

DEVELOPMENT OF A HYBRID MECANUM-OMNI-WHEEL

MOBILE ROBOT WITH VISUAL SLAM

by

Ati Pongpachamnanwet

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Engineering in

Mechatronics

 Examination Committee: Prof. Manukid Parnichkun (Chairperson)

 Prof. Matthew N. Dailey (Member)

 Dr. Mongkol Ekpanyapong (Member)

 Nationality: Thai

 Previous Degree: Bachelor of Technology in Electronics

 Chitralada Technology Institute, Thailand

 Scholarship Donor: Royal Thai Government Fellowship

Asian Institute of Technology

School of Engineering and Technology

Thailand

July 2021

ii

AUTHOR’S DECLARATION

I, Ati Pongpachamnanwet, declare that the research work carried out for this thesis was

in accordance with the regulations of the Asian Institute of Technology. The work

presented in it are my own and has been generated by me as the result of my own

original research, and if external sources were used, such sources have been cited. It is

original and has not been submitted to any other institution to obtain another degree or

qualification. This is a true copy of the thesis, including final revisions.

Date: 21 July 2021

Name: Ati Pongpachamnanwet

Signature:

iii

ACKNOWLEDGMENTS

First of all, I would like to express my respect to my advisor, Prof. Manukid Parnichkun,

for his valuable guidance, suggestion, and encouragement throughout the research. It is

difficult to complete this thesis without his advice.

I want to extend my gratitude to Prof. Matthew M. Dailey and Dr. Mongkol

Ekpanyapong, the examination committees, for their insightful remarks and

information sharing.

I would like to extend my thanks to Mr. Hoang Hung Manh, the technical staff of the

mechatronics department laboratory. He generously provides me with the resources

I need to complete my research.

I'd also want to convey my gratitude to the Royal Thai Government for supporting me

financially throughout my master's degree at AIT.

Finally, I want to express my gratitude to my family for their unwavering support and

assistance during my education.

iv

ABSTRACT

This master thesis focus on the develops a hybrid mecanum-Omni wheel configuration

with visual SLAM for an autonomous mobile robot. This mobile robot is able to

navigate autonomously in an indoor environment. The ORB SLAM 2, the open-source

SLAM for monocular, stereo, and RGB-D camera is used for Mapping and localization.

The RGB-D sensor is used to extract the feature for the SLAM and guild the robot

inside the environment. The robot has the ability to make its own decision to avoid the

obstacles with the Dynamic window approach (DWA). The robot is programmed based

on the Robotic Operating System (ROS) which is a set of software and library for

robotic applications.

v

CONTENTS

 Page

ACKNOWLEDGMENTS III

ABSTRACT IV

LIST OF TABLES VII

LIST OF FIGURES VIII

LIST OF ABBREVIATIONS X

 INTRODUCTION 1

 1.1 Background of the Study 1

 1.2 Statement of the Problem 1

 1.3 Objective 2

 1.4 Limitations and Scopes 2

 LITERATURE REVIEW 3

 2.1 Mobile Robot Wheel Designed 3

 2.2 Kinematic Model of a Four Macanum Wheel 4

 2.3 Position and Velocity Control for Differential Drive Wheel 7

Mobile Robot

 2.4 Mobile Robot Navigation 8

 2.5 Dynamic Window Approach 8

 2.5.1 Search Space 8

 2.5.2 The Cost Functions 9

 2.5.3 The Result of Dynamic Window Approach 10

 2.6 Simultaneous Localization and Mapping (SLAM) 10

 2.6.1 Feature-Based Method 10

 2.7 ORB-SLAM 2 Open-Source SLAM System 13

 2.7.1 ORB-SLAM 2 System Overview 13

 2.7.2 Monocular, Close Stereo and Far Stereo Keypoints 14

 2.7.3 Bundle Adjustment in ORB-SLAM 2 15

 2.7.4 Localization Mode 16

 2.8 Autonomous Navigation of Mobile Robot Using Kinect Sensor 18

vi

 Page

 2.9 ROS-Based Autonomous Mobile Robot Positioning and 18

Navigation System

 METHODOLOGY 20

 3.1 Mechanical Platform 20

 3.2 The Comparison of Regular Wheel and Hybrid Wheel 21

 3.3 Kinematics Analysis 25

 3.4 The Robot Coordinate System 29

 3.5 Mechanical Design and Equipment Selection 29

 3.6 Electrical System Design and Equipment Selection 33

 3.7 Microcontroller, Sensor and Actuator 35

 3.8 PID Velocity and Position Control 40

 3.9 ROS 41

 3.9.1 Control Implement 41

 3.9.2 Ros ORB SLAM 2 42

 3.9.3 Dynamic Window Approach, Path Planning and 45

Obstacle Avoidance

 RESULT AND DISCUSSION 49

 4.1 Overview 49

 4.2 Robot Performance 51

 4.3 Localization 55

 4.4 Navigation 56

 CONCLUSIONS AND RECOMMENDATION 60

 5.1 Conclusion 60

 5.2 Recommendation 61

REFERENCES 62

vii

LIST OF TABLES

Table Page

Table 2.1 Comparison Table of the Different SLAM Method 12

Table 2.2 Comparison of Translation RMSE (m) in TUM RGB-D Dataset 17

Table 3.1 The Force and Velocity of Mecanum Wheel, Omni Wheel and Hybrid 23

Wheel Configuration.

Table 3.2 The comparison of mecanum wheel, omni wheel and hybrid wheel 24

configuration.

Table 3.3 The Parameter of the 2 Mecanum Wheels and 2 Omni-Wheels. 27

Table 3.4 Mecanum Wheel’s Specification 31

Table 3.5 Omni Wheel’s Specification 31

Table 3.6 RGB-D’s Specification 36

Table 3.7 Encoder’s Specification 37

Table 3.8 Microcontroller’s specification 38

Table 3.9 Motor’s Specification 39

Table 3.10 Motor Drive’s Specification 40

Table 4.1 The Position Control Analysis (Translation) 52

Table 4.2 The Error of the Feedback Data 53

Table 4.3 The Position Control Analysis (Rotation) 54

Table 4.4 The Error of the Feedback Data 55

Table 4.5 The Localization Analysis 56

Table 4.6 The Navigation Analysis 58

Table 4.7 The Error of the Navigation 59

viii

LIST OF FIGURES

Figures Page

Figure 2.1 The Configuration of a Robot With 4 Mecanum Wheel 4

Figure 2.2 The Parameter of a Mecanum Wheel 5

Figure 2.3 Inverse Kinematic of Mobile Robot with 4 Mecanum Wheel 5

Figure 2.4 Jacobian Matrix 6

Figure 2.5 Inverse Kinematic Equations for 4-Wheel Mobile Robot Platform 6

Figure 2.6 Forward Kinematic Equations for 4-Wheel Mobile Robot Platform 7

Figure 2.7 Block Diagram of DC Motor with PID Controller 7

Figure 2.8 Velocity Space and Dynamic Window 9

Figure 2.9 Comparison Image of the Different SLAM Method 12

Figure 2.10 System Overview of ORB-SLAM 2 14

Figure 2.11 The Reconstruction from Estimation Point Cloud and Sensor Depth 17

Maps in TUM RGB-D Dataset.

Figure 2.12 Autonomous Mobile Robot Hardware Architecture 19

Figure 2.13 The Block Diagram of the Navigation Stack 19

Figure 3.1 The Model of the Proposed Mobile Robot 20

Figure 3.2 Velocity (a) and Force(b) Direction of Mecanum Wheel 22

Figure 3.3 Velocity (a) and Force(b) Direction of Omni Wheel 22

Figure 3.4 The Coordinate System of Mobile Robot in Global Frame 29

Figure 3.5 Robot’s Chassis 30

Figure 3.6 Mecanum Wheel 30

Figure 3.7 Omni Wheel 31

Figure 3.8 Front View 32

Figure 3.9 Rear View 32

Figure 3.10 Side View 33

Figure 3.11 The Block Diagram for Electrical System (a) the Electrical System 33

for 12 V. Power Supply (b) the Electrical System for 5V Power Supply

ix

 Page

Figure 3.12 The Block Diagram for Electrical System for Communication 35

 Between Master and Slave Device

Figure 3.13 RGB-D Camera 36

Figure 3.14 Encoder 36

Figure 3.15 Microcontroller 37

Figure 3.16 17 Watts 12-volt Motor 38

Figure 3.17 Motor Driver 39

Figure 3.18 PID Controller 40

Figure 3.19 PID Position Control 41

Figure 3.20 Serial_node Architecture 41

Figure 3.21 The Architecture of Node in Manual Mode 42

Figure 3.22 The ORB Feature in RGB Image 43

Figure 3.23 The Complete Sparse 3D Maps in RVIZs 44

Figure 3.24 The Localization in Mapped 45

Figure 4.1 The Flow Chart for Mapping Process 50

Figure 4.2 The Flow Chart for Navigation with Mapped Area 51

Figure 4.3 The Setpoint Direction 52

Figure 4.4 The Map for Navigation Experiment 57

x

LIST OF ABBREVIATIONS

PID = Proportional Integral Derivative

ROS = Robotic Operating System

DWA = Dynamic Window Approach

SLAM = Simultaneous Localization and Mapping

1

INTRODUCTION

1.1 Background of the Study

Automated guided vehicles (AGVs) become an important device in the industrial

section. In the manufacturing process, it is used for transportation the material from the

warehouse to the process or moving the product from the process to another process.

The vehicle can navigate itself to the destination by following the guide which is

prepared such as the mark on the floor or the magnet embedded in the ground.

In development of the navigation system, the mobile robot contains the ability to decide

how to get to their destination. Simultaneous Localization and Mapping (SLAM) is used

for creating a map from an unknown environment while localization the position of the

robot. Additional path planning algorithm on created map allow the robot to move to

the destination.

