mapping thread is the second thread. It inserts a new keyframe to 

the local map, chooses the proper map point, and optimizes the local map. The final 

thread is the loop closing thread. The loop closing detects the loop and fix accumulated 

drift by performing a pose-graph optimization. After the loop closing, the fourth thread 

launch to perform full BA to optimize the map. The system overview of the ORB-SLAM 

2 shown in Figure 2.10. 
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Figure 2.10                                                                                                                               

System Overview of ORB-SLAM 2 

 

2.7.2 Monocular, Close Stereo and Far Stereo Keypoints 

ORB-SLAM 2 receives an input image to extract feature then the input image is 

discarded. The hold system operates on the extracted feature. Monocular and stereo 

keypoints, categorized as close or far keypoints, are included in the system. Stereo 

keypoints contain three coordinates that are 𝑢𝐿 , 𝑣𝐿  𝑎𝑛𝑑 𝑢𝑅. The coordinate  𝑢𝐿 𝑎𝑛𝑑 𝑣𝐿  

are the coordinates on the left and 𝑢𝑅 which is the horizontal coordinate in the right 

image. For a stereo camera, the ORB features of both images are extracted and the 

feature from the left image has searched a match in the right image. Then, the stereo 

keypoints are generated by the coordinate of the left feature and the horizontal coordinate 

of the right match. For RGB-D cameras, the system extract ORB feature form RGB 

image. The depth image is transformed into a right coordinate by using equation (2.2). 

                                               𝑢𝑅 = 𝑢𝐿 − 
𝑓𝑥𝑏

𝑑
                                                    (2.2) 



 

 

15 

 

Where 𝑓𝑥 is the horizontal focal length, b is the baseline and d are the depth value of          

RGB-D camera.  

After getting stereo keypoint, the close and far keypoint are the two types of keypoints.  

Close keypoint is that its depth is less than 40 times the stereo or RGB-D baseline. 

Otherwise, it is defined as far keypoint. For close keypoints, the depth can be reliable. 

Thus, the triangulation provides accurate scale, translation and rotation information. For 

far keypoint, It gives precise rotation data but less accurate translation and scale data. 

Monocular keypoints contain two coordinates 𝑢𝐿 𝑎𝑛𝑑 𝑣𝐿 on the left image. This 

keypoint is the point that a stereo match could not be found. It provides only rotation 

and translation information. 

2.7.3 Bundle Adjustment in ORB-SLAM 2 

The system performs BA to optimize the camera pose, local window of keyframe and 

all keyframe and points. To optimize the cost function of BA, they use the Levenberg–

Marquardt method that implemented in g2o. 

Motion-only BA optimize the camera pose in the tracking thread. The camera orientation 

R ∈ SO(3) and translation t ∈ ℝ3 is optimized to minimize the reprojection error between 

keypoint and matched 3D points in world coordinates. 

    {𝑅, 𝑡}  =  𝑎𝑟𝑔𝑚𝑖𝑛𝑅,𝑡  ∑ 𝜌 ( ‖𝑥(∙)
𝑖  −  𝜋(.) (𝑅𝑋𝑖  +  𝑡)‖

Σ

2
)𝑖∈x                     (2.3) 

Where, 𝑥(.)
𝑖  is keypoints, monocular 𝑥𝑚

𝑖  ∈ ℝ2 and stereo 𝑥𝑠
𝑖  ∈ ℝ3. 𝜌 is the Huber cost 

function, Σ is the covariance matrix associated to the scale of the keypoint, 𝜋(.) is the 

projection function, 𝜋(𝑚)  is monocular and 𝜋(𝑠)  is rectified stereo.  

                                         𝜋𝑚  ([
𝑋
𝑌
𝑍
])  =  [

𝑓𝑥
𝑋

𝑍
+ 𝑐𝑥

𝑓𝑦
𝑋

𝑍
+ 𝑐𝑦

]                                               (2.4) 
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                                          𝜋𝑠  ([
𝑋
𝑌
𝑍
])  =  

[
 
 
 
 𝑓𝑥

𝑋

𝑍
+ 𝑐𝑥

𝑓𝑦
𝑋

𝑍
+ 𝑐𝑦

𝑓𝑥
𝑋 − 𝑏

𝑍
+ 𝑐𝑥]

 
 
 
 

                                           (2.5) 

The equation (2.4) and (2.5) is projection function of monocular and stereo camera. 

Where, 𝑓𝑥 and 𝑓𝑦 are the focal length, 𝑐𝑥 and 𝑐𝑦 are the principal point, b is a baseline. 

These parameters can obtain from camera calibration. 

Local BA optimizes a set of covisible keyframes, the set of keyframes that share the 

observation of the same map point, and optimizes all points seen in those keyframes 𝑃𝐿.  

  {𝑋𝑖, 𝑅𝑙, 𝑡𝑙|𝑖 ∈  𝑃𝐿 , 𝑙 ∈  𝐾𝐿}  =  𝑎𝑟𝑔𝑚𝑖𝑛𝑋𝑖,𝑅𝑙,𝑡𝑙
 ∑ ∑ 𝜌 (𝐸𝑘𝑗  )𝑗∈ 𝑥𝑘 𝑘 ∈ 𝐾𝐿 ∪ 𝐾𝑓     (2.6)           

                                       𝐸𝑘𝑗  =  ‖𝑥(∙)
𝑖  −  𝜋(.) (𝑅𝑙𝑋

𝑗  + 𝑡𝑘)‖
Σ

2
                                 (2.7) 

Where, 𝐾𝐿 is a set of covisible keyframe, 𝐾𝑓 is other keyframe that not in 𝐾𝐿 but 

observing points are in 𝑃𝐿,  𝑋𝑘 is the set of match point between point in 𝑃𝐿 and keypoints 

in a key frame k. 

Full BA uses the same cost function as Local BA to optimize all keyframes and points 

in the map. 

 

2.7.4 Localization Mode 

In localization mode, the local mapping and loop closing thread are deactivated and use 

only tracking thread to localize in mapped area. The camera localizes by using visual 

odometry match and matches to the map point. Visual odometry matches are matches 

between 3D points created in the previous frame and ORB in current frame. For map 

point matches, the localization can perform without accumulation drift in mapped area. 

On the other hand, visual odometry can operate in unmapped area, but drift can be 

accumulated. 
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In conclusion, the ORB-SLAM 2 that is an open-source SLAM system operate in real-

time on standard CPUs with large environment. The system achieves the highest 

accuracy compare with other SLAM systems and zero-drift localization in the mapped 

area. The comparison of translation RMSE (m.) is shown in Table 2.2, and Figure 2.11 

shows the point cloud reconstruction from estimation point cloud in TUM RGB-D 

dataset. 

