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ABSTRACT 

Reinforcement learning has become a powerful tool for tackling various problems in 

the past few years. It is well-establish that this method can solve complex problems in 

many fields of study. This thesis presents an aim to explore an alternate approach to 

balance the inverted cube structure. To test the hypothesis that reinforcement learning 

can balance a cube structure on its corner using three reaction wheels as actuators. 

Simultaneously, the control algorithm developed traditionally using the LQR method 

and alternatively using reinforcement learning. Additionally, the experiment result was 

compared to evaluate the reinforcement base control algorithm's performance and the 

LQR algorithm. The result showed that reinforcement learning could find good 

controller gain value to balance the inverted cube on its destinated corner. These results 

suggested that reinforcement learning can be an alternative method to solve the balance 

control problem. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study  

The inverted pendulum has been a fundamental problem in control theory because of 

its unbalanced nature in an upward position. This system has been used as a basic 

benchmark of many control algorithms. Other configurations of this system had been 

extensively researched for many decades, such as reaction wheel pendulum, bi-axial 

pendulum, and cart inverted pendulum. One interesting configuration of this system 

was introduced in 2013. The 3D cube was a combination of 3 axes inverted pendulum, 

balanced on its corner using a traditional control method. 

AI has been used as a tool to find a solution to the problem for a long time. One of the 

topics that many researchers had been exploring is AI as a solution for a game like a 

game of chess and a maze. Markov Decision Process is one of many AI algorithms. 

This thinks the process focuses on the quality of each possible move for each state of 

the system. However, this process requires the known quality table of that system which 

can be very hard to acquire. Reinforcement learning improves that decision process 

because it allows the AI system to learn a quality table for any system by controlling 

the quality function. Combined with the improvement in the current-day computer's 

computing power, reinforcement learning becomes a potent tool to tackle a complex 

control system. 

Many research pieces have explored reinforcement learning in many applications such 

as board games, navigation, robotic control. By nature of reinforcement learning, it has 

the potential to discover another strategy that might be overlooked by a traditional 

problem-solving method. This result-based problem solving allows a researcher to skip 

some of the complexity in modeling the system. Additionally, reinforcement learning 

can adapt to the user's requirement, enabling it to self-correct the system while 

discovering its operating condition. 

Reinforcement learning is an area of machine learning, based on the Markov Decision 

Process, which explores and develops an optimal solution to maximize the accumulated 

reward from each state of the problem or system. By nature of how reinforcement 
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learning develops the answer, it is not required to know the problem's exact model. This 

allows reinforcement learning to be a powerful candidate in controlling a complex 

system. Few research types explored the potential in finding more optimal control of 

the inverted pendulum system than the conventional method. 

In balancing the object on its corner using three perpendicular reaction wheels as a 

control actuator, the combination of torque or momentum can counteract the cube 

object's gravitational force. The model of the system can be a very complex 

combination of multiple states of the system. With reinforcement learning, it is possible 

to bypass all modeling the system and generate a control algorithm to balance the 

corner. 

1.2 Statement of the Problem 

The complex non-linear system has been the main problem for the control engineer to 

solve for a very long time. While different systems have difficulty reaching optimal 

control, one of the most challenging tasks to analyze any system is creating a precise 

system model. After acquiring a system model, many control algorithms can be selected 

to suit the system's need to get exact and robust control. Simultaneously, it is possible 

to use traditional control laws like PID, LQR, or adaptive control to get a pleasing result. 

However, a system's model's requirement to create a control algorithm can be very 

difficult to solve, especially when the system involves many degrees of freedom. 

Reinforcement learning offers another solution to control the problem by allowing 

modeless control possible. 

Reinforcement learning can be used in control problems by allowing engineers with 

another method to solve control problems without the requirement of knowing the exact 

model of the system. By its ability to optimize its parameter from the reward function, 

reinforcement learning can be trained by presenting the model's states to the system and 

adjusting itself to maximize the reward. These properties can be utilized to achieve 

optimum control of the system and become additional options to solve other control 

problems. A further advantage of using the reinforcement learning method is that it is 

possible to create a control algorithm that adapts its control parameter according to the 

change of model properties. While reinforcement learning shows many properties in 

solving a control problem, there is not much research that used reinforcement learning 
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to solve the balance control problem. This research aims to explore its potential as an 

additional candidate to balance multiple degrees of freedom system. 

