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ABSTRACT 

This thesis presents the development of Differential-drive Autonomous Intelligent 

Vehicle (AIV) with autonomous cart-searching and picks up. An AIV is a mobile 

robot/vehicle used to transport materials in indoor manufacturing environments or a 

warehouse and designed to receive and distribute material or finished goods. AIV can 

self-navigate through a real indoor environment and be able to avoid dynamic obstacle 

and find an alternating route in case the pre-planned route is blocked. Autonomous 

Cart-Searching and Picks Up feature is developed to allow the AIV to find and get the 

specifically requested cart.  

Two Laser Scanner unit are using to create a map in the environment. Extended Kalman 

Filter uses for the sensor fusion of IMU unit and wheel odometry. Then, Adaptive 

Monte Carlo Algorithm provides the localization of the robot on the map. Moreover, 

several local and global planner performances have tested. Then the camera detects and 

decode April Tag on the cart while searching. April Tag is used to localize the cart then 

proceed to engage to the cart to AIV. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

This thesis is discussing on the development of control system for the autonomous 

intelligent vehicle (AIV) that is based on Unicycle Model, a non-holonomic system, 

which a robot has some forward velocity but no instantaneous lateral motion. These 

systems are widely used for research in automation. 

1.2 Introduction 

The introduction of the Industry 4.0, the use of advance control system with cutting 

edge embedded software is increasing implemented. (Huang et al., 2018). It enables 

new method of production, value, and system optimization. This advancement is 

pushing the step toward the smart factories. In industry 4.0, Robot implementation is 

essential elements. 

AIV, also known as Autonomous Mobile Robot, is a robot that runs without needing to 

draw a line but uses maps to determine the route. It is easy to create a map of the 

working area by taking the AIV to work in the direction that is required. Its body has 

sensors to scan and collect information of the surrounding area and then use the data to 

create a map for the working area. AIV is special due to the ability to work in dynamic 

environment without the need of guidelines and can be modified to fit various task in 

different industry. 

1.3 Statement of the Problems 

This thesis is focusing on the development of control system, navigation system, and 

algorithm for the differential-drive AIV robot operate in clean-room in manufacturing 

plant of Western Digital Company (WD. The current commercial AIV operated in WD 

can handle the payload of 60kg. The commercially costs much more than the in-house-

designed designed AIV. 

1.4 Objectives 

The objective of the thesis is the development of the controlling system, navigation 

system, and algorithm for searching and engaging to the desired cart for the differential-
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drive AIV robot at Western Digital, Thailand. The mechanical structure is designed by 

Western Digital Engineer while the electrical system and control system are designed 

and discussed in this thesis. 

Overall objective is to: 

 Localization and Navigation Control of a Differential-drive Autonomous 

Intelligent Vehicle (AIV) with Cart-Searching and Automatic Pickup. 

The proposed AIV will be able to:  

1. Create the map of the working area by manually control the robot to teach it. 

2. Monitor man scanning and operation externally. 

3. Localization of the robot is done using SLAM based localization with 360-

degree scan. 

4. Navigate from known point to given point in the known working area. 

5. Avoid static and dynamic obstacle, and able to find alternative route in case of 

the blocking of initially planned route. 

6. Identify the cart identity using a camera and Quick Response code (QR code). 

7. Search for a specifically identified cart in a specific area. 

8. Localize the Cart using AprilTags. 

9. Engage the cart to be moved. 

1.5 Scope 

The proposed AIV is working under the following limitations: 

 The experiments will be tested in lab environment with consistent lighting. 

 The floor surface should be evenly leveled and not slippery. 

 The obstacles height should be more than the height of the laser scanner on AIV 

measured from the ground. 

 Glass obstacles will not be detected or avoided. 

 Overhang obstacle will not be detected or avoided. 

 The opening of the cart must be no less than 25 cm wider than the width of the 

AIV. 
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1.6 Main Contributions 

The main contribution to the development of this AIV are listed below: 

 Creating the math model of the robot. 

 Design the controller to control the motion of the robot. 