 

Figure 2.11                                                                                                                                    

The Reconstruction from Estimation Point Cloud and Sensor Depth Maps in                     

TUM RGB-D Dataset. 

 

Table 2.2                                                                                                                          

Comparison of Translation RMSE (m) in TUM RGB-D Dataset 
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2.8 Autonomous Navigation of Mobile Robot Using Kinect Sensor 

This paper presents the autonomous mobile robot with Kinect sensor. The robot used 

data from Kinect to detect surrounding obstacles. The obstacle detection receives data 

from Kinect that is a live video. Then, the data is converted into 3D point clouds. After 

getting the point clouds, those point cloud are flittered by voxel filtering to reduce the 

processing time. The clustering processes cluster the filtered point cloud by using 

Euclidean Cluster Extraction. This algorithm search through filtered point cloud to find 

the point neighbors of it in a sphere with a radius less than the distance threshold. In this 

state, the robot recognizes the wall, obstacle and the floor. When the robot detects the 

obstacle, the robot avoids obstacles and navigate to free path to goal (N. A. Zainuddin et 

al., 2014). 

2.9  ROS-Based Autonomous Mobile Robot Positioning and Navigation System 

In 2019, ZHU jian-jun et al., they design the autonomous mobile robot based on Robot 

Operating System (ROS). The sensor that uses for getting the environment is laser 

scanner. The industrial computer, which is a microcomputer with a dual-core CPU, 

controls the robot. It can run Linux operating system and use ROS. The hardware 

architecture of mobile robot shown in Figure 2.9. A cartographer SLAM that is SLAM 

algorithm for laser scanner is used for creating a map. They used Navigation stack that 

is a ROS stack for complete navigation system. The block diagram of the navigation 

stack shown in Figure 2.10. The Navigation stack contains 3 main packages that are 

Map server, AMCL and Move base. After getting a mapping process, it creates a 2D-

cost map for the path planning. Global planner is A* search, while the local used 

dynamic window approach (DWA). The robot can reach the set point target and avoid 

obstacles.  
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Figure 2.12                                                                                                                                                         

Autonomous Mobile Robot Hardware Architecture 

 

Figure 2.13                                                                                                                                

The Block Diagram of the Navigation Stack 
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METHODOLOGY 

3.1 Mechanical Platform  

The design of the mobile robot platform is defined base on the rectangle shape with four 

omnidirectional wheels. The robot platform is separated into two layers for mechanical 

system, sensor, and other necessary equipment. The wheel configuration is that the two 

mecanum wheels are in the front of the robot and two omni-wheels locate at the corner 

of rectangle with 90 degrees to the other omni-wheel which at the back of the platform. 

Each wheel is powered independently by the one actuator which is the differential drive. 

In additional, Figure 3.1 shown the model of the proposed mobile robot.  

In this study, the combination of the mecanum wheel and omni-wheel are used because 

of the advantage of the Omni-wheel perform a fast movement and good efficient on 

principle direction (diagonal) but the other direction (forward and sideway) will provide 

more error because of wheel slip. Mecanum wheel perform less slip than omni wheel 

but it provides a low speed because of friction on the wheels. Therefore, hybrid 

mecanum-omni wheel will reduce an error of omni wheel by using mecanum wheel to 

compensate error from omni wheel. 

Figure 3.1                                                                                       

The Model of the Proposed Mobile Robot 
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3.2 The Comparison of Regular Wheel and Hybrid Wheel 

The new wheel configuration is designed based on the advantage of the mecanum wheel 

and the Omni wheel. The advantage of the mecanum wheel is that the friction of the 

wheel is higher than the Omni wheel with the same torque. Thus, it provides more 

traction more than the Omni wheel. However, the high friction of the mecanum wheel 

makes the robot move slower. For the Omni wheel, the Omni wheel can move faster 

than the mecanum wheel with the same torque. On the other hand, the omni wheel 

provide less friction than the omni wheel. The hybrid mecanum-omni wheel use the 

advantage of the mecanum wheel to compensate the drawback of the omni wheel. The 

comparison table show in Table 3.1. The velocity of the wheel was calculated based on 

the differential wheel. The velocity of the wheel shown in equation (3.1). The force of 

the differential wheel shown in equation (3.2). 

 

                                                           𝑽 =  𝝎 ×  𝒓                   (3.1) 

Where, V is the linear velocity of the wheel, 𝝎 is the angular velocity of the wheel and 

r is the wheel radian. 

                  F = 
𝝉

𝒓
     (3.2) 

Where, F is the force of the wheel, 𝝉 is the angular velocity of the wheel and r is the 

wheel radian. 

 For the mecanum wheel, the friction and velocity are at 45 degrees of the drive direction. 

The omni directional the friction and velocity are the same as the differential wheel. The 

direction of force and velocity of mecanum wheel shown in Figure 3.2. and the direction 

of force and velocity of omni wheel shown in Figure 3.2. The direction of force and 

velocity base on the 4 mecanum wheel and 4 omni wheel configuration.e The force and 

velocity of each direction shown in Table 3.1. 
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Figure 3.2                                                                     

Velocity (a) and Force(b) Direction of Mecanum Wheel 

                            

(a) (b) 

Figure 3.3                                     

Velocity (a) and Force(b) Direction of Omni Wheel 

       

(a)                                                            (b) 
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Table 3.1                        

The Force and Velocity of Mecanum Wheel, Omni Wheel and Hybrid Wheel 

Configuration. 

 

 4 Mecanum wheel 4 Omni wheel Hybrid wheel 

Velocity(X) 𝝎 × 𝒓 √𝟐𝝎 × 𝒓 𝟏. 𝟐𝟎𝟕 𝝎 × 𝒓 

Friction(X) 4 
𝝉

𝒓
 4 

𝝉

√𝟐⋅𝒓
 3.414 

𝝉

𝒓
 

velocity(Y) 𝝎 × 𝒓 √𝟐𝝎 × 𝒓 𝟏. 𝟐𝟎𝟕 𝝎 × 𝒓 

Friction(Y) 4 
𝝉

𝒓
 4 

𝝉

√𝟐⋅𝒓
 3.414  

𝝉

𝒓
 

Diagonal velocity 
𝝎 × 𝒓

√𝟐
 𝝎 × 𝒓 𝟎. 𝟖𝟓𝟑 𝝎 × 𝒓 

Diagonal Friction 𝟐√𝟐 ×
𝝉

𝒓
 𝟐

𝝉

𝒓
 2.414 

𝝉

𝒓
 

 

According of the Table 3.2, the Hybrid wheel was calculated by combine the 2 mecanum 

wheel and 2 omni wheel. 
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Table 3.2            

The comparison of mecanum wheel, omni wheel and hybrid wheel configuration. 