The inverted cube structure becomes an attractive candidate to explore the 

reinforcement learning approach to create a control algorithm because of its multiple 

degrees of freedom and non-linear nature when standing on its corner and complex 

configuration of reaction wheels. This system will be a reasonable benchmark in 

explore reinforcement learning potential in solving balance control problems. 

1.3 Can Reinforcement Learning-Based Control be Alternative Method in 

Balance Control Problem? 

Reinforcement learning-based control method was tested as an alternative way to 

calculate controller gain besides the LQR method 

1. Can reinforcement learning-based method become an option when tackling 

balance control problem? 

2. What is the performance difference between reinforcement learning-based and 

LQR methods? 

 

1.4 Objectives of the Study 

The research's fundamental intent is to develop control solutions from reinforcement 

learning methods that can keep cube balance on its corner. The following objectives are 

the main objectives of this research. 

1. To achieve on corner balance of inverted cube structure with reaction wheels. 

2. To compare control performance of the LQR algorithm and reinforcement 

learning-based algorithm. 

 

1.5 Scope of the Study and Limitation. 

The response from the reinforcement learning base algorithm will be compared with an 

LQR control algorithm. While balance at a designed position, the cube can reject 

external disturbances and return to a created state position.  
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CHAPTER 2 

LITERATURE REVIEW 

The study pursuit a methodology to use reinforcement learning to generate an optimal 

control strategy for balancing the cube on its corner using three perpendicular reaction 

wheels. Thereupon the literature review is focused on the primary system of an inverted 

pendulum, the control method that had been used, and the implementation of 

reinforcement learning in balancing control. 

2.1 Inverted Pendulum  

In control theory, the inverted pendulum system has been the central part of the control 

system design problem for a very long time. While the primary physical nature remains 

the same, researchers use different means to control the system. The inverted rotary 

pendulum is controlled by the rotation of the pendulum base and cart pendulum 

balanced by the moving cart's sliding motion. B. Bapiraju, K. N. Srinivas, P. P. 

Kumar, and L. Behera (2004) had studied another configuration of the inverted 

pendulum that was controlled by the reaction wheel at the endpoint of the pendulum. 

Their work concluded the algorithm that can balance the inverted pendulum at the 

proper top position using linearization of the pendulum model and fuzzy control 

algorithm. 

 

Figure 2.1 

Free Body Diagram of Reaction Wheel Inverted Pendulum 
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A more complex system of the inverted pendulum that utilizes the reaction wheel as 

controlled output to the system was researched. L. H. Chang and A. C. Lee (2007) 

created an inverted pendulum in the form of 2 DOF cart-based robots, which used 3 

phase control strategy to bring the inverted pendulum the maximum upright position.  

 

2.2 On corner balance cube robot (Cubli)   

M. Gajamohan, M. Merz, I. Thommen, and R. D'Andrea (2013) introduced another 

complex configuration of this system in the form of cube shape robot (Cubli) that can 

balance and jump from resting position using three axes of the reaction wheel. Their 

system controlled the robot using 2 phase control which was divided into the jumping 

mode and balanced mode, in balance control their used linearization of cube model to 

transform the non-linear system to a more straightforward linear system. In 2017 M. 

Gajamohan, M. Merz, I. Thommen, and R. D'Andrea published another paper regarding 

jump up a cube robot's function. The jump-up process was achieved by impulse 

generated by breaking of high-speed rotation of reaction wheel. To accomplish the 

desire jumping trajectory, these researchers use the combination of the system model 

and learning algorithm to make robots learn the best speed that the reaction wheel 

needed to follow the target trajectory from resting position to the cube's on-corner 

position. 