 Design and evaluate the algorithm for cart searching and pick-up. 
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CHAPTER 2 

LITTERATURE REVIEW 

The challenging problem of the AIV is the navigation in dynamic environment, a 

mobile robot must be aware of 3 main concepts. To begin with, it must know where it 

is (Localization). The second is where it is going. Finally, it is regarding to the way to 

gets there (Path Planning). The robot must have a model of the environment (Mapping). 

It could be provided or generate along the way. It must recognize and compare to the 

existing map to figure out its position in the map. The behavior of the mobile robot, 

see-think-act cycle can be expressed as below. 

Figure 2.1  

See-Think-Act 

 

2.1 Warehouse Transportation Robot  

Many logistic companies are increasingly implementing the robot in their facility. This 

make the value of the robot market increase and is estimated to reach 6 billion USD by 

2022.(Allen, 2020). Logistic robot includes automatic inventory storing moving or 

sorting. 
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2.1.1 Automated Guided Vehicles (AGV) 

AGV is the inventory moving robot in the storage facility or manufacturing facility. Its 

operation depends on the dictated guidance marked or embossed on the floor. 

Figure 2.2  

Automated Guided Vehicles (AGV) 

 
 
2.1.2 Autonomous Intelligent Vehicles (AIV)  

Autonomous Intelligent Vehicles function similarly to AGV, yet it does not depend on 

the dictated guidance. It depends on the map and sensors to acknowledge the 

environment and moving in the map without colliding into any obstacles. 

Figure 2.3  

Autonomous Intelligent Vehicles (AIV) 
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2.1.3 Unmanned Aerial Vehicles (UAV) 

Unmanned aerial vehicles function as real-time inventory monitor through the on-board 

video feed. 

Figure 2.4  

Unmanned Aerial Vehicles (UAV) 

 

2.1.4 Warehouse Robots Navigation 

Depending on the types of robots, the navigation approaches can be implemented in 

different ways such as: 

 Rail navigation  

 Magnetic tape-based navigation 

 Label-based navigation 

 Laser-based navigation 

 Vision-based navigation 

 Geo-guidance 

2.2 Kinematic of the Robot 

It is important to understand the kinematics of the robot, there for the behavior of the 

robot can be predicted when the input is applied of the disturbance is encounter.  

2.3 Mobile Robot Wheels Arrangement  

The number of degrees of freedom and constraint of the robot is directly corresponding 

to the wheel’s type selection and placement.  
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2.3.1 Wheel Types 

The wheels can be classified according to its dynamic as follow: 

 Standard wheel: 1 degree of freedom as shown in Figure 2.5 (a) 

 Castor wheel: 3DoF as shown in Figure 2.5 (b). 

 Swedish wheel: as shown in Figure 2.5 (c). 

Figure 2.5  

Types of Wheel 

 

2.3.2 Characteristics of Wheeled Robots  

Depending on the robot-wheel configuration, it affects the stability of the robot. It 

requires 3 wheels arrange in triangle shape where the center of mass in triangle to ensure 

the natural stability.  

Wheel size has impact on the mobility of the robot. Bigger size wheel performs better 

on terrain such as grass, gravel, while small size is good for even and smooth terrain. 

There are some wheels configurations as listed below: 

 Synchro Drive: the wheel rotating at the same speed at the same direction. 

 Differential Drive: it depends on the difference of the speed of right and left 

wheel to control the robot movement. 
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 Omnidirectional Drive: the difference speed of the wheels enabled the robot to 

move in every direction on 2D plane. 

Figure 2.6  

Wheel Configurations 

 
 

2.4 Model of Differential Drive Robot 

Supposed that reference frame is {�� , �� }, robot frame is {� ,  � }, robot position 

� [� � ∅] is in cartesian co-ordinate system of reference frame. The transformation 

between the 2 fames can be express using this homogenous transformation matrix. 

�� = �� 

Where,  

� = �
cos ∅ sin ∅ ��

− sin ∅ cos ∅ ��

0 0 1

� 

The movement of Differential Drive Robot can be control by varying the velocity and 

the direction of each wheel, ��, velocity of right wheel, ��. Then the position and the 

heading of the robot can be determined by taking the radius of the wheel, � and the 

width of the robot, � into consideration. The relation between the input �� , �� , the 

position and be derived as below. 