The transportation of the AGVs in the warehouse or the industrial environment needs

suitable movement to avoid the collision with the product tray or the manufacturing

machine. In this research, AGVs will be developed to have the ability to move in

omnidirectional to expand the different move direction depend on the path and using the

SLAM algorithm with a visual based for navigation system.

1.2 Statement of the Problem

The most mobile robot uses either omni-wheels or mecanum wheels to perform an

omnidirectional motion. The difference of mecanum drive and omni-drive is that the

mecanum drive provide more traction and friction than omni-wheel but the friction of

mecanum wheel make it slower. The omni-wheel are light and fast. However, the friction

of omni-wheel is low that from roller of wheel. The low friction led to low resistance to

be pushed from a design direction.

Generally, for AGVs navigations system is mainly focus on the operation of following

the path which navigate them. Therefore, the robot needs an ability to generate the

optimal path in the workspace which is shortest and the collision free path.

2

1.3 Objective

The main objective of this research is to develop hybrid mecanum-omni-mobile robot

with visual based SLAM. The list of objectives are as follows:

1. To design the Omni-direction mobile with hybrid mecanum and omni wheels.

2. To use SLAM algorithm to create a map for mobile robot.

3. To use camera for SLAM.

1.4 Limitations and Scopes

1. The mobile robot will be designed to operate only in an indoor environment.

2. The robot will operate only on the flat surface.

3

LITERATURE REVIEW

2.1 Mobile Robot Wheel Designed

A robotic could be constructed as a holonomic and non-holonomic system. The

holonomic system represented to the system that the number of the degree of freedom

(DOF) of controlled is equal to a total degree of freedom (DOF). For the non-holonomic

system, it means the total number of DOF of controlled less than the number of DOF.

The characteristic of holonomic depends on the type of the robot wheel. In one hand, the

robot with Ackerman wheeled system which cannot advance freely in any direction is

called non-holonomic car. On the other hand, the robot that contain the ability of moving

in the omni direction is a holonomic car (Shabalina, 2018).

The term of omnidirectional mobility describes the ability of a system to move

instantaneously in any directions (X, Y, 𝜃) at any time. (I. Doroftei et al., 2007) The

wheel that can perform the omnidirectional movement is able to summaries as follow

spherical, Swedish or mecanum wheel and universal omni-wheel.

The spherical wheel which is the ball shape wheel is able to perform an omnidirectional

movement. The example of using spherical wheel is that the robot is based on the three-

ball wheel with independent power by a motor. It can perform the excellent

maneuverability. It can apply with other wheel to perform near-omnidirectional

locomotion. However, the drawback of spherical wheel is that it is limited to flat surfaces

and small load capacity. (Siegwart,Nourbakhsh, & Scaramuzza, 2011).

In 1973, A Mecanum wheel which is designed by Bengt Ilon has rollers at an angle of

45 degree to the plane of the wheel fastened on the periphery of the wheel. The angle

of the rollers translates a portion of the force in the rotational direction of the wheel to a

force normal to the wheel direction. The force vector from the translation depends on

the direction and speed of each wheel. The sum of the force vector allows the platform

to move freely in the direction of the result vector without changing the direction of the

wheels. (F. Adascalitei and I. Doroftei, 2011) The configuration of the mecanum wheel

need at least 4 mecanum wheels on square or rectangle shape platform, and angle of the

4

rollers of the opposite wheel must be in the opposite direction of each other to operate

the omnidirectional motion.

The omni-wheel has a roller around the periphery of the wheel. The rollers are

perpendicular to the plane of the wheel. The roller around periphery allows the wheel is

able to roll with full force and slide laterally. The omni-wheels are employed as powered

casters for differential drive robots to make turning faster. (S. Soni, 2014) The

configuration of omni-wheel for omnidirectional movement required at least 3 wheel

which the angle of each perform 120 degrees to each other like the triangular shape. For

four-wheel configuration, the wheel locates at the side or corner of the square shape

platform with the 90-degree angle between the wheel.

2.2 Kinematic Model of a Four Macanum Wheel

An omnidirectional motion can be achieved by using the kinematic relation of four

mecanum wheel. In this paper, they explain about forward kinematic and inverse

kinematic for four mecanum wheels mobile robot platform (Taheri et al.,2015).

Figure 2.1

The Configuration of a Robot with 4 Mecanum Wheel

5

Figure 2.2

The Parameter of a Mecanum Wheel

As stated in Figure 2.2, assuming that a wheel is touching the ground. 𝜔 represent a

wheel angular velocity and 𝑉𝑖𝑟 represent linear velocity of free roller wheel that touching

to the floor (Taheri et al.,2015).

Figure 2.3

Inverse Kinematic of Mobile Robot with 4 Mecanum Wheel

6

Figure 2.4

Jacobian Matrix

After calculation the value for the inverse kinematic, we can rewrite the matrix to a new

equation. The following inverse and forward kinematic equation were used in velocity

control program in order to send velocity commands for each wheel to the robot.

Figure 2.5

Inverse Kinematic Equations for 4-Wheel Mobile Robot Platform

7

Figure 2.6

Forward Kinematic Equations for 4-Wheel Mobile Robot Platform

The designed structure of mecanum wheel for mobile robot from Salih et al. which used

four mecanum wheel with mobile robot chassis. Each mecanum wheel are powered

independently by using gear DC motor. Figure 2.3 present the design structure of the

omni-directional mobile robot.

2.3 Position and Velocity Control for Differential Drive Wheel Mobile Robot

The differential drive system is a simple system to create a movement for mobile robot.

This system contains a robot chassis with two or more fixed wheels that are driven by

an individual electric motor. This paper proposes a control system and navigation system

of 2-wheel differential drive mobile robot for point-to-point motion without obstacle.

Odometry is applied to estimate the current position of a navigation system. The PID

Controller is used to control speed of each wheel for velocity control and position

control. By using PID controller, robot can reach to desired goal (Cherry Myint et

al.,2016).

Figure 2.7

Block Diagram of DC Motor with PID Controller

8

2.4 Mobile Robot Navigation

The problem of navigation of mobile robot can be summarized into two problems. The

first problem is localization which provide robot an information of the current positions

in that environment. The second problem is mapping which the ability to build the map

of the surrounding area. The localization is a fundamental which is important for an

autonomous mobile robot to navigate their own path. There are various techniques to

achieve the localization.

The map-based method is that the method uses the map as a reference. The map-based

technique can optimize the error by using loop-closure which know the area when it

visits that area again. The error is reset when it returns to previously known map. (S.

Campbell, 2020) However, the map of environment is not always realized, that is the

drawback of the map-based method. The technique that can perform an accurate

localization without the priori map is known as Simultaneous Localization and Mapping

(SLAM).

2.5 Dynamic Window Approach

They describe the dynamic window approach that is They describe the dynamic window

approach that is the obstacle avoidance approach for a mobile robot. The approach is

obtained from the motion dynamics of the robot. It creates a dynamic window that

consist of reachable linear velocity and angular velocity with in the short time limit. The

dynamic window approach considers only admissible velocities that affect a robot

trajectory which safe from crashing. From velocities in a dynamic window, the

combination of angular velocity and linear velocity is selected from cost function. The

cost function contains an estimation angle between the current robot angle and goal

location, the current forward velocity of the robot and the distance to the obstacle (Dieter

Fox et al.,1997).

2.5.1 Search Space

Search space carried out the space of velocities that robot can reach. Thus, a dynamic

window approach can select a proper velocity from reducing a velocity in search space.

The reduction of search space work in 3 steps. In the first step, velocity in this approach

is only in 2-dimensional space that is pair of angular velocity and linear velocity. In the

9

second step, the velocities that free from obstacle is considered admissible. In third step,

the dynamic window is created from admissible velocity that robot can reach within a

short time interval and limited acceleration.

Figure 2.8

Velocity Space and Dynamic Window

Following in Figure 2.8, the velocities range of the robot is 0 cm/sec to 90 cm/sec for

linear velocity and -90 deg/sec to 90 deg/sec for angular velocity. It shows in big

rectangle that is velocity space. On the other hand, the dynamic window is the small

rectangle.

2.5.2 The Cost Functions

The cost function is the function for choosing the best velocity. The function considers

3 values that are Target heading, Clearance and Velocity. Target heading or function

𝑎𝑛𝑔𝑙𝑒 is an angle between goal location and robot heading. If the robot moves directly

to goal, the value is maximum. Clearance is the distance to the closest obstacle on the

trajectory. The value is smallest when the trajectory desire to move around the obstacle.

Velocity is a forward velocity of the robot. The function 𝜎 smooth is the sum of the three

functions.

 𝐺(𝑣, 𝜔) = 𝜎(𝛼 ∙ 𝑎𝑛𝑔𝑙𝑒(𝑣, 𝜔) + 𝛽 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) + 𝛾 ∙ 𝑣𝑒𝑙(𝑣, 𝜔)) (2.1)

10

Where 𝑎𝑛𝑔𝑙𝑒(𝑣, 𝜔) is function of target heading, 𝑑𝑖𝑠𝑡(𝑣, 𝜔) is a Clearance and

𝑣𝑒𝑙(𝑣, 𝜔)) is a velocity. 𝛼, 𝛽 and 𝛾 are the weight.

2.5.3 The Result of Dynamic Window Approach

They demonstrate the robot with various experiment. The experiments show that the

dynamic window approach is a robust obstacle avoidance technique. The robot can move

safely without human supervision.

2.6 Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) is a method for estimating the sensor

motion, create a map of an unfamiliar area and pinpoint the sensor's location. The major

advantage of the SLAM is that it can accomplish localization without any prior

knowledge about the surroundings. (Dissanayake et al., 2001) The several types of the

sensor are able to perform a SLAM such as laser range, GPS, IMU and camera. From

the different type of the sensor for SLAM, the price of the cameras is low and present

the ton of information of the environment. The SLAM which the main sensor is cameras

is known as Visual SLAM (VSLAM). The technique of visual SLAM is able to

categorize into two main approaches: Feature-based approach which work on the key

point from image and direct-based approach which work on the hold image.