 

 Advantage Disadvantage 

4 

Mecanum 

wheel 

• The friction force of the 4 

mecanum wheel is more than the 

omni wheel. Thus, it supports 

more weight than the 4 omni 

wheel. 

• The wheel the velocity of the 4 

mecanum wheel configuration 

less than the omni wheel. It 

makes the robot with 4 

mecanum wheel move slower 

than the robot with 4 omni 

wheel.   

4 Omni 

wheel 

• The wheel performs the 

omnidirectional movement with 

more velocity than the mecanum 

wheel in any direction with the 

same torque and wheel radian. 

• The force of the 4 Omni wheel 

is less than the mecanum 

wheel. It makes the robot slip 

easily and supports less weight 

than 4 mecanum wheels. 

Hybrid 

wheel 

• The performance of the hybrid 

wheel configuration is at the 

middle between 4 mecanum 

wheel and 4 omni wheel. The 

hybrid mecanum-omni perform 

with more velocity than mecanum 

wheel. It performs the 

omnidirectional movement with 

more force than the omni wheel. 

Thus, it will make the robot 

support more weight 4 omni 

wheel and move faster than the 

mecanum wheel. 

• The kinematic model of the 

hybrid configuration wheel is 

more complicated the regular 4 

mecanum wheel and 4 omni 

wheel. 
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3.3 Kinematics Analysis  

The new kinematic model for 2 mecanum wheels and 2 Omni-wheels is designed 

following the model from the literature. The remaining model was used for 4 mecanum 

wheels mobile robot. The configuration of the new model and parameter follow       

Figure 3.3.   

 

Figure 3.3                                                                                                                                    

The Configuration of the New Model 

 

The configuration parameter defines as follow: 

𝑋𝑅, 𝑌𝑅: cartesian coordinate system of the robot base with the movement of the body 

center. 

𝑉𝑥, 𝑉𝑦, 𝜔 : linear velocity along x direction, linear velocity along y direction and angular 

velocity of the robot. 
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𝐸𝑖, 𝑆𝑖 : Coordinate system of the wheel i 

𝑉𝑟𝑖 : The velocity of the passive roller in wheel i 

αi : The angle between the center of wheel i and 𝑋𝑅 

𝛽i : The angle between 𝑆𝑖 and 𝑋𝑅 

𝛾𝑖 : The angle between 𝐸𝑖 and 𝑉𝑖𝑟 

𝜄𝑖 :  The distances from the center of the robot to the center of the wheel i 

The calculation for inverse kinematic model of mobile robot uses the Jacobian in Figure 

2.4 The Jacobian matrix for inverse kinematic of the model as follow: 

 

According from Figure 3.3, The parameter uses for calculating the mecanum wheel and 

Omni-wheel inverse kinematic model show in below Table 3.1.  

 

 

 

 

 

 

 

 

 

 (3.3) 
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Table 3.3                                                                    

The Parameter of the 2 Mecanum Wheels and 2 Omni-Wheels. 

 

The parameter in Table 3.3 were substituted to the equation 3.1 and provide the inverse 

kinematic matrix in equation 3.4.  

                             [

𝜔1

𝜔2

𝜔3

𝜔4

] = [ 

23.5702 23.5702 9.0667
33.3333 −33.3333 13.152
23.5702 −23.5702 −9.0667
33.3333 33.3333 −13.152

] [
𝑉𝑥

𝑉𝑦

𝑤𝑧

]                      (3.4) 

Where, 𝜔𝑖 is angular velocity of wheel I, 𝑉𝑥 and 𝑉𝑦 are linear velocity of mobile robot 

and 𝑤𝑧 is angular velocity the robot. The inverse kinematic matrix shows the velocity of 

each wheel for sending the velocity command to move the mobile robot. 

       𝜔1  =  23.5702 × (𝑉𝑥)  +  23.5702 × (𝑉𝑦)  +  9.0667 × (𝑤𝑧)               (3.5) 

       𝜔2  =  33.3333 × (𝑉𝑥)  +  (−33.3333) × (𝑉𝑦)  +  13.152 × (𝑤𝑧)          (3.6) 

       𝜔3  =  23.5702 × (𝑉𝑥)  +  (−23.5702)  × (𝑉𝑦)  +  (−9.0667)  × (𝑤𝑧)   (3.7) 

       𝜔4  =  33.3333 × (𝑉𝑥)  +  33.3333 × (𝑉𝑦)  +  (−13.152)  × (𝑤𝑧)         (3.8) 

Equations 3.5 to 3.8 are the angular velocity of each wheel. They were used to command 

the velocities of the mobile robot. After getting inverse kinematic for velocity command, 
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the matrix was calculated to find the forward kinematic model by taking the inverse of 

the matrix in equation 3.3 to get the forward kinematic model.  

                     [
𝑉𝑥

𝑉𝑦

𝑤𝑧

] = [ 
0.0071 0.01 0.0071 0.01
0.0107 −0.0071 −0.0107 0.0071
0.027 0.019 −0.027 −0.019

] [

𝜔1

𝜔2

𝜔3

𝜔4

]                 (3.9) 

The forward kinematic use for getting feedback velocities of the mobile robot. The 

equation of linear velocity and angular velocity of mobile robot show in equation 3.12 

to 3.14 

 𝑉𝑥  =  0.0071  × (𝜔1) +  0.01 × (𝜔2) + 0.0071 × (𝜔3) +  0.01 × (𝜔4)          (3.12) 

 𝑉𝑦  =  0.0107  × (𝜔1) − 0.0071 × (𝜔2)  −  0.0107 × (𝜔3) +  0.0071 × (𝜔4)(3.13) 

 𝑤𝑧  =  0.027  × (𝜔1) +  0.019 × (𝜔2)  −  0.027 × (𝜔3)  −   0.019 × (𝜔4)     (3.14) 
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3.4 The Robot Coordinate System  

Figure 3.4 

The Coordinate System of Mobile Robot in Global Frame 

 

According to Figure 3.4, the global coordinate system contains position and orientation 

of the mobile robot. The calculation of coordinate system follows in below equation. 

                                                      X𝑤  =   𝑟 ×  cos 𝜃              (3.15)             

                                                       Y𝑤  =  𝑟 × sin 𝜃                                       (3.16)      

Where, X𝑤, Y𝑤 𝑎𝑛𝑑 𝜃 is position of the robot in global coordinate, r travel distance of 

the mobile robot w.r.t global coordinate. 

3.5 Mechanical Design and Equipment Selection 

This thesis focus on improves the hybrid mecanum-omni wheel configuration. The 

movement of this configuration is the combination of force from the wheel’s rotation 

direction.  The length and width of the robot chassis is 420 × 300 mm which was used 

to connect all actuator and microcontroller. The angle between each wheel is 90 degrees. 