�̇ =  
�

2
(�� + ��) cos ∅ 
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�̇ =  
�

2
(�� + ��) sin ∅ 

∅̇ =  
�

�
(�� − ��) 

For easy conceptualize it can be substituted by Unicycle model, which consider only 

translational and angular velocity. Thus the input of the system are �, translational 

velocity, and �, angular velocity. (Malu & Majumdar, 2014) 

�̇ =  � cos ∅ 

�̇ =  � sin ∅ 

∅̇ =  � 

�� =
2� + ��

2�
 

�� =
2� − ��

2�
 

Figure 2.7  

Differential Drive 

 
 

 

2.5 PID Controller 

PID is a proportional, integral, derivative controller. The output is the summation of the 

3-control terms. PID is a closed loop feedback controller, where the P I D term are 
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calculated according to error of variable set-point to process variable. The controller 

behavior and system performance can be tuned by tuning the P I D gain. 

Figure 2.8  

PID Controller 

 

2.6 2D Laser Rangefinder 

2D laser rangefinder or laser scanner uses the laser time-of-flight to determine the 

distance to the object. It measures the time laser took to travel to and reflect with high 

precision. The laser scans the area in a 2D plane around itself. The advantage of laser 

is the measurement accuracy, high sampling rate, high angular resolution. 

There are some limitations of Laser rangefinder which are: 

 Transmitted energy in Nature. The Laser rangefinders are not capable of 

detecting optically transparent obstacles. Also, reflection from small dust 

particle should make the measurement invalid.  

 The measuring distance. 

Beside the limitation above, laser scanner provides accurate measurement. Many 

literatures implement it in the robot. 

2.7 Localization and Mapping 

Localization is the process of locating the robot position in the map. The map is required 

to do the localization.  
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2.7.1 Kalman Filter Localization 

Kalman Filtering is a method applying to the comprehend the data with random noise. 

It can merge the uncertainties of the current state described as Gaussian probability 

distribution.  

The algorithm is recursive of prediction and update procedure. The algorithm estimates 

the current state with the uncertainties. By observing the next measurement, the 

estimation is updated with the average of the weight. 

Figure 2.9  

Kalman Filter Process 

 

 

2.7.2 Simultaneous Localization and Mapping (SLAM) 

SLAM is a method of localizing, generating and update the map at the same time. It is 

a popular method applied for robot application. The process comprises of many steps. 

SLAM aims to update the current location of the robot by using the combination of 

different sensor such as scanner data, wheel odometry, visual odometry.  
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Table 2.1  

Various SLAM Algorithm 

Name Loop Closure Algorithm 

Gmapping Yes Particle filter  

Hector SLAM No Scan Matching + EKF 

Get SLAM Yes Graph based SLAM 

Google Cartographer Yes Graph based SLAM 

Ezthasl icp mapping Yes ICP based SLAM 

 

2.7.3 Map Representations 

The environment can be represented in different way such as: 

 Topological Maps: as shown in  Figure 2.10 

Figure 2.10  

Metric Map vs Topologic Map 

 

 Feature maps: map that represent the point, line, corner, or edge 

 Grid maps: The maps representation to a specific feature 
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Figure 2.11  

Grid Map 

 
 

2.8 Path Planning and Navigation 

Path planning and navigation are the method of guiding the robot to move to the goal 

position successfully without colliding into any obstacle. 

2.8.1 Potential Field Methods 

To regulate the robot in the space, the potential field algorithm uses the artificial field. 

The simple form of potential motion planning is to let the robot follow the potential 

gradian to the goal. 
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Figure 2.12  

Potential Field in 2D Space 

 

2.8.2 Planning  

Planning is the process of finding the optimum path for the robot to the goal according 

to the robot current position, and the condition of the environment. 

2.8.3 Obstacle Avoidance 

The obstacle avoidance prevents the robot to collide into any object. It predicts the 

trajectory of the robot. Below are some methods: 

 Bug algorithm: it works by moving the robot toward the goal until there is 

obstruction, then it follows the edge of the obstruction until it found the goal. 

 Dynamic Window Approach (DWA): it is a sampling-based algorithm. 