(T. Taketomi ei at. 2017)

2.6.1 Feature-Based Method

The feature-based method is based on keyframes and bundle adjustment optimization.

These approaches extract the feature from the image and pick keypoints from the frame

with diverse viewpoints through repetition and individuality. The map that is created by

the feature-base technique is a very sparse map. However, the system can recieve the

camera position from the map. (R. Mur-Artal, J. D. Tardos, 2015). The feature-base

technique is developed in three techniques. MonoSLAM, The Parallel Tracking and

Mapping (PTAM) an ORB-SLAM. (Taketomi T. ei at. 2017)

MonoSLAM which use Extended Kalmal filter (EKF) to estimate the unknown

environments. The EKF's disadvantage is that the cost of computing rises in proportion

to the size of an environment. In large surrounding area the size of the state vector

11

become large. Thus, the task of the real-time SLAM is difficult to achieve (Taketomi T.

ei at., 2017). The issue of MonoSLAM is solved by using Parallel Tracking and

Mapping (PTAM) technique which use two thread to perform the task in parallel. A

foreground thread handles the feature tracking and camera registration, while a

background thread operates the bundle adjustment (BA) to minimize the map which it

can handle the more feature point in the map. However, in a large environment, it is

difficult to get the global minimize. (G. Klein and D. Murray, 2009) In the case of

Monocular VSLAM, the large problem is scale ambiguity if the global BA is not

performed. In 2015, Ra ́ul Mur-Arta et al. propose the ORB-SLAM which is able to

perform the SLAM in the large environment with real-time performance. The ORB

features are used to track the feature in changing of the viewpoint. The pose graph

optimization is applied to global optimize the loop closing in real-time. (R. Mur-Artal et

al., 2015)

The ORB-SLAM method is extended to stereo VSLAM and RGB-D VSLAM. From the

implement of ORB-SLAM, Raul Mur-Artal and Juan D. Tardos developed the ORB-

SLAM techniques into ORB-SLAM2 is an open-source SLAM system for monocular

camera, stereo camera and RGB-D cameras. The advantage of using stereo camera or

RGB-D camera is that each camera type contains the information of the depth from the

first frame. Thus, it does not need the specific structure from the camera movement

initialization same as the monocular camera. (Mur-Artal R. et al., 2017)

Form the analyzed of M. Filipenko and I. Afanasyev that compare various SLAM system

which the method base on ROS-base SLAM for the mobile robot in an indoor

environment. The experiment was conducted with a mobile robot operated on known

perimeter of the square shape, and the surrounding area is typical office. The result of

the experiment shows that the ORB-SLAM with a stereo camera perform a good result

among the other is ORB-SLAM with RMSE ATE of 0.190 m. (M. Filipenko and I.

Afanasyev., 2018). Moreover, the table and trajectory result of the demonstration of

comparison show in table 2.1, Figure 2.9

12

Table 2.1

Comparison Table of the Different SLAM Method

Figure 2.9

Comparison Image of the Different SLAM Method

13

The result that the LIDAR-base SLAM with cartographer is the best result of the among

the SLAM method. However, the cost of the LIDAR is very expensive compare with the

cost of the camera. For the industrial applications, the visual SLAM is able to reduce the

cost of developed the mobile robot which use for transportation the package with SLAM

algorithm. Therefore, The ORB-SLAM is the techniques which match the task which

use SLAM to localization. The drawback of the LIDAR is that the map from LIDAR is

in 2D. Thus, some of the obstacle which lay on the different level of laser scanner will

be invisible from LIDAR, and it led to accident. In case of camera-base SLAM, it

provides the map in 3D which is more information than the LIDAR provided. The

obstacles will be detected easily.

2.7 ORB-SLAM 2 Open-source SLAM System

In 2017, Raul Mur-Artal et al., they present complete SLAM system for monocular,

stereo and RGB-D camera. The ORB-SLAM 2 is an open-source SLAM system that can

operate in real-time with ordinary CPUs in large environment. The drawbacks of

monocular ORB-SLAM are scale drift and performing a pure rotation in the

investigation. Those issues are solved by using a stereo or RGB-D camera.

2.7.1 ORB-SLAM 2 System Overview

The ORB-SLAM 2 operates on three parallel threads. The first thread is the tracking

threads. Every frame, the tracking thread detects a feature point and uses it to localize

the camera. The local mapping thread is the second thread. It inserts a new keyframe to

the local map, chooses the proper map point, and optimizes the local map. The final

thread is the loop closing thread. The loop closing detects the loop and fix accumulated

drift by performing a pose-graph optimization. After the loop closing, the fourth thread

launch to perform full BA to optimize the map. The system overview of the ORB-SLAM

2 shown in Figure 2.10.

14

Figure 2.10

System Overview of ORB-SLAM 2

2.7.2 Monocular, Close Stereo and Far Stereo Keypoints

ORB-SLAM 2 receives an input image to extract feature then the input image is

discarded. The hold system operates on the extracted feature. Monocular and stereo

keypoints, categorized as close or far keypoints, are included in the system. Stereo

keypoints contain three coordinates that are 𝑢𝐿 , 𝑣𝐿 𝑎𝑛𝑑 𝑢𝑅. The coordinate 𝑢𝐿 𝑎𝑛𝑑 𝑣𝐿

are the coordinates on the left and 𝑢𝑅 which is the horizontal coordinate in the right

image. For a stereo camera, the ORB features of both images are extracted and the

feature from the left image has searched a match in the right image. Then, the stereo

keypoints are generated by the coordinate of the left feature and the horizontal coordinate

of the right match. For RGB-D cameras, the system extract ORB feature form RGB

image. The depth image is transformed into a right coordinate by using equation (2.2).

 𝑢𝑅 = 𝑢𝐿 −
𝑓𝑥𝑏

𝑑
 (2.2)

15

Where 𝑓𝑥 is the horizontal focal length, b is the baseline and d are the depth value of

RGB-D camera.

After getting stereo keypoint, the close and far keypoint are the two types of keypoints.

Close keypoint is that its depth is less than 40 times the stereo or RGB-D baseline.

Otherwise, it is defined as far keypoint. For close keypoints, the depth can be reliable.

Thus, the triangulation provides accurate scale, translation and rotation information. For

far keypoint, It gives precise rotation data but less accurate translation and scale data.

Monocular keypoints contain two coordinates 𝑢𝐿 𝑎𝑛𝑑 𝑣𝐿 on the left image. This

keypoint is the point that a stereo match could not be found. It provides only rotation

and translation information.

2.7.3 Bundle Adjustment in ORB-SLAM 2

The system performs BA to optimize the camera pose, local window of keyframe and

all keyframe and points. To optimize the cost function of BA, they use the Levenberg–

Marquardt method that implemented in g2o.

Motion-only BA optimize the camera pose in the tracking thread. The camera orientation

R ∈ SO(3) and translation t ∈ ℝ3 is optimized to minimize the reprojection error between

keypoint and matched 3D points in world coordinates.

 {𝑅, 𝑡} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑅,𝑡 ∑ 𝜌 (‖𝑥(∙)
𝑖 − 𝜋(.) (𝑅𝑋𝑖 + 𝑡)‖

Σ

2
)𝑖∈x (2.3)

Where, 𝑥(.)
𝑖 is keypoints, monocular 𝑥𝑚

𝑖 ∈ ℝ2 and stereo 𝑥𝑠
𝑖 ∈ ℝ3. 𝜌 is the Huber cost

function, Σ is the covariance matrix associated to the scale of the keypoint, 𝜋(.) is the

projection function, 𝜋(𝑚) is monocular and 𝜋(𝑠) is rectified stereo.

 𝜋𝑚 ([
𝑋
𝑌
𝑍
]) = [

𝑓𝑥
𝑋

𝑍
+ 𝑐𝑥

𝑓𝑦
𝑋

𝑍
+ 𝑐𝑦

] (2.4)

16

 𝜋𝑠 ([
𝑋
𝑌
𝑍
]) =

[

 𝑓𝑥

𝑋

𝑍
+ 𝑐𝑥

𝑓𝑦
𝑋

𝑍
+ 𝑐𝑦

𝑓𝑥
𝑋 − 𝑏

𝑍
+ 𝑐𝑥]

 (2.5)

The equation (2.4) and (2.5) is projection function of monocular and stereo camera.

Where, 𝑓𝑥 and 𝑓𝑦 are the focal length, 𝑐𝑥 and 𝑐𝑦 are the principal point, b is a baseline.

These parameters can obtain from camera calibration.

Local BA optimizes a set of covisible keyframes, the set of keyframes that share the

observation of the same map point, and optimizes all points seen in those keyframes 𝑃𝐿.

 {𝑋𝑖, 𝑅𝑙, 𝑡𝑙|𝑖 ∈ 𝑃𝐿 , 𝑙 ∈ 𝐾𝐿} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋𝑖,𝑅𝑙,𝑡𝑙
 ∑ ∑ 𝜌 (𝐸𝑘𝑗)𝑗∈ 𝑥𝑘 𝑘 ∈ 𝐾𝐿 ∪ 𝐾𝑓 (2.6)

 𝐸𝑘𝑗 = ‖𝑥(∙)
𝑖 − 𝜋(.) (𝑅𝑙𝑋

𝑗 + 𝑡𝑘)‖
Σ

2
 (2.7)

Where, 𝐾𝐿 is a set of covisible keyframe, 𝐾𝑓 is other keyframe that not in 𝐾𝐿 but

observing points are in 𝑃𝐿, 𝑋𝑘 is the set of match point between point in 𝑃𝐿 and keypoints

in a key frame k.