The designed robot platform shown in Figure 3.5. The mecanum wheel that was used 
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for the robot shown in Figure 3.6 and the specification of mecanum wheel shown in 

table 3.2 The both type of mecanum wheel that are left type and right were used. The 

omni wheel at the front of the robot and wheel specification presented in Figure 3.7 and 

table 3.3.  

Figure 3.5                                                                                                                                               

Robot’s Chassis  

 

Figure 3.6                                                                                                                            

Mecanum Wheel  
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Figure 3.7                                                                        

Omni Wheel 

 

Table 3.4                                          

Mecanum Wheel’s Specification 

Parameter Description 

Diameter 60 mm. 

Body material Aluminum Alloy 

Weight 86 g 

Load capacity 10 kg. 

Number of rollers 8 

 

 Table 3.5                                                                                                                       

Omni Wheel’s Specification 

Parameter Description 

Diameter 60 mm. 

Body material Aluminum Alloy 

Weight 73 g 

Load capacity 3 kg. 

Number of rollers  10 

 

The model of mobile robot is represented in following figure. 
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Figure 3.8                                                                                                                                

Front View  

 

Figure 3.9                                                                                                                                

Rear View  
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Figure 3.10                                                                                                                                   

Side View 

 

3.6 Electrical System Design and Equipment Selection 

The one of the important parts of the mobile robot is electrical system. The electrical 

design of the robot separates into two parts the power system and the communication 

system. The power system of the robot shown in Figure 3.11.  

Figure 3.11                                                                                                                                                 

The Block Diagram for Electrical System (a) the Electrical System for 12 V. Power 

Supply (b) the Electrical System for 5 V. Power Supply 

 

(a) 
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According to Figure 3.10 (a), the block diagram presents the power system from 24 V. 

battery. The battery connected with the converter to convert 24 VDC to 12 VDC. The 

voltage from the converter was stable.     

 

(b) 

The communication system contains the server which is a personal computer and the 

client that is a microcontroller. The microcontroller was used for low-level 

communication which is sent Pulse Width Modulation (PWM) via motor driver to 

control motor and receive feedback data from encoder. The microcontroller 

communicates with PC through ROS topic which is ros_seriel. RGB-D was connected 

with a PC by using a driver from ROS. The block of the communication represents 

in Figure 3.12.     
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Figure 3.12                             

The Block Diagram for Electrical System for Communication Between Master and 

Slave Device 

 

3.7 Microcontroller, Sensor and Actuator 

The Kinect XBOX 360 is the main sensor for the mobile robot. The sensor was used for 

creating a map with a SLAM algorithm and navigating the robot via obstacles. This 

RGB-D camera is a low-cost RGB-D camera and widely used in computer vision or 

SLAM. Moreover, ROS develops a driver to communicate with the Kinect 360. The 

camera was calibrated by ROS camera calibration package RGB-D camera shown in 

Figure 3.13 The specification of camera is represented in table 3.6. the encoder was 

connected to the motor to get feedback from motor for speed control. The encoder and 

its specification shown in Figure 3.14 and table 3.7. 
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Figure 3.13                       

RGB-D Camera 

 

Table 3.6                                                                                                                             

RGB-D’s Specification 

Parameter Description 

Name Kinect XBOX360 

Power supply 12 V. 

Camera resolution 640 × 480 at 30 fps 

IR camera resolution 320 × 240 at 30 fps 

Field of view of RGB camera 62° × 48.6° 

Field of view of Depth camera 57° × 43° 

Operative measuring range 0.8 m – 4 m  

 

Figure 3.14                            

Encoder 
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Table 3.7                                                                                                                                

Encoder’s Specification 

Parameter Description 

Power supply 5 V. 

Count per revolute 12 CPR 

Channal 2 

 

The microcontroller that used to control motor speed and send a feedback data to PC via 

ROS is STM32 Nucleo-64 F401-RE. The stm32 has an encoder mode to connect the 

encoder without complex coding.  

Figure 3.15                                                                                                                 

Microcontroller  
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Table 3.8                                                                                                                 

Microcontroller’s specification 

Parameter Description 

Name STM32 Nucleo-64 F401-RE 

MCU Arm Cortex-M4F 

Operating voltage 3.6 v. 

Clock speed 85 MHz 

SRAM 96 KB 

Flash memory 512 KB 

Power supply 5 – 12 V. 

 

One of the most important parts of the mobile robot is the motor. The 17 watts 12 volts 

motors were selected to drive the wheels. The motor connects with gearbox ration 1:64 

to increase the rated torque for carrying a high payload. The motor for the mobile robot 

represents in Figure 3.16. The motor specification is shown in table 3.9     

Figure 3.16                                                                                                                                    

17 Watts 12-volt Motor 
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Table 3.9                                                                                                                                  

Motor’s Specification 

Parameter Description 

Name Fualhaber 2342 CR012 

Operating voltage 12 v. 

Rate current 1.5 A. 

Output power 17 W 

No load speed  8100 rpm. 

Rate torque 17 mNm. 

Gear box ratio 1:64 

 

Finally, the L298M motor driver was selected to drive the motor. This motor driver can 

input with 2 channel PWM to control speed of the motors and the price is low. The motor 

driver depicted in Figure 3.17. Moreover, the specification of L298M represented in 

table 3.10 

Figure 3.17                                                                    

Motor Driver 
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Table 3.10                                                               

Motor Drive’s Specification 

Parameter Description 

Chip L298N 

Operating voltage 7 – 30 V. 

Maximum rate current 2 A. 

Commutation frequency 25 – 40 KHz 

PWM channel 2  

 

3.8 PID Velocity and Position Control 

STM32 microcontroller is the device for low level control. For microcontroller part, a 

PID controller was implemented in order to control velocity of the mobile robot. A PID 

controller receives the error between output and a setpoint as an input. It adjusts an 

output relate to the error to control the system. In this case, the system is a motor. Thus, 

the output is velocity. The controller receives velocity feedback from an encoder. The 

calculation of wheel speed in RPM from encoder shown in equation 3.13. ROS receive 

velocity in rad/sec. Thus, the velocity was converted from RPM to rad/sec. in equation 

3.18  

 

Figure 3.18                                                                                                                                   

PID Controller 

 

                                         V(RPM) = 
𝑃𝑢𝑙𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 × 60

𝐶𝑃𝑅 × 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 
                                       (3.17) 

                                     𝜔 (red/sec.) = V(RPM) x 0.1047197                                 (3.18) 
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After getting velocity, the robot needs to move within designed distance such as “moving 

forward for 1 kg” or “turning heading to 90 degrees”. It can be achieved by using 

position control with PID. The figure below shows the block diagram of position control 

with PID. 