Velocity-command pairs are simulating for a set period and the best velocity-

command pair is chosen. 

 Velocity Obstacles (VO): it deals with moving obstacle.  

2.9 Robot Operating System 

ROS is a publicly available firmware that allow easy the integration of sensors and 

machine for a complex robot operation. ROS functions as the meta-operating system 

that provide hardware preoccupation, low level control, inter process and package 

management. It can be run in different computers while share and utilizing the same 
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resource. The shared data is handled by ROS and allocated according to the topic. The 

data in the topic is called message. A node is a program or an execution. The node can 

subscribe and publishes many topics. 

Figure 2.13  

Robot Operating System (ROS) 

 

2.9.1 ROS Navigation Stack 

ROS navigation stack is the core of the robot navigation. It combines the map, 

localization, path planning. It utilizes the data and command the velocity-command to 

the robot to move. 

Figure 2.14  

Navigation Stack 

 

2.10  AprilTag 

Apriltag is used as visual fiducial mark. The tag is detected from a camera while the 

position and orientation of the tag can be also obtained. The number of tag, data storing 

and decoding is different according to the tag family.  
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Figure 2.15  

Apriltag 
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CHAPTER 3 

METHODOLOGY 

This chapter is primarily covered the performance of planning that was developed by 

doing alternative literature review. The plan of study will be strictly aligned to the 

objective that was mentioned earlier in the report. This thesis will be carried out in the 

following way. First is Hardware Setup. It includes the main structure assembly of the 

robot, motors, drivers, wheels, various sensors, circuit, power distribution, and control 

boards. Second is the design and implementation of controller running on ROS.  

3.1 Mechanical Structure 

The proposed design of the robot is a cylindrical shape robot. The diameter of this robot 

is 450 mm, and the height is 445 mm when the engaging mechanism (triangular 

extrusion) is fully extended. This robot sits on 2 differential driven wheels at the middle 

of the robot and 2 caster wheels placing one at the front and one at the back as can be 

seen in figure21. It is powered by a 24V 50AH Li-ion battery. There are 2 Laser Range 

Finder placed at the front and the back of robot for mapping, localization, and obstacle 

avoidance. A camera is placed the upper front of the robot for QR detection and tag 

localization. The engaging mechanism is a triangular shape block that raise from the 

top of the robot to engage the cart to the robot. 

Figure 3.1  

View of WD AIV 
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Figure 3.2  

Bottom View of WD AIV 

 
 

3.2 System Design 

The design of the system can be divided into 5 main parts: Central Processor, Motion 

Control, External Control Input, Perception sensors, and Power distribution.  
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Figure 3.3  

System Design 

 

3.2.1 Central Processor 

The main system of the AIV is the Central Processor which all the programs to operate 

the AIV are running on. The Nvidia Jetson TX2 is chosen for this job. Jetson TX2 is 

built using an NVIDIA Pascal™-family GPU with an 8GB, 59.7GB/s of memory 

bandwidth memory card (NVIDIA, 2021). Considering the efficient power 

consumption with the high performance, it is suitable to be used on the mobile robot 

which requires high computation power. 
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Figure 3.4  

NVIDIA Jetson TX2 Development Board 

 
 

The board is equipped with onboard Ethernet, Wi-Fi, and Bluetooth modules makes it 

convenient for this application. There are only one USB 3.0 port for external connection 

thus USB3.0 hubs are used to extent connectivity to external devices and sensors. 

The operating system operates on this board is Ubuntu 18.04 LTS. On top of that, 

Robotic Operating System Melodic (ROS-Melodic) is use manage, control, and operate 

the AIV. 

3.2.2 Motion Control 

In order to be able to control the movement of various moving parts of the AIV, a good 

controller is crucial and need to be well designed. The main moving parts on this AIV 

consists of 2 main elements including wheels to for AIV movement and lifer for AIV 

to cart engagement. 

 Drive motor. The drive motors are responsible for AIV movement. This 

AIV is a differential drive robot, thus 2 driver motor are needed to drive right and left 

wheel. The motor that is being used is brushless Oriental Motor BHL series, BLH 

5100K, which is rated at 100W power. This particular motor is used in combination 

with 20:1 gear reduction head providing good speed and tremendous amount of torque. 