Full BA uses the same cost function as Local BA to optimize all keyframes and points

in the map.

2.7.4 Localization Mode

In localization mode, the local mapping and loop closing thread are deactivated and use

only tracking thread to localize in mapped area. The camera localizes by using visual

odometry match and matches to the map point. Visual odometry matches are matches

between 3D points created in the previous frame and ORB in current frame. For map

point matches, the localization can perform without accumulation drift in mapped area.

On the other hand, visual odometry can operate in unmapped area, but drift can be

accumulated.

17

In conclusion, the ORB-SLAM 2 that is an open-source SLAM system operate in real-

time on standard CPUs with large environment. The system achieves the highest

accuracy compare with other SLAM systems and zero-drift localization in the mapped

area. The comparison of translation RMSE (m.) is shown in Table 2.2, and Figure 2.11

shows the point cloud reconstruction from estimation point cloud in TUM RGB-D

dataset.

Figure 2.11

The Reconstruction from Estimation Point Cloud and Sensor Depth Maps in

TUM RGB-D Dataset.

Table 2.2

Comparison of Translation RMSE (m) in TUM RGB-D Dataset

18

2.8 Autonomous Navigation of Mobile Robot Using Kinect Sensor

This paper presents the autonomous mobile robot with Kinect sensor. The robot used

data from Kinect to detect surrounding obstacles. The obstacle detection receives data

from Kinect that is a live video. Then, the data is converted into 3D point clouds. After

getting the point clouds, those point cloud are flittered by voxel filtering to reduce the

processing time. The clustering processes cluster the filtered point cloud by using

Euclidean Cluster Extraction. This algorithm search through filtered point cloud to find

the point neighbors of it in a sphere with a radius less than the distance threshold. In this

state, the robot recognizes the wall, obstacle and the floor. When the robot detects the

obstacle, the robot avoids obstacles and navigate to free path to goal (N. A. Zainuddin et

al., 2014).

2.9 ROS-Based Autonomous Mobile Robot Positioning and Navigation System

In 2019, ZHU jian-jun et al., they design the autonomous mobile robot based on Robot

Operating System (ROS). The sensor that uses for getting the environment is laser

scanner. The industrial computer, which is a microcomputer with a dual-core CPU,

controls the robot. It can run Linux operating system and use ROS. The hardware

architecture of mobile robot shown in Figure 2.9. A cartographer SLAM that is SLAM

algorithm for laser scanner is used for creating a map. They used Navigation stack that

is a ROS stack for complete navigation system. The block diagram of the navigation

stack shown in Figure 2.10. The Navigation stack contains 3 main packages that are

Map server, AMCL and Move base. After getting a mapping process, it creates a 2D-

cost map for the path planning. Global planner is A* search, while the local used

dynamic window approach (DWA). The robot can reach the set point target and avoid

obstacles.

19

Figure 2.12

Autonomous Mobile Robot Hardware Architecture

Figure 2.13

The Block Diagram of the Navigation Stack

20

METHODOLOGY

3.1 Mechanical Platform

The design of the mobile robot platform is defined base on the rectangle shape with four

omnidirectional wheels. The robot platform is separated into two layers for mechanical

system, sensor, and other necessary equipment. The wheel configuration is that the two

mecanum wheels are in the front of the robot and two omni-wheels locate at the corner

of rectangle with 90 degrees to the other omni-wheel which at the back of the platform.

Each wheel is powered independently by the one actuator which is the differential drive.

In additional, Figure 3.1 shown the model of the proposed mobile robot.

In this study, the combination of the mecanum wheel and omni-wheel are used because

of the advantage of the Omni-wheel perform a fast movement and good efficient on

principle direction (diagonal) but the other direction (forward and sideway) will provide

more error because of wheel slip. Mecanum wheel perform less slip than omni wheel

but it provides a low speed because of friction on the wheels. Therefore, hybrid

mecanum-omni wheel will reduce an error of omni wheel by using mecanum wheel to

compensate error from omni wheel.

Figure 3.1

The Model of the Proposed Mobile Robot

21

3.2 The Comparison of Regular Wheel and Hybrid Wheel

The new wheel configuration is designed based on the advantage of the mecanum wheel

and the Omni wheel. The advantage of the mecanum wheel is that the friction of the

wheel is higher than the Omni wheel with the same torque. Thus, it provides more

traction more than the Omni wheel. However, the high friction of the mecanum wheel

makes the robot move slower. For the Omni wheel, the Omni wheel can move faster

than the mecanum wheel with the same torque. On the other hand, the omni wheel

provide less friction than the omni wheel. The hybrid mecanum-omni wheel use the

advantage of the mecanum wheel to compensate the drawback of the omni wheel. The

comparison table show in Table 3.1. The velocity of the wheel was calculated based on

the differential wheel. The velocity of the wheel shown in equation (3.1). The force of

the differential wheel shown in equation (3.2).

 𝑽 = 𝝎 × 𝒓 (3.1)

Where, V is the linear velocity of the wheel, 𝝎 is the angular velocity of the wheel and

r is the wheel radian.

 F =
𝝉

𝒓
 (3.2)

Where, F is the force of the wheel, 𝝉 is the angular velocity of the wheel and r is the

wheel radian.

 For the mecanum wheel, the friction and velocity are at 45 degrees of the drive direction.

The omni directional the friction and velocity are the same as the differential wheel. The

direction of force and velocity of mecanum wheel shown in Figure 3.2. and the direction

of force and velocity of omni wheel shown in Figure 3.2. The direction of force and

velocity base on the 4 mecanum wheel and 4 omni wheel configuration.e The force and

velocity of each direction shown in Table 3.1.

22

Figure 3.2

Velocity (a) and Force(b) Direction of Mecanum Wheel

(a) (b)

Figure 3.3

Velocity (a) and Force(b) Direction of Omni Wheel

(a) (b)

23

Table 3.1

The Force and Velocity of Mecanum Wheel, Omni Wheel and Hybrid Wheel

Configuration.

 4 Mecanum wheel 4 Omni wheel Hybrid wheel

Velocity(X) 𝝎 × 𝒓 √𝟐𝝎 × 𝒓 𝟏. 𝟐𝟎𝟕 𝝎 × 𝒓

Friction(X) 4
𝝉

𝒓
 4

𝝉

√𝟐⋅𝒓
 3.414

𝝉

𝒓

velocity(Y) 𝝎 × 𝒓 √𝟐𝝎 × 𝒓 𝟏. 𝟐𝟎𝟕 𝝎 × 𝒓

Friction(Y) 4
𝝉

𝒓
 4

𝝉

√𝟐⋅𝒓
 3.414

𝝉

𝒓

Diagonal velocity
𝝎 × 𝒓

√𝟐
 𝝎 × 𝒓 𝟎. 𝟖𝟓𝟑 𝝎 × 𝒓

Diagonal Friction 𝟐√𝟐 ×
𝝉

𝒓
 𝟐

𝝉

𝒓
 2.414

𝝉

𝒓

According of the Table 3.2, the Hybrid wheel was calculated by combine the 2 mecanum

wheel and 2 omni wheel.

24

Table 3.2

The comparison of mecanum wheel, omni wheel and hybrid wheel configuration.

 Advantage Disadvantage

4

Mecanum

wheel

• The friction force of the 4

mecanum wheel is more than the

omni wheel. Thus, it supports

more weight than the 4 omni

wheel.

• The wheel the velocity of the 4

mecanum wheel configuration

less than the omni wheel. It

makes the robot with 4

mecanum wheel move slower

than the robot with 4 omni

wheel.

4 Omni

wheel

• The wheel performs the

omnidirectional movement with

more velocity than the mecanum

wheel in any direction with the

same torque and wheel radian.

• The force of the 4 Omni wheel

is less than the mecanum

wheel. It makes the robot slip

easily and supports less weight

than 4 mecanum wheels.

Hybrid

wheel

• The performance of the hybrid

wheel configuration is at the

middle between 4 mecanum

wheel and 4 omni wheel. The

hybrid mecanum-omni perform

with more velocity than mecanum

wheel. It performs the

omnidirectional movement with

more force than the omni wheel.

Thus, it will make the robot

support more weight 4 omni

wheel and move faster than the

mecanum wheel.

• The kinematic model of the

hybrid configuration wheel is

more complicated the regular 4

mecanum wheel and 4 omni

wheel.

25

3.3 Kinematics Analysis

The new kinematic model for 2 mecanum wheels and 2 Omni-wheels is designed

following the model from the literature. The remaining model was used for 4 mecanum

wheels mobile robot. The configuration of the new model and parameter follow

Figure 3.3.

Figure 3.3

The Configuration of the New Model

The configuration parameter defines as follow:

𝑋𝑅, 𝑌𝑅: cartesian coordinate system of the robot base with the movement of the body

center.

𝑉𝑥, 𝑉𝑦, 𝜔 : linear velocity along x direction, linear velocity along y direction and angular

velocity of the robot.

26

𝐸𝑖, 𝑆𝑖 : Coordinate system of the wheel i

𝑉𝑟𝑖 : The velocity of the passive roller in wheel i

αi : The angle between the center of wheel i and 𝑋𝑅

𝛽i : The angle between 𝑆𝑖 and 𝑋𝑅

𝛾𝑖 : The angle between 𝐸𝑖 and 𝑉𝑖𝑟

𝜄𝑖 : The distances from the center of the robot to the center of the wheel i

The calculation for inverse kinematic model of mobile robot uses the Jacobian in Figure

2.4 The Jacobian matrix for inverse kinematic of the model as follow:

According from Figure 3.3, The parameter uses for calculating the mecanum wheel and

Omni-wheel inverse kinematic model show in below Table 3.1.

 (3.3)

27

Table 3.3

The Parameter of the 2 Mecanum Wheels and 2 Omni-Wheels.