Figure 3.19                                                                                                                       

PID Position Control 

 

3.9 ROS 

The Robot Operating System (ROS) is a collection of software libraries and tools 

designed to develop robot applications. ROS defines a standard for implement a code in 

the same way. Thus, the software that develops with ROS standards can be connected 

easily with the other. This mobile robot was programmed by using ROS melodic version 

with Linux Ubuntu 18.04. This version of ROS was developed in 2018. Hench, it 

supports a variety of package in ROS including “ros_orb_slam”. 

3.9.1 Control Implement 

The STM32 send data to PC with “serial_node_stm32” node. The topics that contain the 

wheels velocity from STM32 are “vel_n” for wheel n. In the same time, the velocity 

command for the robot was sent by the topic “cmd_vel”.  

Figure 3.20                                                                                                                     

Serial_node Architecture 

 

The nodes that publish the topic “cmd_vel” are “DWA” which is the node of                        

Dynamic window approach and the node “teleop_twist_keyboard”. Basically, the node 
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“teleop_twist_keyboard” send velocity setpoint via the topic “cmd_vel”.                           

The application of this node is that the program starts with the default velocity, and it 

can increase or decrease the velocity level in the step of 10 % with the input keyboard. 

However, the node cannot input velocity level with the number. In this thesis, this node 

was applied to be able to input with the number. The modified node is used to publish 

position setpoint for position control of the robot via “cmd_vel”. Thus, the application 

of this node is applied to use in the manual mode of the robot. In this mode, the robot 

receives setpoint which include the direction in x, y or heading from the modified node. 

Then, the robot moves to the setpoint and collect the data with node 

“odometry_publisher” which is the node for calculating odometry.  

 

Figure 3.21                                                                                                                           

The Architecture of Node in Manual Mode 

 

3.9.2 Ros ORB SLAM 2 

This thesis use ORB SLAM2 with RGB-D to creating a map of the surround 

environment and localize the location of the robot. The map which is created with the 

ORB SLAM2 is sparse 3D point clouds. The system was descripted in the chapter 2, 

2.6. The ORB SLAM2 the real-time SLAM for monocular, stereo camera and RGB-D 

camera was implemented by using ROS. This implementation of the ORB SLAM2 

removes some dependency of the original version that is pangolin which is the software 

for monitoring the map. RVIZs which is the ROS visualizer is used to monitor the map 

instead of pangolin. All input and output are handled via ROS topic.  

The mapping process of ORB SLAM 2 start with tracking thread. RGB-D camera extract 

ORB feature on the RGB image. For each feature, the depth was transformed into the 

right coordinate that describe in equation 2.2.   
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Figure 3.22                                                                                                                            

The ORB Feature in RGB Image 

 

The keyframe is created with the first frame that the feature was extracted, and the pose 

of the first frame is set as an origin of the map. Then, the system creates an initial map 

from all stereo keypoints within the first keyframe. The system project the local map to 

the current frame and search map point correspondences. For the local map, it contains 

the set of the keyframe that share map points with the current frame and a set of 

keyframes which is a neighbor of 𝐾1. The map points seen in are searched and optimized. 

Finally, the tracking thread insert the new keyframe if it meets the condition. 

The tracking thread send the new keyframe to the local mapping thread. The new 

keyframe is added into the map and perform the Local BA to get the optimal 

reconstruction of the environment around the camera location.  

Finally, the loops are searched with every keyframe by the loop closing thread. Once the 

loop is detected, the system calculates a similarity transform which contains the drift in 

the loop. Both sides of the loop are closed up and the duplicate points are combined. The 

pose graph optimization is performed to achieve an effectivity close the loop and 

corrected the scale drift. 
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Figure 3.23                                                                                                                                  

The Complete Sparse 3D Maps in RVIZs 

 

For the localization without mapping, the system turns off the local mapping thread and 

the loop closing thread. The system localizes with visual odometry match that the match 

between ORB in current frame and the 3D points in the previous frame from the depth 

information. The other method for the localization is that the system matches the feature 

point in the current frame and the Mappoint in the local map to localize the camera 

location. The localization is represented in Figure 3.24 The red arrow in the map is the 

location of the camera. 
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Figure 3.24                                                                                                                                

The Localization in Mapped  

 

3.9.3 Dynamic window approach, path planning and obstacle avoidance 

Dynamic window approach (DWA) is the one of the path planning algorithms.               

The approach calculates the proper velocity that contain linear velocity and angular 

velocity for the robot. The system creates the area of reachable velocity within the limit 

of time. This area is called “dynamic window”. This window relates with max/min liner 

velocity, max/min angular velocity, linear acceleration, angular acceleration, limit time 

constant and the current speed. The velocity in the dynamic window is chosen by the 

cost function. The cost function contains the heading of the robot to a goal location, the 

forward velocity of the robot and the distance to the obstacles on the current location. 

Basically, DWA is used for differential wheel. In this thesis, the mechanical of the robot 

is omni-directional wheel. Thus, the cost function of DWA was adjusted.  

The velocity cost function: 

 

                                                   𝑣𝑒𝑙 =  𝑉𝑚𝑎𝑥  −  𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡                                         (3.19) 

 

Where, 𝑣𝑒𝑙 is velocity cost function, 𝑉𝑚𝑎𝑥  is maximum linear velocity in X direction in 

the dynamic window and 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current linear velocity in X direction of the 

robot. If the speed is near the max speed, the velocity cost function is low. 
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The heading cost function: 

                                             heading = ‖𝜃𝑟𝑜𝑏𝑜𝑡 –  𝜃𝑔𝑜𝑎𝑙‖                                 (3.20) 

Where, heading is heading cost function, 𝜃𝑟𝑜𝑏𝑜𝑡 is the heading angle of the robot that 

can be obtained with localization process and 𝜃𝑔𝑜𝑎𝑙 is the goal angle relate with the 

robot position and goal position. 

The equation for  𝜃𝑔𝑜𝑎𝑙 : 

                                                           𝜃𝑔𝑜𝑎𝑙 =  𝑎𝑡𝑎𝑛(
𝑑𝑦

𝑑𝑥
)                                      (3.21)  

                                                         𝑔𝑥 =   𝑥𝑟𝑜𝑏𝑜𝑡  −   𝑥𝑔𝑜𝑎𝑙                                  (3.22) 

                                                          𝑔𝑦 =  𝑦𝑟𝑜𝑏𝑜𝑡 − 𝑦𝑔𝑜𝑎𝑙                                     (3.23) 

Where, gx is the distance of robot position in x coordinate and goal position in x 

coordinate, gy is the distance of robot position in y coordinate and goal position in y 

coordinate.  