Figure 2.2 

3D Model of Cubli 
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After the initial introduction of the Cube robot from previous research, Rupam Singh, 

Vijay Kumar Tayal, and Hemandar Pal Singh (2016) conducted research reviewing 

the additional control algorithm and mechanism of Cubli's structure. Finally, they 

proposed modern adaptive control as the most suitable algorithm and other 

considerations of Cubli's design from its requirement in dealing with an impulse from 

reaction wheels.  

 

Zhigang Chen, Xiaogang Ruan, and Yuan Li (2017) proposed another method of 

analyzing this inverted cube robot using the Lagrangian approach to solve energy 

functions. This research's simulation result showed a cube's response in zero forced 

scenario and torque from reaction wheels. This dynamic model provided a different 

approach to develop a control algorithm to balance this cube robot on its corner. 

 

Figure 2.3 

Zhigang Chen, Xiaogang Ruan, and Yuan Li's Prototype of Cubli 

 
 

2.3 Control Method  

The main component of the inverted pendulum system to achieve an upright position is 

its control law. The selection of control law has direct consequences on the performance 

of an inverted pendulum system. 

 

2.3.1 PID  

PID controllers are one of the most common controlling algorithms used in controlling 

objectives. PID generates a signal from an error from the difference between the 
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setpoint and measured value of the controlled system. While it is more suitable for a 

linear system, WANG Jia-Jun (2015) used a double PID controller to control the 

inverted pendulum's position by generating a signal from measure input of inverted 

pendulum angle and place of the cart. This allows control of the cart position and the 

balance of the inverted pendulum at the same time. 

 

Further research had been conducted to improve the performance of the PID controller 

for an inverted pendulum system. Sankalp Paliwal (2017) researched the fractional 

order PID controller, a general form of PID in the Laplace domain. The result showed 

that fractional order PID has a lower overshot compare to the traditional PID controller. 

 

2.3.2 Fuzzy Controller 

Fuzzy control theory is a controlled algorithm base on the decision-making process 

using a fuzzy set of input states and output action. This control simulates the human 

brain's decision-making to achieve control of the system. Luo Hong-yu and Fang Jian 

(2014) developed a fuzzy control rule to control inverted pendulum, and simulation 

results showed better performance than regular PID controller and more robust to 

change of properties of the system. 

 

2.3.3 Linear-Quadratic Regulator (LQR) 

Linear-Quadratic Regulator is another controller design method that tries to minimize 

the cost function that depends on both the state weighting matrix and the control 

weighting matrix. Research of Ramashis Banerjee, Naiwrita Dey, Ujjwal Mondal, 

and Bonhihotri Hazra (2018) showed the double inverted pendulum model's analysis 

well as the linear feedback gain matrix that make double inverted pendulum stable in 

simulation using the LQR method. 

 

Magdi S. Mahmoud and Mohammad T. Nasir (2017) researched the LQR algorithm 

to control wheeled inverted pendulum robot to remain at the upright position while 

performing other tasks with two different robot arms. This research shows the LQR 

algorithm's ability to control an inverted pendulum system while dealing with the 

uncertainty of robot arms motion, which acts as an additional disturbance. 
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Figure 2.4 

Wheeled Inverted Pendulum Robot and Control Diagram. 

 
 
 

2.3.4 Reinforcement Learning 

Richard S. Sutton, Andrew G. Barto, and Ronald J. Williams (1992) introduced 

reinforcement learning in the control perspective as a direct adaptive optimal control 

by comparing reinforcement learning as animal learning. The idea of reaching a 

satisfying conclusion by adjusting action selection to estimate the long-term 

consequences of action comparable to optimal control using the system's current state 

was introduced. Additionally, the authors also proposed reinforcement learning as an 

alternative solution for the non-linear system, reducing the cost of developing control 

algorithms compared to indirect system estimators. 

 

Within the computer's increase in computing power, reinforcement learning has 

become a powerful solution to tackle complex non-linear systems like an inverted 

pendulum. Instead of using multiple phase control algorithms to bring the pendulum 

from a downward position to an upright position, reinforcement learning allows the 

computer to explore the best solution for each of the states that inverted pendulum. 