The parameter in Table 3.3 were substituted to the equation 3.1 and provide the inverse

kinematic matrix in equation 3.4.

 [

𝜔1

𝜔2

𝜔3

𝜔4

] = [

23.5702 23.5702 9.0667
33.3333 −33.3333 13.152
23.5702 −23.5702 −9.0667
33.3333 33.3333 −13.152

] [
𝑉𝑥

𝑉𝑦

𝑤𝑧

] (3.4)

Where, 𝜔𝑖 is angular velocity of wheel I, 𝑉𝑥 and 𝑉𝑦 are linear velocity of mobile robot

and 𝑤𝑧 is angular velocity the robot. The inverse kinematic matrix shows the velocity of

each wheel for sending the velocity command to move the mobile robot.

 𝜔1 = 23.5702 × (𝑉𝑥) + 23.5702 × (𝑉𝑦) + 9.0667 × (𝑤𝑧) (3.5)

 𝜔2 = 33.3333 × (𝑉𝑥) + (−33.3333) × (𝑉𝑦) + 13.152 × (𝑤𝑧) (3.6)

 𝜔3 = 23.5702 × (𝑉𝑥) + (−23.5702) × (𝑉𝑦) + (−9.0667) × (𝑤𝑧) (3.7)

 𝜔4 = 33.3333 × (𝑉𝑥) + 33.3333 × (𝑉𝑦) + (−13.152) × (𝑤𝑧) (3.8)

Equations 3.5 to 3.8 are the angular velocity of each wheel. They were used to command

the velocities of the mobile robot. After getting inverse kinematic for velocity command,

28

the matrix was calculated to find the forward kinematic model by taking the inverse of

the matrix in equation 3.3 to get the forward kinematic model.

 [
𝑉𝑥

𝑉𝑦

𝑤𝑧

] = [
0.0071 0.01 0.0071 0.01
0.0107 −0.0071 −0.0107 0.0071
0.027 0.019 −0.027 −0.019

] [

𝜔1

𝜔2

𝜔3

𝜔4

] (3.9)

The forward kinematic use for getting feedback velocities of the mobile robot. The

equation of linear velocity and angular velocity of mobile robot show in equation 3.12

to 3.14

 𝑉𝑥 = 0.0071 × (𝜔1) + 0.01 × (𝜔2) + 0.0071 × (𝜔3) + 0.01 × (𝜔4) (3.12)

 𝑉𝑦 = 0.0107 × (𝜔1) − 0.0071 × (𝜔2) − 0.0107 × (𝜔3) + 0.0071 × (𝜔4)(3.13)

 𝑤𝑧 = 0.027 × (𝜔1) + 0.019 × (𝜔2) − 0.027 × (𝜔3) − 0.019 × (𝜔4) (3.14)

29

3.4 The Robot Coordinate System

Figure 3.4

The Coordinate System of Mobile Robot in Global Frame

According to Figure 3.4, the global coordinate system contains position and orientation

of the mobile robot. The calculation of coordinate system follows in below equation.

 X𝑤 = 𝑟 × cos 𝜃 (3.15)

 Y𝑤 = 𝑟 × sin 𝜃 (3.16)

Where, X𝑤, Y𝑤 𝑎𝑛𝑑 𝜃 is position of the robot in global coordinate, r travel distance of

the mobile robot w.r.t global coordinate.

3.5 Mechanical Design and Equipment Selection

This thesis focus on improves the hybrid mecanum-omni wheel configuration. The

movement of this configuration is the combination of force from the wheel’s rotation

direction. The length and width of the robot chassis is 420 × 300 mm which was used

to connect all actuator and microcontroller. The angle between each wheel is 90 degrees.

The designed robot platform shown in Figure 3.5. The mecanum wheel that was used

30

for the robot shown in Figure 3.6 and the specification of mecanum wheel shown in

table 3.2 The both type of mecanum wheel that are left type and right were used. The

omni wheel at the front of the robot and wheel specification presented in Figure 3.7 and

table 3.3.

Figure 3.5

Robot’s Chassis

Figure 3.6

Mecanum Wheel

31

Figure 3.7

Omni Wheel

Table 3.4

Mecanum Wheel’s Specification

Parameter Description

Diameter 60 mm.

Body material Aluminum Alloy

Weight 86 g

Load capacity 10 kg.

Number of rollers 8

 Table 3.5

Omni Wheel’s Specification

Parameter Description

Diameter 60 mm.

Body material Aluminum Alloy

Weight 73 g

Load capacity 3 kg.

Number of rollers 10

The model of mobile robot is represented in following figure.

32

Figure 3.8

Front View

Figure 3.9

Rear View

33

Figure 3.10

Side View

3.6 Electrical System Design and Equipment Selection

The one of the important parts of the mobile robot is electrical system. The electrical

design of the robot separates into two parts the power system and the communication

system. The power system of the robot shown in Figure 3.11.

Figure 3.11

The Block Diagram for Electrical System (a) the Electrical System for 12 V. Power

Supply (b) the Electrical System for 5 V. Power Supply

(a)

34

According to Figure 3.10 (a), the block diagram presents the power system from 24 V.

battery. The battery connected with the converter to convert 24 VDC to 12 VDC. The

voltage from the converter was stable.

(b)

The communication system contains the server which is a personal computer and the

client that is a microcontroller. The microcontroller was used for low-level

communication which is sent Pulse Width Modulation (PWM) via motor driver to

control motor and receive feedback data from encoder. The microcontroller

communicates with PC through ROS topic which is ros_seriel. RGB-D was connected

with a PC by using a driver from ROS. The block of the communication represents

in Figure 3.12.

35

Figure 3.12

The Block Diagram for Electrical System for Communication Between Master and

Slave Device

3.7 Microcontroller, Sensor and Actuator

The Kinect XBOX 360 is the main sensor for the mobile robot. The sensor was used for

creating a map with a SLAM algorithm and navigating the robot via obstacles. This

RGB-D camera is a low-cost RGB-D camera and widely used in computer vision or

SLAM. Moreover, ROS develops a driver to communicate with the Kinect 360. The

camera was calibrated by ROS camera calibration package RGB-D camera shown in

Figure 3.13 The specification of camera is represented in table 3.6. the encoder was

connected to the motor to get feedback from motor for speed control. The encoder and

its specification shown in Figure 3.14 and table 3.7.

36

Figure 3.13

RGB-D Camera

Table 3.6

RGB-D’s Specification

Parameter Description

Name Kinect XBOX360

Power supply 12 V.

Camera resolution 640 × 480 at 30 fps

IR camera resolution 320 × 240 at 30 fps

Field of view of RGB camera 62° × 48.6°

Field of view of Depth camera 57° × 43°

Operative measuring range 0.8 m – 4 m

Figure 3.14

Encoder

37

Table 3.7

Encoder’s Specification

Parameter Description

Power supply 5 V.

Count per revolute 12 CPR

Channal 2

The microcontroller that used to control motor speed and send a feedback data to PC via

ROS is STM32 Nucleo-64 F401-RE. The stm32 has an encoder mode to connect the

encoder without complex coding.

Figure 3.15

Microcontroller

38

Table 3.8

Microcontroller’s specification

Parameter Description

Name STM32 Nucleo-64 F401-RE

MCU Arm Cortex-M4F

Operating voltage 3.6 v.

Clock speed 85 MHz

SRAM 96 KB

Flash memory 512 KB

Power supply 5 – 12 V.

One of the most important parts of the mobile robot is the motor. The 17 watts 12 volts

motors were selected to drive the wheels. The motor connects with gearbox ration 1:64

to increase the rated torque for carrying a high payload. The motor for the mobile robot

represents in Figure 3.16. The motor specification is shown in table 3.9

Figure 3.16

17 Watts 12-volt Motor

39

Table 3.9

Motor’s Specification

Parameter Description

Name Fualhaber 2342 CR012

Operating voltage 12 v.

Rate current 1.5 A.

Output power 17 W

No load speed 8100 rpm.

Rate torque 17 mNm.

Gear box ratio 1:64

Finally, the L298M motor driver was selected to drive the motor. This motor driver can

input with 2 channel PWM to control speed of the motors and the price is low. The motor

driver depicted in Figure 3.17. Moreover, the specification of L298M represented in

table 3.10

Figure 3.17

Motor Driver

40

Table 3.10

Motor Drive’s Specification

Parameter Description

Chip L298N

Operating voltage 7 – 30 V.

Maximum rate current 2 A.

Commutation frequency 25 – 40 KHz

PWM channel 2

3.8 PID Velocity and Position Control

STM32 microcontroller is the device for low level control. For microcontroller part, a

PID controller was implemented in order to control velocity of the mobile robot. A PID

controller receives the error between output and a setpoint as an input. It adjusts an

output relate to the error to control the system. In this case, the system is a motor. Thus,

the output is velocity. The controller receives velocity feedback from an encoder. The

calculation of wheel speed in RPM from encoder shown in equation 3.13. ROS receive

velocity in rad/sec. Thus, the velocity was converted from RPM to rad/sec. in equation

3.18

Figure 3.18

PID Controller

 V(RPM) =
𝑃𝑢𝑙𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 × 60

𝐶𝑃𝑅 × 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡
 (3.17)

 𝜔 (red/sec.) = V(RPM) x 0.1047197 (3.18)

41

After getting velocity, the robot needs to move within designed distance such as “moving

forward for 1 kg” or “turning heading to 90 degrees”. It can be achieved by using

position control with PID. The figure below shows the block diagram of position control

with PID.

Figure 3.19

PID Position Control

3.9 ROS

The Robot Operating System (ROS) is a collection of software libraries and tools

designed to develop robot applications. ROS defines a standard for implement a code in

the same way. Thus, the software that develops with ROS standards can be connected

easily with the other. This mobile robot was programmed by using ROS melodic version

with Linux Ubuntu 18.04. This version of ROS was developed in 2018. Hench, it

supports a variety of package in ROS including “ros_orb_slam”.