The heading cost function is the calculation of the heading relate with goal. The heading 

cost function is low if the heading of the robot point to the goal or rotate to the goal.   

 

In this thesis, the heading cost function was adjusted for the calculation of the omni 

direction movement. This cost function removes the heading calculation. The new cost 

function was called goal cost function. The goal cost function was represented in 

equation 3.24. 

The goal cost function: 

                                                     𝑔𝑜𝑎𝑙 =  √𝑔𝑥2  +  𝑔𝑦2                                      (3.24) 

The goal cost function calculates the Euclidean distance between the current robot 

position and the goal position. The robot moves to the goal in x, y, or diagonal directions. 

It makes the cost function decrease. 
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For obstacles cost function, the robot calculates the trajectory that relates to all velocities 

in the “dynamic window”.  For all trajectory, the distance between the trajectory and the 

obstacles were calculated. The trajectory that hits an obstacle is maximized in order to 

remove from admissible velocity.  

For trajectory i and obstacle j: 

                                                          𝑑𝑥 =  𝑡𝑟𝑎𝑗𝑖,𝑥  −  𝑂𝑗,𝑥                                     (3.25)  

                                                          𝑑𝑦 =  𝑡𝑟𝑎𝑗𝑖,𝑦  −  𝑂𝑗,𝑦                                      (3.26) 

                                                           r = √𝑑𝑥2  +  𝑑𝑦2                                           (3.27) 

                                                                  clear = 
1

𝑟
                                                   (3.28) 

Where, clear is obstacle cost function, r is the Euclidean distance between trajectory i 

and obstacle j, 𝑡𝑟𝑎𝑗𝑖,𝑥 is trajectory i of the robot in x direction and 𝑂𝑗,𝑥 is obstacle j 

position in x coordinate. The obstacle cost function is low if the trajectory of the robot 

is far from the obstacle. 

For all set of velocity in Dynamic window, the system calculates the sum of the cost 

functions which are 𝑣𝑒𝑙 cost function, heading cost function and clear cost function. The 

sum of the cost functions that is minimum is the best velocity.    

𝑉(𝑥,𝜔) = 𝑚𝑖𝑛((𝛼 ×  𝑣𝑒𝑙(𝑥𝑖, 𝜔𝑖)) + (𝛽 ×  ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑥𝑖 , 𝜔𝑖)) + (𝛾 × 𝑐𝑙𝑒𝑎𝑟(𝑥𝑖 , 𝜔𝑖)))   (3.29) 

𝑉(𝑥,𝑦) = 𝑚𝑖𝑛((𝛼 ×  𝑣𝑒𝑙(𝑥𝑖, 𝑦𝑖)) + (𝛽 ×  𝑔𝑜𝑎𝑙(𝑥𝑖 , 𝑦𝑖)) + (𝛾 ×  𝑐𝑙𝑒𝑎𝑟(𝑥𝑖, 𝑦𝑖))) (3.30) 

Where, 𝑉(𝑥,𝜔) is the best set of curvature velocity, 𝑉(𝑥,𝑦) is the best set of omni directional 

velocity, 𝛼 is a weight factor for vel cost function, 𝛽 is a weight factor for heading cost 

function, 𝑚𝑖𝑛 is the minimizing function and 𝛾 is a weight factor for 𝑐𝑙𝑒𝑎𝑟 cost function.  
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the robot was designed to move with both curvature movement and omnidirectional 

movement. Equation 3.29 was used for curvature movement. When the angle between 

the goal and heading of the robot is more than 40 degrees, The curvature movement is 

active. It changes the heading of the robot to the goal location. Equation 3.30 was used 

for omnidirectional movement. 
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RESULT AND DISCUSSION 

4.1 Overview 

In this thesis, ROS was implemented in the robot to use the DWA with ORB SLAM2. 

“DWA” node receives the data from the “orb_slam2_rgbd” node and navigates the robot 

to the goal. The data contain the location of the robot in the world coordinate and the 

position of the obstacle in the 3D point cloud. The point cloud data was filtered to 

remove the point at the ground and the 3D point that is higher than the robot heigh. The 

path planner receives only the x and y positions of the point cloud to navigate the robot. 

The map of the ORB SLAM 2 is a 3D sparse map. Moreover, the map and position of 

the robot are visualized in RVIZ. 

The robot has two operation modes which are the manual mode and navigation and 

mapping mode. In the manual mode, the robot receives the position setpoint from the 

user via the “teleop_twist_keyboard” node in ROS. The RGB-D camera are deactivated. 

The robot localizes with wheel odometry, although the current position did not visualize 

on the map. The PID and the robot’s kinematic model was implemented to control the 

position and movement of the robot. In the mapping and navigation mode, DWA node 

receives the goal from the user and navigates the robot to the goal with a safe path. This 

mode is separated into two modes. First, the mapping mode, the main task of this mode 

is creating the map of the environment. Thus, the robot will check the unknown space 

and rotate the camera to the unknown to explore the new area before heading to the goal 

location. The flow chart for mapping mode is showed in Figure 4.1. Second, the 

navigation mode, the main task of this mode is traveling to goal with mapped area. 

Moreover, this mode was operated with the localization mode in the ORB SLAM node. 

Thus, the robot not collect the new map point. The flow chart for navigation mode is 

showed in Figure 4.2.   
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Figure 4.1                                                                                                                                

The Flow Chart for Mapping Process 
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Figure 4.2                                                                                                 

The Flow Chart for Navigation With Mapped Area 
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4.2 Robot Performance  

This section presents the robot's performance in manual mode. The PID controller was 

implemented to control the position of the mobile robot. For the experiment, the robot 

will receive the command to move in 1 meter 5 direction and change the heading 

direction. These directions are forward, left, right, left diagonal and right diagonal. The 

result of the moving experiment shown in table 4.1 and 4.2 and the result of the changing 

heading direction shown in table 4.3. The result compares the setpoint with the feedback 

data from the robot and the data from the measuring tool. For each setpoint, the robot 

moves with the same setpoint and measure the error 3 times. In additional, the set point 

that sent to the robot is the pair of the distance (x, y). For example, the command is 

moving forward in 1 meter. The setpoint is (1,0). If the command is moving left in 1 

meter. The setpoint is (0,1). The direction of each setpoint represent in Figure 4.3. 
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Figure 4.3                                                                                                                                   

The Setpoint Direction 

 

Table 4.1                                                                                                                                

The Position Control Analysis (Translation)  

  
Coordinate (X, Y) measuring(error) Encoder (X, Y) 

r 

(measuring) 