Sudhir Raj (2016) utilized this powerful tool to achieve steady control of double 

inverted pendulum and better results than the LQR control algorithm. 
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Figure 2.5 

Sudhir Raj's Reinforcement-based Control Block Diagram and Double Inverted 

Pendulum. 

 
 

Yue Chao, Liu Yongxin did another research, and Wang Linglin (2018) used 

reinforcement learning to achieve steady-state balance and spin up of reaction wheel 

inverted pendulum. This research utilized online and offline learning methods to reduce 

a neural network's programming and computing time. The result showed that after 300 

trials, the network could control the cart inverted pendulum to the upright position. 

 

Figure 2.6 

Simulink Diagram of Real-time Swing-up of Reinforcement Learning 

 
Aside from the inverted pendulum, Kathleen M. Jagodnik, Philip S. Thomas, 

Antonie J. van den Bogert, Michael S. Branicky, and Robert F. Kirsch (2017) used 

reinforcement learning to develop adaptive control of computer-generated arm using 
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the human reward. Their research trained arm movement simulation to replicate picking 

up and moving an object to designed locations. By comparing both humans generate 

bonus and pseudo-human developed reward, the researchers evaluated the system's 

training time. However, both methods result in functional electrical stimulation that can 

recreate human arm motion in terms of performance. This showed that reinforcement 

learning could adapt according to trainers' satisfaction, in this case, humans. 

 

Figure 2.7 

Block Diagram of the Actor-critic Reinforcement Learning. 

 
Chao Wang, Jian Wang, Xudong Zhang, and Xiao Zhang (2017) researched 

reinforcement learning ability to navigate uncrewed aerial vehicles. Using the actor-

critic approach, deep reinforcement learning shows the ability to navigate complex 

environments and avoid obstacles without predetermining the territories' map. While 

simulation shows promising results, the researcher stated additional remake in real-

world tasks regarding sensor requirement and unobservable noise in a natural 

environment. 

 

Figure 2.8 

Aerial Vehicles Obstacle Detection and Navigation Using Reinforcement learning 

 



 

 11 

From previous research, reinforcement learning has many applications it can be applied 

to and can learn optimal solutions in that problem or satisfy the trainer's need. 

 

2.4 Chapter Summary 

This chapter contains a literature review of previous research concerning balancing the 

inverted pendulum system with multiple configurations and different ways to balance 

it. Previous research also explored reinforcement learning algorithms in many fields of 

study. Previous research had indicated that reinforcement learning is an alternative tool 

for tackling a complex problem 
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CHAPTER 3 

METHODOLOGY 

This research focused on implementing a reinforcement learning-based algorithm and 

LQR algorithm to control three perpendicular reaction wheels to achieve stability at the 

cube structure's corner point. An inverted cube robot with three reaction wheels was 

built as a natural system for controller implementation. 

3.1 Mechanical Design  

The system consists of two parts, an inner cube of 3 perpendicular and outer structures. 

The inner cube contains all the control mechanics and electronics such as motors, motor 

drivers, and microcontroller modules. The challenge of design will be balancing the 

structure weight and the angular momentum generated by each reaction wheel. The 

center of the cube's mass should be as close to the structure's center as possible to 

achieve a balanced structure. The three-dimensional models' part of the inverted cube 

robot was drew using the SOLIDWORK program and then assembled as a base design 

for the construction of the inverted cube robot 

 

Figure 3.1 

3D Drawing of Inverted Cube's Parts 
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Figure 3.2 

Solidwork Assembly of The Inverted Cube 

 

 

Figure 3.3 

Inverted Cube With 3 Reaction Wheels Installed  
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In term of the electrical component of Inverted Cube, all part is mount inside the cube 

structure. The STM32f103rct6 (ARM-based 32-bit MPU) was used as the central 

controller unit by mounting and a motor drive unit, as shown in Figure. 3.5. 12V 

brushless motors with a build-in encoder unit used as an actuator to drive reaction 

wheels, picture of the motor mount along with the reaction wheel were shown in Figure. 