3.9.1 Control Implement

The STM32 send data to PC with “serial_node_stm32” node. The topics that contain the

wheels velocity from STM32 are “vel_n” for wheel n. In the same time, the velocity

command for the robot was sent by the topic “cmd_vel”.

Figure 3.20

Serial_node Architecture

The nodes that publish the topic “cmd_vel” are “DWA” which is the node of

Dynamic window approach and the node “teleop_twist_keyboard”. Basically, the node

42

“teleop_twist_keyboard” send velocity setpoint via the topic “cmd_vel”.

The application of this node is that the program starts with the default velocity, and it

can increase or decrease the velocity level in the step of 10 % with the input keyboard.

However, the node cannot input velocity level with the number. In this thesis, this node

was applied to be able to input with the number. The modified node is used to publish

position setpoint for position control of the robot via “cmd_vel”. Thus, the application

of this node is applied to use in the manual mode of the robot. In this mode, the robot

receives setpoint which include the direction in x, y or heading from the modified node.

Then, the robot moves to the setpoint and collect the data with node

“odometry_publisher” which is the node for calculating odometry.

Figure 3.21

The Architecture of Node in Manual Mode

3.9.2 Ros ORB SLAM 2

This thesis use ORB SLAM2 with RGB-D to creating a map of the surround

environment and localize the location of the robot. The map which is created with the

ORB SLAM2 is sparse 3D point clouds. The system was descripted in the chapter 2,

2.6. The ORB SLAM2 the real-time SLAM for monocular, stereo camera and RGB-D

camera was implemented by using ROS. This implementation of the ORB SLAM2

removes some dependency of the original version that is pangolin which is the software

for monitoring the map. RVIZs which is the ROS visualizer is used to monitor the map

instead of pangolin. All input and output are handled via ROS topic.

The mapping process of ORB SLAM 2 start with tracking thread. RGB-D camera extract

ORB feature on the RGB image. For each feature, the depth was transformed into the

right coordinate that describe in equation 2.2.

43

Figure 3.22

The ORB Feature in RGB Image

The keyframe is created with the first frame that the feature was extracted, and the pose

of the first frame is set as an origin of the map. Then, the system creates an initial map

from all stereo keypoints within the first keyframe. The system project the local map to

the current frame and search map point correspondences. For the local map, it contains

the set of the keyframe that share map points with the current frame and a set of

keyframes which is a neighbor of 𝐾1. The map points seen in are searched and optimized.

Finally, the tracking thread insert the new keyframe if it meets the condition.

The tracking thread send the new keyframe to the local mapping thread. The new

keyframe is added into the map and perform the Local BA to get the optimal

reconstruction of the environment around the camera location.

Finally, the loops are searched with every keyframe by the loop closing thread. Once the

loop is detected, the system calculates a similarity transform which contains the drift in

the loop. Both sides of the loop are closed up and the duplicate points are combined. The

pose graph optimization is performed to achieve an effectivity close the loop and

corrected the scale drift.

44

Figure 3.23

The Complete Sparse 3D Maps in RVIZs

For the localization without mapping, the system turns off the local mapping thread and

the loop closing thread. The system localizes with visual odometry match that the match

between ORB in current frame and the 3D points in the previous frame from the depth

information. The other method for the localization is that the system matches the feature

point in the current frame and the Mappoint in the local map to localize the camera

location. The localization is represented in Figure 3.24 The red arrow in the map is the

location of the camera.

45

Figure 3.24

The Localization in Mapped

3.9.3 Dynamic window approach, path planning and obstacle avoidance

Dynamic window approach (DWA) is the one of the path planning algorithms.

The approach calculates the proper velocity that contain linear velocity and angular

velocity for the robot. The system creates the area of reachable velocity within the limit

of time. This area is called “dynamic window”. This window relates with max/min liner

velocity, max/min angular velocity, linear acceleration, angular acceleration, limit time

constant and the current speed. The velocity in the dynamic window is chosen by the

cost function. The cost function contains the heading of the robot to a goal location, the

forward velocity of the robot and the distance to the obstacles on the current location.

Basically, DWA is used for differential wheel. In this thesis, the mechanical of the robot

is omni-directional wheel. Thus, the cost function of DWA was adjusted.

The velocity cost function:

 𝑣𝑒𝑙 = 𝑉𝑚𝑎𝑥 − 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (3.19)

Where, 𝑣𝑒𝑙 is velocity cost function, 𝑉𝑚𝑎𝑥 is maximum linear velocity in X direction in

the dynamic window and 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current linear velocity in X direction of the

robot. If the speed is near the max speed, the velocity cost function is low.

46

The heading cost function:

 heading = ‖𝜃𝑟𝑜𝑏𝑜𝑡 – 𝜃𝑔𝑜𝑎𝑙‖ (3.20)

Where, heading is heading cost function, 𝜃𝑟𝑜𝑏𝑜𝑡 is the heading angle of the robot that

can be obtained with localization process and 𝜃𝑔𝑜𝑎𝑙 is the goal angle relate with the

robot position and goal position.

The equation for 𝜃𝑔𝑜𝑎𝑙 :

 𝜃𝑔𝑜𝑎𝑙 = 𝑎𝑡𝑎𝑛(
𝑑𝑦

𝑑𝑥
) (3.21)

 𝑔𝑥 = 𝑥𝑟𝑜𝑏𝑜𝑡 − 𝑥𝑔𝑜𝑎𝑙 (3.22)

 𝑔𝑦 = 𝑦𝑟𝑜𝑏𝑜𝑡 − 𝑦𝑔𝑜𝑎𝑙 (3.23)

Where, gx is the distance of robot position in x coordinate and goal position in x

coordinate, gy is the distance of robot position in y coordinate and goal position in y

coordinate.

The heading cost function is the calculation of the heading relate with goal. The heading

cost function is low if the heading of the robot point to the goal or rotate to the goal.

In this thesis, the heading cost function was adjusted for the calculation of the omni

direction movement. This cost function removes the heading calculation. The new cost

function was called goal cost function. The goal cost function was represented in

equation 3.24.

The goal cost function:

 𝑔𝑜𝑎𝑙 = √𝑔𝑥2 + 𝑔𝑦2 (3.24)

The goal cost function calculates the Euclidean distance between the current robot

position and the goal position. The robot moves to the goal in x, y, or diagonal directions.

It makes the cost function decrease.

47

For obstacles cost function, the robot calculates the trajectory that relates to all velocities

in the “dynamic window”. For all trajectory, the distance between the trajectory and the

obstacles were calculated. The trajectory that hits an obstacle is maximized in order to

remove from admissible velocity.

For trajectory i and obstacle j:

 𝑑𝑥 = 𝑡𝑟𝑎𝑗𝑖,𝑥 − 𝑂𝑗,𝑥 (3.25)

 𝑑𝑦 = 𝑡𝑟𝑎𝑗𝑖,𝑦 − 𝑂𝑗,𝑦 (3.26)

 r = √𝑑𝑥2 + 𝑑𝑦2 (3.27)

 clear =
1

𝑟
 (3.28)

Where, clear is obstacle cost function, r is the Euclidean distance between trajectory i

and obstacle j, 𝑡𝑟𝑎𝑗𝑖,𝑥 is trajectory i of the robot in x direction and 𝑂𝑗,𝑥 is obstacle j

position in x coordinate. The obstacle cost function is low if the trajectory of the robot

is far from the obstacle.

For all set of velocity in Dynamic window, the system calculates the sum of the cost

functions which are 𝑣𝑒𝑙 cost function, heading cost function and clear cost function. The

sum of the cost functions that is minimum is the best velocity.

𝑉(𝑥,𝜔) = 𝑚𝑖𝑛((𝛼 × 𝑣𝑒𝑙(𝑥𝑖, 𝜔𝑖)) + (𝛽 × ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑥𝑖 , 𝜔𝑖)) + (𝛾 × 𝑐𝑙𝑒𝑎𝑟(𝑥𝑖 , 𝜔𝑖))) (3.29)

𝑉(𝑥,𝑦) = 𝑚𝑖𝑛((𝛼 × 𝑣𝑒𝑙(𝑥𝑖, 𝑦𝑖)) + (𝛽 × 𝑔𝑜𝑎𝑙(𝑥𝑖 , 𝑦𝑖)) + (𝛾 × 𝑐𝑙𝑒𝑎𝑟(𝑥𝑖, 𝑦𝑖))) (3.30)

Where, 𝑉(𝑥,𝜔) is the best set of curvature velocity, 𝑉(𝑥,𝑦) is the best set of omni directional

velocity, 𝛼 is a weight factor for vel cost function, 𝛽 is a weight factor for heading cost

function, 𝑚𝑖𝑛 is the minimizing function and 𝛾 is a weight factor for 𝑐𝑙𝑒𝑎𝑟 cost function.

48

the robot was designed to move with both curvature movement and omnidirectional

movement. Equation 3.29 was used for curvature movement. When the angle between

the goal and heading of the robot is more than 40 degrees, The curvature movement is

active. It changes the heading of the robot to the goal location. Equation 3.30 was used

for omnidirectional movement.

49

RESULT AND DISCUSSION

4.1 Overview

In this thesis, ROS was implemented in the robot to use the DWA with ORB SLAM2.

“DWA” node receives the data from the “orb_slam2_rgbd” node and navigates the robot

to the goal. The data contain the location of the robot in the world coordinate and the

position of the obstacle in the 3D point cloud. The point cloud data was filtered to

remove the point at the ground and the 3D point that is higher than the robot heigh. The

path planner receives only the x and y positions of the point cloud to navigate the robot.