1 (0,0) (0,0) (0,0) 0.000 

2 (1,0) (0.95,0.03) (0.97,0.005) 0.058 

3 (1,0) (0.97,0.02) (0.99,-0.001) 0.036 

4 (1,0) (0.97,0.02) (0.99,-0.007) 0.036 

5 (0,1) (-0.06,0.91) (-0.006,0.97) 0.100 

6 (0,1) (-0.04,0.91)  (-0.01,0.97) 0.089 

7 (0,1) (-0.05,0.9)  (-0.003,0.96) 0.051 

8 (0,-1) (-0.003,-0.9) (-0.01,-0.97) 0.100 

9 (0,-1) (-0.01,-0.89) (0.01,-1.08) 0.110 

10 (0,-1) (0.0,-0.89) (0.01,-0.96) 0.110 

11 (1,1) (0.95,0.91) (0.98,0.97) 0.094 

12 (1,1) (0.93,0.92) (0.98,0.96) 0.106 

13 (1,1) (0.89,0.93) (0.98,0.96) 0.130 

14 (1,-1) (0.99,-0.9) (0.98,-0.97) 0.010 

15 (1,-1) (0.95,-0.94) (0.98,-0.97) 0.050 

16 (1,-1) (0.98,-0.92) (0.98,-0.97) 0.020 

 Average error     0.07 
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SAccording to the data in table 4.1, All data is in meter unit. The r (measuring) is the 

error from measurement with the measuring tool. The error calculates by using 

Euclidean distance between the final position of the robot and goal location. The result 

uses the measuring tool as a reference. The result shows that the maximum error is 0.13 

m. from setpoint (1,1). The minimum error is 0.01m. from setpoint (1, -1). Moreover, 

the measuring from feedback of the robot and the error from measuring tool are not 

equal. The error of the measuring shown in Table 4.2.  

Table 4.2                                                                          

The Error of the Feedback Data 

Coordinate (X, Y) r (measuring tool) r (encoder) r (Encoder to measuring tool) 

(0,0) 0.000 0.000 0.000 

(1,0) 0.058 0.030 0.028 

(1,0) 0.036 0.010 0.026 

(1,0) 0.036 0.012 0.024 

(0,1) 0.100 0.031 0.069 

(0,1) 0.089 0.032 0.058 

(0,1) 0.051 0.040 0.011 

(0,-1) 0.100 0.032 0.068 

(0,-1) 0.110 0.081 0.030 

(0,-1) 0.110 0.041 0.069 

(1,1) 0.094 0.036 0.058 

(1,1) 0.106 0.045 0.062 

(1,1) 0.130 0.045 0.086 

(1,-1) 0.010 0.045 0.035 

(1,-1) 0.050 0.045 0.005 

(1,-1) 0.020 0.045 0.025 

Average error 0.07 0.036 0.041 

 

 

According to table 4.2, the data show the error of feedback data from the robot compare 

with data from measuring tool. The average error from encoder is 0.036 and the average 

error from the comparing is 0.041. On the other hand, the result from the robot is from 

the wheel encoder that counts only the wheel rotation. Thus, the wheel slip can cause an 

error for the sensor. 
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Table 4.3                                                                                    

The Position Control Analysis (Rotation) 

  Theta(rad) measuring tool(rad) encoder(rad) Dth(measuring)  

1 1.571 1.64 1.55 0.069 

2 1.571 1.62 1.56 0.049 

3 1.571 1.61 1.54 0.039 

4 -1.571 -1.589 -1.543 0.018 

5 -1.571 -1.589 -1.542 0.018 

6 -1.571 -1.571 -1.52 0 

7 0.786 0.768 0.774 0.018 

8 0.786 0.803 0.787 0.017 

9 0.786 0.803 0.779 0.017 

10 -0.786 -0.821 -0.772 0.035 

11 -0.786 -0.803 -0.769 0.017 

12 -0.786 -0.803 -0.772 0.017 

  Average error   0.026 

 

According to Table 4.3, the data show that the green box means the highest error in that 

setpoint. The error from measuring tool and the error from the encoder show in table 4.4 
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Table 4.4                                                                        

The Error of the Feedback Data 

  Setpoint(rad) Dth(measuring) Dth(encoder) Dth (Encoder to measuing) 

1 1.571 0.069 0.021 0.09 

2 1.571 0.049 0.011 0.06 

3 1.571 0.039 0.031 0.07 

4 -1.571 0.018 0.028 0.046 

5 -1.571 0.018 0.029 0.047 

6 -1.571 0 0.051 0.051 

7 0.786 0.018 0.012 0.006 

8 0.786 0.017 0.001 0.016 

9 0.786 0.017 0.007 0.024 

10 -0.786 0.035 0.014 0.049 

11 -0.786 0.017 0.017 0.034 

12 -0.786 0.017 0.014 0.031 

 Average error 0.026 0.020 0.044 

 

4.3 Localization  

This part shows the localization of the mobile robot in mapped area with ORB SLAM. 

The ORB SLAM node is activated, and the localization mode, the mode in ORB SLAM 

is turned on. The robot was placed in the different position in the map. The system is 

restarted when the robot is placed on the new location in the map. The ground truth is 

measured by using measuring tool. The error of the localization is represented in Table 

4.3. The error is the Euclidian distance of the robot to the goal and the distance along 

the x, y direction in meter. 

 

 

 

 

 

 



 

 

56 

 

Table 4.5                                                                

The Localization Analysis 

  Coordinate(X,Y) Robot(X,Y) Dx Dy r 

1 (0,0) (0,0) 0 0 0.00 

2 (0,1) (0.17,0.95) -0.17 0.05 0.18 

3 (-0.5,-1.0) (-0.45,-1.03) 0.05 0.03 0.06 

4 (1.0,0.0) (1.07,-0.006) 0.07 -0.006 0.07 

5 (1.5,0.8) (1.59,0.78) -0.09 0.02 0.09 

6 (3.0,0.6) (3.14,0.59) 0.14 0.01 0.14 

7 (3.5,-3.1) (3.68,-3.13) -0.18 0.03 0.18 

8 (3.5,-5.1) (3.73,-5.12) -0.23 0.02 0.23 

9 (3.5,-7.1) (3.78,-7.11) -0.28 0.01 0.28 

  Average error       0.14 

 

From the Table 4.3, It can be seen that the error increase when the location is far from 

the origin point (0,0). According to Dx and Dy it shows the accumulated error from Dx 

is more than Dy, especially the point that far from the starter point (0,0).  

4.4 Navigation  

This section presents the navigation system of the robot. The sets of parameters in the 

dynamic window were adjusted. The set of parameters contain the weight factor of the 

goal cost function and the weight factor of the obstacle cost function to find the cost 

function that can navigates the robot to the goal and avoid the obstacle. The goal was 

expanded from point to square shape. The size of the square shape is that 10 cm. from 

the center point. For the experiment, the navigation mode of the robot is activated. Thus, 

it knows only the obstacles in the maps. Then, the robot was placed on the origin point 

of the mapped area. The 1 obstacle was installed in 2 meters at the front of the robot. 