3.6. The accelerometer and gyroscope unit MPU6050 were mounted inside the cube 

structure with a reading configuration equal to zero for roll and pitch angle at on corner 

balance position to collect the cube's orientation data. 

 

Figure 3.4 

Circuit Connection 

 

Figure 3.5 

STM32f103rct6 and Motor Driver Unit 
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Figure 3.6 

Blushless Motor and Reaction Wheel 

 
  

3.2 Control Algorithm   

This section explains the process of controlling the inverted cube robot's components 

and balancing the inverted cube robot on its corner. 

 

3.2.1 System Identification  

Inverted Cube system was model as two axes inverted pendulum with actuator 

providing torque at the end of a pendulum. Consider torque equation (1), Let α denotes 

angular acceleration of inverted cube, ω denotes the inverted cube's angular velocity, 

θ denotes the current angle of the inverted cube. In contrast, consider at balance as 

angle equal to zero, g indicates earth gravitational acceleration, m represents the mass 

of inverted cube, l denotes the distance from the pivot to center of mass of inverted 

cube, I denotes cube moment of inertia, and T represents torque that controller provides 

to the system. 

𝛼𝐼 = (𝑚𝑔 sin 𝜃)𝑙 − 𝑇             (1) 

 

From equation (1), consider the inverted cube's angle (X1) and angular velocity (X2) 

as states one and two of the system result in the state-space equation of the system as 

shown in equation (2) (3). 

𝑋1̇ = 𝑋2              (2) 

𝑋2̇ = −
𝑇

𝐼
+ (𝑚 ∗ 𝑔 ∗ sin 𝑋1) ∗

𝑙

𝐼
         (3) 
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Because the motor's limitation of torque can provide with the reaction wheel's 

acceleration, the inverted cube was operated with a slight error angle. Linearization of 

inverted cube state-space equation results in equation (4), (5). 

𝑋1̇ = 𝑋2              (4) 

𝑋2̇ = −
𝑇

𝐼
+ (𝑚 ∗ 𝑔 ∗ 𝑋1) ∗

𝑙

𝐼
          (5) 

 

The value of the state-space equation's parameter was measured, and the result is shown 

in Table 3.1 

 

Table 3.1 

Inverted Cube's Parameter 

Parameter Value (unit) 

Mass (m) 1.5 (kg) 

Gravity (g) 9.81 (m/s2) 

Distance from Pivot 

(l) 

0.11 (m) 

Moment of Inertia (I) 0.1815 (kg m2) 

 

3.2.2 Reaction Wheels Speed Control  

To generate the correct amount of torque for the inverted cube to balance itself on the 

corner, precise control of brushless motor speed is needed. To achieve that STM32 

controller read the speed data from each motor's encode and provide a close loop control 

signal using PD controller. The motor control and motor control response diagram was 

shown in Figure 3.7 and Figure 3.8, respectively. 

 

Figure 3.7 

Control Diagram of Brushless Motor 
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Figure 3.8 

Motor Speed in Respond to Step Function. 

 

Motor speed to control all motors' signal was measured to confirm that all motors have 

the same output compared to each other. The measurement is shown in Figure. 3.9 

shows that all motors have close to identical speed output from the same control signal. 

 

Figure 3.9 

Graph of Motors' Speed (% max) – Control signal (% max) 

 

 

3.2.3 LQR Controller  

The state-space equation of the inverted cube from the section above uses the LQR 

algorithm with the Q and R matrix (6). 

𝑄 = [ 
1 0
0 1

] , 𝑅 = [2]            (6) 
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All states of the inverted cube can be observed with accelerometer and gyroscope data. 

The feedback control was implemented in the Simulink model in the Matlab program. 

Then the control gain was implemented to feedback control of the inverted cube. Each 

axis's control signal was divided into each reaction wheel using a transformation matrix 

shown in (7), and the state data was collected. 