The map of the ORB SLAM 2 is a 3D sparse map. Moreover, the map and position of

the robot are visualized in RVIZ.

The robot has two operation modes which are the manual mode and navigation and

mapping mode. In the manual mode, the robot receives the position setpoint from the

user via the “teleop_twist_keyboard” node in ROS. The RGB-D camera are deactivated.

The robot localizes with wheel odometry, although the current position did not visualize

on the map. The PID and the robot’s kinematic model was implemented to control the

position and movement of the robot. In the mapping and navigation mode, DWA node

receives the goal from the user and navigates the robot to the goal with a safe path. This

mode is separated into two modes. First, the mapping mode, the main task of this mode

is creating the map of the environment. Thus, the robot will check the unknown space

and rotate the camera to the unknown to explore the new area before heading to the goal

location. The flow chart for mapping mode is showed in Figure 4.1. Second, the

navigation mode, the main task of this mode is traveling to goal with mapped area.

Moreover, this mode was operated with the localization mode in the ORB SLAM node.

Thus, the robot not collect the new map point. The flow chart for navigation mode is

showed in Figure 4.2.

50

Figure 4.1

The Flow Chart for Mapping Process

Start

Current position is in
goal tolerance ?

yes
Stand by

for the new goal

Count the obstacles
on the left side of the robot

Receive goal

Obstacle at left
< 50 point

Rotate 90 degree to
the left

Count the obstacles
on the left side of the robot

Calculate the angle of
the robot to the goal

The angle > 40
yes change the heading

to goal

Receive current
heading

Rotate back to the
first position

Left count += 1

yes
Left count

No

Obstacle at right
< 50 point

Rotate 90 degree to
the right

Receive current
heading

Rotate back to the
first position

right count += 1

right count

No

yes

No

Move to goal with
DWA

End

51

Figure 4.2

The Flow Chart for Navigation With Mapped Area

Start

Current position is in
goal tolerance

yes
Stand by

for the new goal

Receive goal

Calculate the angle of
the robot to the goal

The angle > 40
yes change the heading

to goal

Move to goal with
DWA

End

4.2 Robot Performance

This section presents the robot's performance in manual mode. The PID controller was

implemented to control the position of the mobile robot. For the experiment, the robot

will receive the command to move in 1 meter 5 direction and change the heading

direction. These directions are forward, left, right, left diagonal and right diagonal. The

result of the moving experiment shown in table 4.1 and 4.2 and the result of the changing

heading direction shown in table 4.3. The result compares the setpoint with the feedback

data from the robot and the data from the measuring tool. For each setpoint, the robot

moves with the same setpoint and measure the error 3 times. In additional, the set point

that sent to the robot is the pair of the distance (x, y). For example, the command is

moving forward in 1 meter. The setpoint is (1,0). If the command is moving left in 1

meter. The setpoint is (0,1). The direction of each setpoint represent in Figure 4.3.

52

Figure 4.3

The Setpoint Direction

Table 4.1

The Position Control Analysis (Translation)

Coordinate (X, Y) measuring(error) Encoder (X, Y)

r

(measuring)

1 (0,0) (0,0) (0,0) 0.000

2 (1,0) (0.95,0.03) (0.97,0.005) 0.058

3 (1,0) (0.97,0.02) (0.99,-0.001) 0.036

4 (1,0) (0.97,0.02) (0.99,-0.007) 0.036

5 (0,1) (-0.06,0.91) (-0.006,0.97) 0.100

6 (0,1) (-0.04,0.91) (-0.01,0.97) 0.089

7 (0,1) (-0.05,0.9) (-0.003,0.96) 0.051

8 (0,-1) (-0.003,-0.9) (-0.01,-0.97) 0.100

9 (0,-1) (-0.01,-0.89) (0.01,-1.08) 0.110

10 (0,-1) (0.0,-0.89) (0.01,-0.96) 0.110

11 (1,1) (0.95,0.91) (0.98,0.97) 0.094

12 (1,1) (0.93,0.92) (0.98,0.96) 0.106

13 (1,1) (0.89,0.93) (0.98,0.96) 0.130

14 (1,-1) (0.99,-0.9) (0.98,-0.97) 0.010

15 (1,-1) (0.95,-0.94) (0.98,-0.97) 0.050

16 (1,-1) (0.98,-0.92) (0.98,-0.97) 0.020

 Average error 0.07

53

SAccording to the data in table 4.1, All data is in meter unit. The r (measuring) is the

error from measurement with the measuring tool. The error calculates by using

Euclidean distance between the final position of the robot and goal location. The result

uses the measuring tool as a reference. The result shows that the maximum error is 0.13

m. from setpoint (1,1). The minimum error is 0.01m. from setpoint (1, -1). Moreover,

the measuring from feedback of the robot and the error from measuring tool are not

equal. The error of the measuring shown in Table 4.2.

Table 4.2

The Error of the Feedback Data

Coordinate (X, Y) r (measuring tool) r (encoder) r (Encoder to measuring tool)

(0,0) 0.000 0.000 0.000

(1,0) 0.058 0.030 0.028

(1,0) 0.036 0.010 0.026

(1,0) 0.036 0.012 0.024

(0,1) 0.100 0.031 0.069

(0,1) 0.089 0.032 0.058

(0,1) 0.051 0.040 0.011

(0,-1) 0.100 0.032 0.068

(0,-1) 0.110 0.081 0.030

(0,-1) 0.110 0.041 0.069

(1,1) 0.094 0.036 0.058

(1,1) 0.106 0.045 0.062

(1,1) 0.130 0.045 0.086

(1,-1) 0.010 0.045 0.035

(1,-1) 0.050 0.045 0.005

(1,-1) 0.020 0.045 0.025

Average error 0.07 0.036 0.041

According to table 4.2, the data show the error of feedback data from the robot compare

with data from measuring tool. The average error from encoder is 0.036 and the average

error from the comparing is 0.041. On the other hand, the result from the robot is from

the wheel encoder that counts only the wheel rotation. Thus, the wheel slip can cause an

error for the sensor.

54

Table 4.3

The Position Control Analysis (Rotation)

 Theta(rad) measuring tool(rad) encoder(rad) Dth(measuring)

1 1.571 1.64 1.55 0.069

2 1.571 1.62 1.56 0.049

3 1.571 1.61 1.54 0.039

4 -1.571 -1.589 -1.543 0.018

5 -1.571 -1.589 -1.542 0.018

6 -1.571 -1.571 -1.52 0

7 0.786 0.768 0.774 0.018

8 0.786 0.803 0.787 0.017

9 0.786 0.803 0.779 0.017

10 -0.786 -0.821 -0.772 0.035

11 -0.786 -0.803 -0.769 0.017

12 -0.786 -0.803 -0.772 0.017

 Average error 0.026

According to Table 4.3, the data show that the green box means the highest error in that

setpoint. The error from measuring tool and the error from the encoder show in table 4.4

55

Table 4.4

The Error of the Feedback Data

 Setpoint(rad) Dth(measuring) Dth(encoder) Dth (Encoder to measuing)

1 1.571 0.069 0.021 0.09

2 1.571 0.049 0.011 0.06

3 1.571 0.039 0.031 0.07

4 -1.571 0.018 0.028 0.046

5 -1.571 0.018 0.029 0.047

6 -1.571 0 0.051 0.051

7 0.786 0.018 0.012 0.006

8 0.786 0.017 0.001 0.016

9 0.786 0.017 0.007 0.024

10 -0.786 0.035 0.014 0.049

11 -0.786 0.017 0.017 0.034

12 -0.786 0.017 0.014 0.031

 Average error 0.026 0.020 0.044

4.3 Localization

This part shows the localization of the mobile robot in mapped area with ORB SLAM.

The ORB SLAM node is activated, and the localization mode, the mode in ORB SLAM

is turned on. The robot was placed in the different position in the map. The system is

restarted when the robot is placed on the new location in the map. The ground truth is

measured by using measuring tool. The error of the localization is represented in Table

4.3. The error is the Euclidian distance of the robot to the goal and the distance along

the x, y direction in meter.

56

Table 4.5

The Localization Analysis

 Coordinate(X,Y) Robot(X,Y) Dx Dy r

1 (0,0) (0,0) 0 0 0.00

2 (0,1) (0.17,0.95) -0.17 0.05 0.18

3 (-0.5,-1.0) (-0.45,-1.03) 0.05 0.03 0.06

4 (1.0,0.0) (1.07,-0.006) 0.07 -0.006 0.07

5 (1.5,0.8) (1.59,0.78) -0.09 0.02 0.09

6 (3.0,0.6) (3.14,0.59) 0.14 0.01 0.14

7 (3.5,-3.1) (3.68,-3.13) -0.18 0.03 0.18

8 (3.5,-5.1) (3.73,-5.12) -0.23 0.02 0.23

9 (3.5,-7.1) (3.78,-7.11) -0.28 0.01 0.28

 Average error 0.14

From the Table 4.3, It can be seen that the error increase when the location is far from

the origin point (0,0). According to Dx and Dy it shows the accumulated error from Dx

is more than Dy, especially the point that far from the starter point (0,0).

4.4 Navigation

This section presents the navigation system of the robot. The sets of parameters in the

dynamic window were adjusted. The set of parameters contain the weight factor of the

goal cost function and the weight factor of the obstacle cost function to find the cost

function that can navigates the robot to the goal and avoid the obstacle. The goal was

expanded from point to square shape. The size of the square shape is that 10 cm. from

the center point. For the experiment, the navigation mode of the robot is activated. Thus,

it knows only the obstacles in the maps. Then, the robot was placed on the origin point

of the mapped area. The 1 obstacle was installed in 2 meters at the front of the robot.