The goal of the robot is behind of the obstacle for 1 meter. The map for the experiment 

shown in Figure 4.4.  The result of the experiment shown in Table 4.4 
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Figure 4.4                                                                          

The Map for Navigation Experiment 

 

According to the Figure 4.4, the red point is the location of the goal, The beginning of 

the arrow is the robot and the group of point cloud in the red circle is obstacle.  
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Table 4.6                                                             

The Navigation Analysis 

  

goal 

gain 

ob 

gain 

Goal 

tolerance 
Avoidance Goal(X,Y) 

1 0.2 0.2 0.1 m. False False 

2 0.2 0.4 0.1 m. False False 

3 0.2 0.6 0.1 m. False False 

4 0.2 1 0.1 m. False False 

5 0.4 0.2 0.1 m. True True 

6 0.4 0.4 0.1 m. False False 

7 0.4 0.6 0.1 m. False False 

8 0.4 1 0.1 m. False False 

9 0.6 0.2 0.1 m. True True 

10 0.6 0.4 0.1 m. False False 

11 0.6 0.6 0.1 m. False False 

12 0.6 1 0.1 m. False False 

13 1 0.2 0.1 m. True True 

14 1 0.4 0.1 m. True True 

15 1 0.6 0.1 m. True True 

16 1 1 0.1 m. False False 

 

According to avoidance and goal in table 4.4, the avoidance in the table refer to the 

ability to avoid the obstacle of the parameter. If it is True, the set of parameters can avoid 

the collisions. The column of Goal represents the condition of the robot that can travel 

to the goal location. If it is True, the set of parameters can navigate the robot to the goal 

location. The data show that the parameter that the goal gain is more than ob gain can 

navigate the robot to goal and avoid the obstacle except for the set of the goal gain of 

0.6 and the ob gain of 0.4. However, for each parameter that cannot navigate the robot 

to the goal, the robot stops in front of the obstacle and stop in the gap between the wall 

and the obstacle. Each parameter that can navigate the robot to the goal, the errors from 

goal was calculated with the data from the robot. The result show in Table 4.5 
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Table 4.7                                                                      

The Error of the Navigation 

  measuring(error) Camera(X,Y) r (measuring) r (camera) 

1 - - - - 

2 - - - - 

3 - - - - 

4 - - - - 

5 (2.75 , 0.01) (2.91 ,- 0.21) 0.25 0.23 

6 - - - - 

7 - - - - 

8 - - - - 

9 (2.71,0.03) (2.95 , 0.06) 0.29 0.08 

10 - - - - 

11 - - - - 

12 - - - - 

13 (2.78,0.04) (2.97, - 0.01) 0.22 0.03 

14 (2.82,0.04) (3.01,- 0.14) 0.18 0.14 

15 (2.74,0.06) (2.94,- 0.09) 0.27 0.11 

  Average error  0.24 0.12 

 

According to Table 4.5, the data show that the final position of the robot stops in the 

goal tolerance.  
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CONCLUSIONS AND RECOMMENDATION 

5.1 Conclusion 

The mobile robot is designed based on the new configuration wheels, and the robot was 

able to perform SLAM by using a camera. The main idea of the new design is the 

combination of the benefit of the mecanum wheel and the Omni wheel. I was able to 

build the new mathematic model by using the regular mecanum wheel mathematic 

model as a reference. Finally, the new kinematic model was derived to the new wheel 

configuration and test the performance. The robot can perform the omnidirectional 

movement. After confirming the new concept, the PID controller was applied to control 

the movement of the robot. Next part was the SLAM system, The Kinect, the low-cost 

RGB-D camera was chosen as the main sensor. ROS was used to develop the robot 

SLAM and navigation system, including the control system. ROS has supported ORB 

SLAM2, the open-source SLAM for monocular, stereo and RGB-D camera. Moreover, 

ROS has supported the “openni_camera” package, the driver for the RGB-D camera in 

ubuntu, and the camera calibration package. For the microcontroller, the 

“serial_node_stm32” was used to connect the stm32 board with the other nodes. After 

implement ROS system and ROS package, the navigation system was implemented 

based on the idea of an autonomous mapping process. The dynamic window approach 

was used to navigate the robot to the goal, avoid the obstacle and create the map. The 

cost function in the approach was adjusted in order to support the omnidirectional 

movement.  Finally, the robot has 3 operation mode. The first mode is that the manual 

mode used position control to control the robot. The robot will receive a direction and a 

distance to travel. The second mode is mapping mode. The dynamic window approach 

and ORB SLAM was activated to navigate the robot and create the map. The robot will 

receive the goal in a 2D coordinate. Then, the robot travels to the target and rotates to 

the unknown space of the map around it. In this mode, the robot can avoid the obstacle 

along with creating the map. mode is similar to the mapping mode, but the navigation 

mode operates in the mapped area. Thus, the robot did not need to find the unknown 

space to complete the map. It only focuses on travel to the goal and avoids collision. The 

only navigation is the last mode of the robot. The operation of this mode is similar to the 
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mapping mode, but the navigation mode operates in the mapped area. Thus, the robot 

did not need to find the unknown space to complete the map. It only focuses on travel to 

the goal and avoids collision. The mobile robot was experimented to find the robot 

performance. The result show that the robot can travel to goal and autonomously create 

the map while avoid the obstacles. Moreover, it was able to navigate itself to the goal in 

the mapped area. 

To summarize, this thesis designs an autonomous mobile robot with a hybrid mecanum-

Omni wheel configuration. The kinematic model can be used with the hybrid wheel 

configuration. The ORB SLAM2, with a dynamic window approach, be able to create 

the map and navigate the robot to the goal while avoiding the obstacles.  

5.2  Recommendation 

1. Design the global path planning. The DWA is the local path planning. In some 

situations, it needs the people to lead it to the goal. Global planning might 

solve this issue, and the DWA uses to navigate the robot to the global path 

instead.   

2. Create the local map for the robot. The navigation of the robot uses a static 

map to navigate the robot. If the robot has the local map, the environment 

around it will be updated. Thus, the robot will detect the dynamic obstacle and 

avoid it. Moreover, the obstacles that did not stay in the real world will be 

removed from the local map to reduce the operation time. 

 

3. Apply the kinematic model of the mobile robot to the ORB SLAM. The 

tracking process of the ORB SLAM localizes the position of the camera by 

using the velocity motion model. If the kinematic model of the robot is applied 

to the motion model, the SLAM system will estimate the camera pose with 

more accuracy. 
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