The motor is running on 24V system. The Oriental motor driver is used in this 

application. 
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Figure 3.5  

Oriental Motor BLH5100K with the Motor Driver 

 

Table 3.1  

Motor Specification 

Technical Specification 

Shaft/Gear Type Combination Type Parallel Shaft Gearhead 

Rated Output Power 

(Continuous) 

100W 

Power Supply Input Rated 

Voltage 

24V 

Power Supply Input 

Permissible Voltage Range 

±10% 

Power Supply Input Rated 

Input Current 

6.0A 

Power Supply Input Maximum 

Input Current 

9.8A 

Rated Torque (Motor Shaft) 0.4N･m 

Starting Torque (Motor Shaft) 0.5N･m 

Rated Speed (Motor Shaft) 2500r/min 

Speed Control Range 10-300r/min 

Acceleration Time / 

Deceleration Time 

0.5∼10 sec 

Speed Setting Method ・Internal potentiometer. 

・External potentiometer: 20 kΩ, 1/4 W 

・External DC voltage: 0∼5 VDC, 1 mA 

min. (Input Impedance: 47 kΩ). 

Gear Ratio 20:1 
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 Encoder. The incremental rotary encoder is connected to motor output 

shaft via a timing belt to measure the output shaft rotation speed and sense the position 

of the robot. The Omron E6B2 is used for this AIV. This encoder provides a good 

resolution of 1/2000 of rotation which is beneficial for accurate speed and position 

feedback.  

Figure 3.6  

Omron Encoder 

 
 

 

Table 3.2  

Encoder Specification 

Technical Specification 

Power supply voltage 5-24V 

Resolution 2000 

Output Configuration  NPN open-collector output 

Maximum response frequency 100 kHz 

Maximum permissible speed 6,000 rpm 
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Figure 3.7  

Motor, Encoder, and Wheel Assembly 

 
 

 Lift Motor. The AIV is designed with a raise and lower able engaging 

triangular block function as the engaging point between the AIV and the cart. The motor 

responsible for raising and lowering the block is BLH015K brushless Oriental Motor 

with 20:1 gear reduction head. 

Figure 3.8  

Oriental Motor BLH015K 
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Figure 3.9  

Engaging Block of Lift Assembly 

 
 

 Microcontroller. The microcontroller is used to take care of the control 

of wheel speed, motion control of AIV, lift mechanism control and communicate with 

ROS. For this application, teensy 3.6 is selected for this function. It is a powerful is a 

3.3V ARM Cortex-M4 board running at 180 MHz is a small form factor board. 

Figure 3.10  

Teensy 3.6 
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 Motion Controller Design. ROS operation, the ROS navigation stack 

publishes a set of velocity command to a controller node to make the AIV move called 

geometry_msgs/Twist.msgs. The Twist message consists of 2 vector sets, linear and 

angular velocity in x, y z axis respectively of the robot. The controller node is 

responsible for translating the input command to motor speed command to achieve 

robot motion accordingly.  

Figure 3.11  

Microcontroller Connection 
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Figure 3.12  

Twist Message 

 

 

For this particular AIV, the linear velocity in x axis command moves the robot forward 

or backward, and angular velocity in z axis rotate the AIV clockwise or 

counterclockwise while other are not necessary. The command speed for right and left 

can be calculated as follow: 

�� = �̇ +  
� ̇ �

2
 

�� = �̇ −  
� ̇ �

2
 

Where, 

 �� , ��  are velocity of right and left wheels. 

 �̇ , �̇ are linear velocity in x axis and angular velocity in z axis 

� is the distance between right and left wheel 

The measured angular velocity of each wheel by the encoder can be calculated as 

follow: 

 

��  =
������� ����� ���ℎ� × 2� × �ℎ��� ������ × 0.0005

���� ��������
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��  =
������� ����� ���� × 2� × �ℎ��� ������ × 0.0005

���� ��������
 

 

3.2.3 External Control Input 

External Control Input is required to control the AIV remotely. There are many methods 

for this, yet for reliable connection over the distance, the commercial remote controller 

is use for this application. 