The goal of the robot is behind of the obstacle for 1 meter. The map for the experiment

shown in Figure 4.4. The result of the experiment shown in Table 4.4

57

Figure 4.4

The Map for Navigation Experiment

According to the Figure 4.4, the red point is the location of the goal, The beginning of

the arrow is the robot and the group of point cloud in the red circle is obstacle.

goal

obstacle

The mobile robot

58

Table 4.6

The Navigation Analysis

goal

gain

ob

gain

Goal

tolerance
Avoidance Goal(X,Y)

1 0.2 0.2 0.1 m. False False

2 0.2 0.4 0.1 m. False False

3 0.2 0.6 0.1 m. False False

4 0.2 1 0.1 m. False False

5 0.4 0.2 0.1 m. True True

6 0.4 0.4 0.1 m. False False

7 0.4 0.6 0.1 m. False False

8 0.4 1 0.1 m. False False

9 0.6 0.2 0.1 m. True True

10 0.6 0.4 0.1 m. False False

11 0.6 0.6 0.1 m. False False

12 0.6 1 0.1 m. False False

13 1 0.2 0.1 m. True True

14 1 0.4 0.1 m. True True

15 1 0.6 0.1 m. True True

16 1 1 0.1 m. False False

According to avoidance and goal in table 4.4, the avoidance in the table refer to the

ability to avoid the obstacle of the parameter. If it is True, the set of parameters can avoid

the collisions. The column of Goal represents the condition of the robot that can travel

to the goal location. If it is True, the set of parameters can navigate the robot to the goal

location. The data show that the parameter that the goal gain is more than ob gain can

navigate the robot to goal and avoid the obstacle except for the set of the goal gain of

0.6 and the ob gain of 0.4. However, for each parameter that cannot navigate the robot

to the goal, the robot stops in front of the obstacle and stop in the gap between the wall

and the obstacle. Each parameter that can navigate the robot to the goal, the errors from

goal was calculated with the data from the robot. The result show in Table 4.5

59

Table 4.7

The Error of the Navigation

 measuring(error) Camera(X,Y) r (measuring) r (camera)

1 - - - -

2 - - - -

3 - - - -

4 - - - -

5 (2.75 , 0.01) (2.91 ,- 0.21) 0.25 0.23

6 - - - -

7 - - - -

8 - - - -

9 (2.71,0.03) (2.95 , 0.06) 0.29 0.08

10 - - - -

11 - - - -

12 - - - -

13 (2.78,0.04) (2.97, - 0.01) 0.22 0.03

14 (2.82,0.04) (3.01,- 0.14) 0.18 0.14

15 (2.74,0.06) (2.94,- 0.09) 0.27 0.11

 Average error 0.24 0.12

According to Table 4.5, the data show that the final position of the robot stops in the

goal tolerance.

60

CONCLUSIONS AND RECOMMENDATION

5.1 Conclusion

The mobile robot is designed based on the new configuration wheels, and the robot was

able to perform SLAM by using a camera. The main idea of the new design is the

combination of the benefit of the mecanum wheel and the Omni wheel. I was able to

build the new mathematic model by using the regular mecanum wheel mathematic

model as a reference. Finally, the new kinematic model was derived to the new wheel

configuration and test the performance. The robot can perform the omnidirectional

movement. After confirming the new concept, the PID controller was applied to control

the movement of the robot. Next part was the SLAM system, The Kinect, the low-cost

RGB-D camera was chosen as the main sensor. ROS was used to develop the robot

SLAM and navigation system, including the control system. ROS has supported ORB

SLAM2, the open-source SLAM for monocular, stereo and RGB-D camera. Moreover,

ROS has supported the “openni_camera” package, the driver for the RGB-D camera in

ubuntu, and the camera calibration package. For the microcontroller, the

“serial_node_stm32” was used to connect the stm32 board with the other nodes. After

implement ROS system and ROS package, the navigation system was implemented

based on the idea of an autonomous mapping process. The dynamic window approach

was used to navigate the robot to the goal, avoid the obstacle and create the map. The

cost function in the approach was adjusted in order to support the omnidirectional

movement. Finally, the robot has 3 operation mode. The first mode is that the manual

mode used position control to control the robot. The robot will receive a direction and a

distance to travel. The second mode is mapping mode. The dynamic window approach

and ORB SLAM was activated to navigate the robot and create the map. The robot will

receive the goal in a 2D coordinate. Then, the robot travels to the target and rotates to

the unknown space of the map around it. In this mode, the robot can avoid the obstacle

along with creating the map. mode is similar to the mapping mode, but the navigation

mode operates in the mapped area. Thus, the robot did not need to find the unknown

space to complete the map. It only focuses on travel to the goal and avoids collision. The

only navigation is the last mode of the robot. The operation of this mode is similar to the

61

mapping mode, but the navigation mode operates in the mapped area. Thus, the robot

did not need to find the unknown space to complete the map. It only focuses on travel to

the goal and avoids collision. The mobile robot was experimented to find the robot

performance. The result show that the robot can travel to goal and autonomously create

the map while avoid the obstacles. Moreover, it was able to navigate itself to the goal in

the mapped area.

To summarize, this thesis designs an autonomous mobile robot with a hybrid mecanum-

Omni wheel configuration. The kinematic model can be used with the hybrid wheel

configuration. The ORB SLAM2, with a dynamic window approach, be able to create

the map and navigate the robot to the goal while avoiding the obstacles.

5.2 Recommendation

1. Design the global path planning. The DWA is the local path planning. In some

situations, it needs the people to lead it to the goal. Global planning might

solve this issue, and the DWA uses to navigate the robot to the global path

instead.

2. Create the local map for the robot. The navigation of the robot uses a static

map to navigate the robot. If the robot has the local map, the environment

around it will be updated. Thus, the robot will detect the dynamic obstacle and

avoid it. Moreover, the obstacles that did not stay in the real world will be

removed from the local map to reduce the operation time.

3. Apply the kinematic model of the mobile robot to the ORB SLAM. The

tracking process of the ORB SLAM localizes the position of the camera by

using the velocity motion model. If the kinematic model of the robot is applied

to the motion model, the SLAM system will estimate the camera pose with

more accuracy.

62

REFERENCES

Adăscăliţei, Florentina, and Ioan Doroftei (2011). Practical applications for mobile

robots based on mecanum wheels-a systematic survey. The Romanian Review

Precision Mechanics, Optics and Mechatronics 40 21-29.

Taketomi, T., Uchiyama, H. & Ikeda, S (2017). Visual SLAM algorithms: a survey from

2010 to 2016. IPSJ T Comput Vis Appl 9, 16

Mur-Artal, Raul & Tardos, Juan. (2015). Probabilistic Semi-Dense Mapping from

Highly Accurate Feature-Based Monocular SLAM.

S. Campbell, N. O'Mahony, A. Carvalho, L. Krpalkova, D. Riordan and J. Walsh (2020).

"Where am I? Localization techniques for Mobile Robots A Review," 6th

International Conference on Mechatronics and Robotics Engineering (ICMRE),

Barcelona, Spain, 2020, pp. 43-47.

Fox, Dieter & Burgard, Wolfram. (1997). The Dynamic Window Approach to Collision

Avoidance. Robotics & Automation Magazine, IEEE. 4. 23 - 33.

10.1109/100.580977.

R. Mur-Artal, J. M. M. Montiel and J. D. Tardós (2015). "ORB-SLAM: A Versatile and

Accurate Monocular SLAM System," in IEEE Transactions on Robotics, vol. 31,

no. 5, pp. 1147-1163, Oct.

N. A. Zainuddin, Y. M. Mustafah, Y. A. M. Shawgi and N. K. A. M. Rashid

(2014)."Autonomous Navigation of Mobile Robot Using Kinect Sensor,"

International Conference on Computer and Communication Engineering pp. 28-

31.

Younes, Georges, et al. (2017). "Keyframe-based monocular SLAM: design, survey, and

future directions." Robotics and Autonomous Systems 98: 67-88.

Dissanayake, M.W.M. & Newman, P. & Clark, Steven & Durrant-Whyte, Hugh &

Csorba, M.A.. (2001). A Solution to the Simultaneous Localization and Map

Building (SLAM) Problem. Robotics and Automation, IEEE Transactions on.

17. 229 - 241.

M. Filipenko and I. Afanasyev (2018). "Comparison of Various SLAM Systems for

Mobile Robot in an Indoor Environment," 2018 International Conference on

Intelligent Systems (IS), Funchal - Madeira, Portugalpp, 400-407.

63

G. Klein and D. Murray (2009). "Parallel Tracking and Mapping on a camera phone,"

8th IEEE International Symposium on Mixed and Augmented Reality, Orlando,

FL, 2009, pp. 83-86.

R. Mur-Artal and J. D. Tardós (2017). "ORB-SLAM2: An Open-Source SLAM System

for Monocular, Stereo, and RGB-D Cameras," in IEEE Transactions on

Robotics, vol. 33, no. 5, pp. 1255-1262, Oct.

Myint, Robot Cherry and Nu Nu Win (2016). “Position and Velocity control for Two-

Wheel Differential Drive Mobile.”

Soni, Sanket, Trilok Mistry, and Jayesh Hanath (2014). "Experimental Analysis of

Mecanum wheel and Omni-wheel." International Journal of Innovative Science,

Engineering & Technology 1.3 292-295.

Shabalina, Ksenia & Sagitov, Artur & Magid, Evgeni. (2018). Comparative Analysis of

Mobile Robot Wheels Design. 175-179.

K. Krinkin, E. Stotskaya and Y. Stotskiy (2015). "Design and implementation Raspberry

Pi-based omni-wheel mobile robot," Artificial Intelligence and Natural

Language and Information Extraction, social media and Web Search FRUCT

Conference (AINL-ISMW FRUCT), St. Petersburg, 2015, pp. 39-45.

Siegwart, Roland, Illah Reza Nourbakhsh, and Davide Scaramuzza (2011). Introduction

to autonomous mobile robots. MIT press.