𝑇1

𝑇2

𝑇3

= [
1 0

−0.5 0.866
−0.5 −0.866

] ∗ [
𝑇𝑟𝑜𝑙𝑙

𝑇𝑝𝑖𝑡𝑐ℎ
]         (7) 

 

3.2.4 Reinforcement Learning Base Control 

The state-space equation from the section above was used to create a model for actor 

and critic-based neural networks to train. The neural network was designed to select the 

action of increasing or reducing controller gain value according to the reward received 

for each simulation episode to allow the neural network to adjust controller gain based 

on reinforcement learning. This approach of training reduced the space of training 

environment to acquire controller gain value and separate requirement of fast control 

cycle time from calculation time of neural network during balancing on corner of the 

inverted cube. 

 

The actor model took state data which consisted of controller gain value and initial 

position and initial velocity of the inverted cube. Then the actor provided probability of 

each action in action space which consisted of increasing and decreasing of each 

controller gain value by difference amount. The detail structure of actor model was 

shown in Table 3.2. Action of controller gain value adjustment was shown in Table 3.3. 

 

Table 3.2 

Detail Structure of The Actor Neural Network 

Layer Output Size Activation Function 

Input_1 4 Adam 

Dense_1 128 Relu 

Dense_2 12 Softmax 
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Table 3.3 

Detail of Instruction of Each Action 

Action No. Action Value 

1, 2, and 3 
Increase Controller Gain 

K1 
0.1, 0.01, and 0.001 respectively 

4, 5, and 6 
Decrease Controller Gain 

K1 
0.1, 0.01, and 0.001 respectively 

7, 8, and 9 
Increase Controller Gain 

K2 
0.1, 0.01, and 0.001 respectively 

10, 11, and 

12 

Decrease Controller Gain 

K2 
0.1, 0.01, and 0.001 respectively 

 

The critic model shared the same two initial layer with actor model which took in state 

data and an estimation of total reward in future episode. The neural network aim to 

minimize the different between on state value function estimated by the critic model 

and expected returned reward value during simulation of respond of neural network’s 

action. The detail structure of critic model was shown in Table 3.4. 

 

Table 3.4 

Detail Structure of The Critic Neural Network 

Layer Output Size Activation Function 

Input_1 4 Adam 

Dense_1 128 Relu 

Dense_3 1 None 

 

The input structure of state data provided to artificial neural network during training 

consisted of initial angular position and initial angular velocity of the inverted cube 

combined with controller gain value of the current episode. The state matrix was shown 

in (8). 
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𝑆𝑡𝑎𝑡𝑒 = [

𝜃0

𝜔0

𝐾1
𝐾2

]                (8) 

 

 

Other Hyperparameter parameter related to the training of the neural network was 

shown in Table 3.5. 

Table 3.5 

Hyperparameter of The Neural Network 

Hyperparameter Value 

Optimizer Adam 

Learning Rate 0.01 

Reward Discount 

Factor 

0.99 

Clear Running 

Reward 

750 

Number of Time Step 

per Episode 

200 

 

The neural network's reward function used the inverse of the total error value of the 

inverted cube's angle from the balance position with a cost function discount from 

energy spend. This error value is angular position difference of the inverted cube in 

each time step of the simulation. The equation of the reward function was shown in (9). 

𝑅𝑒𝑤𝑎𝑟𝑑 =  ∑ (
0.01

𝑒𝑟𝑟𝑜𝑟𝑖
) 200

𝑖=1 −  𝑎𝑏𝑠(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝐺𝑎𝑖𝑛)      (9) 

 

The training process of neural network started with provide initial state to neural 

network model then the prediction of action probability acquired from actor network 

determine the sampling action provide to the inverted cube simulation. The network 

store probability of each action, critic’s value, and reward value returned from 

simulation. After each episode, neural network calculated expected reward from 

combination of reward value from simulation while giving less weight to early episode. 
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To update the actor network, loss function is based on policy gradient with critic as a 

state dependent based line. This was to maximize the network probability output for 

action that yield the highest reward value. For the critic network, the calculation of loss 

function used different between expected reward and predicted reward from critic 

network with Huber loss. This was to train critic network to better predict expected 

reward of the inverted cube simulation. The entire model was updated with 

backpropagation using combination of actor loss and critic loss to computed gradient 

from the combination of loss. Then network apply gradient parameter to update 

changeable parameter inside actor and critic network. Equation of actor loss and critic 

loss that network aim to minimize was shown in equation (10) and (11) respectively. 

 

𝐴𝑐𝑡𝑜𝑟 𝐿𝑜𝑠𝑠 = ∑ (−log 𝜋(𝑇
𝑡=0 𝑎𝑡|𝑠𝑡) ∗ [𝐺(𝑎𝑡, 𝑠𝑡) −  𝑉𝜋(𝑠𝑡)])    (10) 

 

𝐶𝑟𝑖𝑡𝑖𝑐 𝐿𝑜𝑠𝑠 = 𝐻𝑢𝑏𝑒𝑟 𝑙𝑜𝑠𝑠(𝐺, 𝑉𝜋)         (11) 

 

To end the training process, network was set to reach acceptable running reward value 

which indicated that the neural network could provide controller gain value that result 

in acceptable respond for consecutive episode. The sample of running reward of the 

training of the neural network model was shown in Figure 3.10. 

 

Figure 3.10 

Graph of Running Reward – Episode During Training of The Model 
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3.3 Chapter Summary 

This chapter contains the methodology of this thesis which consisted of the inverted 

cube construction process and method to acquire controller gain value to balance the 

inverted cube using torque from reaction wheels. The control section explains the 

approach of system identification and controller gain calculation using the LQR method 

and reinforcement learning-based method. 
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CHAPTER 4 

RESULT 

This section shows the result of the implementation of controller gain value from the 

LQR method and reinforcement learning-based method in MATLAB Simulink and the 

inverted cube robot 

 

4.1 Implementation Result of LQR algorithm  

Implementations result of controller gain from LQR algorithm in Simulink model in 

Matlab program show that the controller acquires from this method can bring inverted 

cube from initial that of small error back to steady-state as shown in Figure 4.1 

 

Figure 4.1 

Result of Matlab Simulink Implementation of LQR Gain 

 

Implementations resulting from the same control gain in an actual, inverted cube also 

show that the cube can balance itself on the corner when starting the system with a 

small error value. The state data (cube angle and angular velocity) was collected and 

shown in Figure. 4.2 
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Figure 4.2 

Inverted Cube Angle Responds After implement LQR Controller Gain 

 

 
 

4.2 Implementation Result of Reinforcement Learning-Based Control 

After the training, the result controller gain value acquired from neural network show 

in Simulink implementation that the gain value can balance inverted cube from small 

error at the initial state, as shown in Figure 4.3 
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Figure 4.3 

Result of Matlab Simulink Implementation of Reinforcement Learning Gain 

 

Implementations resulting from the same control gain in an actual, inverted cube also 

show that the cube can balance itself on the corner when starting the system with a 

small error value. The state data (cube angle and angular velocity) was collected and 

shown in Figure. 4.4 

 

Figure 4.4 

Inverted Cube Angle Responds After Implement Reinforcement Learning Gain 
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4.3 Robustness Comparison Between Two Method 

Change to parameter of the inverted cube was made by adding more weight to the 

inverted cube as an experiment to see how both control method will reaction to that 

change. The result of LQR method and reinforcement learning-based method was 

shown in Figure 4.5 and Figure 4.6 respectively. 

 

Figure 4.5 

Result of LQR Controller After the Change in Parameter 
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Figure 4.6 

Result of Reinforcement Learning-based Control After the Change in Parameter 

 

The result shown that respond of LQR became slower and had more steady state error 

after the change of the inverted cube parameter. This phenomenon occurred because 

LQR method acquired controller gain value from system transfer function which 

changed with additional weight. On the contrary reinforcement learning-based control 

method’s respond maintain similar respond to the configuration of the inverted cube 

before change was implemented. 

 

 

4.4 Chapter Summary 

This chapter contains both controller gain value from the LQR method and 

reinforcement learning-based simulation method and the inverted cube structure to 

balance the cube structure on the destinated corner. 
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CHAPTER 5 

CONCLUSION 

This thesis presents two possible methods to achieve balance control of inverted cube 

robots with reaction wheel as actuators. The inverted cube maintains its balance 

position with the initial position close to the balancing position using torque provided 

by three reaction wheels install inside its structure. Control successfully provides a 

proper control signal to keep the inverted cube in a balance position using gain acquire 

from both the LQR method and reinforcement learning-based method.  

The LQR approach to balance the inverted cube robot on its corner shows that the 

balance's angular position had some steady-state error. The above event occurred 

because the controller only considers two-state from state measurement of the cube's 

angular velocity and angular position. Therefore, in the actual implementation, the 

inverted cube had some vibration at the balance position due to correction of position 

from a small error value. Accordingly, the inverted cube can neglect the external force's 

disturbance when the correction's torque requirement does not exceed the brushless 

motor's saturation value. The state above also directly impacted the inverted cube 

robot's initial position can bring itself up to a balanced position. 

While the reinforcement learning-based method provides a very similar response in 

balancing the inverted cube robot's action, learning the optimal controller gain value 

depends heavily on the random sampling of action in turning controller gain value. The 

above-caused reinforcement learning-based method to have varied about episode 

requirement to reach the worthy goal of reward value to terminate the learning process. 

The final controller gains value from this method can correctly balance the inverted 

cube on its corner and neglect external disturbance like the LQR method. Because of 

the method's randomness nature, the controller gain value that clears the termination 

condition can also vary from each training session. Nevertheless, this method's result-

based nature makes each controller gain results from the training process to balance the 

inverted cube on its corner. 

While the controller gain value from both methods successfully balances the inverted 

cube on its corner, the significant difference from both methods is the lack of 

reinforcement learning-based method to prioritize each state, unlike the LQR method. 

Another downside of the reinforcement learning-based method is that sometimes 
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because of its explorative nature, the controller's adjustment action moves far away 

from the optimal gain value and moves into territory that reward function cannot 

differentiate the difference in response inverted cube anymore. Because of the above 

reason, initial values of controller gain randomly generate had a significate impact on 

the training process of the neural network to reason acceptable controller value to 

balance the inverted cube robot. 

From above, it can be concluded that both the LQR method and the reinforcement 

learning-based controller method can be used as a solution to control inverted cube with 

reaction wheels to balance itself on the corner. This result shows that the reinforcement 

learning method can be an alternative approach to achieving the dynamic system's 

balance control. Additional studies could use reinforcement learning as an alternative 

method to find an optimal control gain for other systems to further explore 

reinforcement learning ability in control-related problems. 
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CHAPTER 6 

DISCUSSION 

The result indicates that both the LQR method and reinforcement learning-based 

method can balance inverted cube robots. After implementing controller gain from both 

ways, the inverted cube balance itself on a single conner when inverted cube robot's 

initial position start close to balance on the corner position. 

In line with the hypothesis, the inverted cube's response to the LQR method and the 

reinforcement learning-based method is similar to each other in the scope that both 

ways can balance the inverted cube on its corner, neglecting some amount of 

disturbance from the external force. The reinforcement learning-based control method's 

result proves that it can be used as an alternative method for balance control problems. 

Nevertheless, the torque saturation provided from the motor and reaction wheel is the 

critical factor that can disrupt the system when external force was applied long enough 

to the inverted cube. While the controller gain value from the reinforcement-based 

learning method has some random element added to it during the learning period, the 

controller can use this method to determine gain value without the system's transfer 

function requirement. Nevertheless, because of limitation due to the number of episodes 

required for the learning method to achieve controller gain that can balance the inverted 

cube, the learning process uses computer simulation to create scenarios instead of an 

actual experiment. Further research is required to explore the reinforcement learning-

based control method's ability to optimize controller gain for a different type of balance 

system. 
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