Figure 3.13  

FLYSKY Radio Transmitter and Receiver 

 
Two control inputs are required to control the AIV. Channel 2 (CH2) and Channel 4 

(CH4) are uses for velocity in X axis and angular velocity in Z axis, respectively. Then 

control inputs are transmitted to and received by the Receiver.  

Figure 3.14  

Input Channel Mapping 
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At receiver side, the input command receives for the transmitter is sent microcontroller 

Arduino MEGA 2560. The Arduino Mega maps the command data to 

geometry.msgs/Twist.msgs.  Then Arduino functions as a node name /serial_node_ 

teensy published it to ROS on /remote_cmd_vel topic. 

Figure 3.15  

Receiver and Arduino MEGA Connection 

 

Figure 3.16  

Remote_cmd_vel Monitor 
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3.2.4 Perception Sensors 

The AIV is equipped with various sensors to perceive the environment around it. The 

data from those sensors will be used and manipulate to enable robot to work 

autonomously. 

 Hokuyo 2D Laser Rangefinder. The Hokuyo URG-04LX-UG01 

Scanning Laser Rangefinder is selected to use in this project. Considering the compact 

size, the detectable range, resolutions, and less energy usage makes it the good choice 

for this project  

Figure 3.17  

Hokuyo URG-04LX-UG01 

 

Below are the specifications of the Hokuyo URG-04LX-UG01 

 Power source: 5VDC±5 (USB Bus power) 

 Light source: Semiconductor laser diode(785nm), Laser safety class 1 

 Measuring area: 20 to 5600mm (white paper with 70mm×70mm), 240° 

 Accuracy: 60 to 1,000mm: ±30mm, 1,000 to 4,095mm: ±3 of measurement 

 Angular resolution: Step angle: Approx. 0.36° (360°/1,024 steps) 

 Scanning time: 100ms/scan 

 Noise: 25dB or less 

 Interface: USB2.0/1.1[Mini B] (Full Speed) 

 Command System: SCIP Ver.2.0 
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 Ambient illuminance*1: Halogen/mercury lamp: 10,000Lux or less, Florescent: 

6000Lux (Max) 

 Ambient temperature/humidity: -10 to +50 degrees C, 85% or less (Not 

condensing, not icing) 

 Vibration resistance: 10 to 55Hz, double amplitude 1.5mm each 2 hour in X, Y 

and Z directions 

 Impact resistance: 196m/s2, Each 10 time in X, Y and Z directions 

 Weight: Approx. 160g 

There are 2 Hokuyo URG-04LX-UG01 onboard the AIV, one is for front scanning and 

another one for rear scanning. Combining the scanning data from the 2 sensors, the 360 

full coverage around the AIV is achieved.  

Figure 3.18  

Front Scan in Blue Color and Rear Scan in Red 

 

Urg_node packaged is utilized to get the scan data from each laser scanners and publish 

it to its respected topics such /base_laser_front and /base_laser_rear. The lunch file 

defines the serial port and serial baud rate and other parameters. 

Then the ira_laser_tools package is used to combind the 2 scan data into 1 scan data. 

The node subscribes to /base_laser_front and /base_laser_rear then publishes the 

merged data to topic name /scan. 
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The below figure shows the lauch file that aquires data from 2 laser scanners and merge 

them into topic. 

Figure 3.19  

Lunch File for the Scanner 

 

 Inertial Measurement Unit (IMU). The 9DoF Razor IMU from 

Sparkfun is installed on the AIV. Before the IMU can be used it needs to be properly 

calibrated since the other magnetic components and meatal structure effect the 

performance for the IMU. 
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Figure 3.20  

9DoF Razor IMU 

 

Figure 3.21  

IMU Visualization 
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Figure 3.22  

Calibrated Parameters 
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 Camera. Logitech B525 HD camera is use for April tag scanning and 

localizing. The camera is a 1080p Full HD at 30 frames per second with the field of 

view of 69 degree. 

Figure 3.23  

Logitech B525 

 
 

3.2.5 Power Distribution 

The AIV is powered by a 50 Ah 24V Li-ion battery. The regulators are mandatory to 

regulate the voltage to suit the electrical components used onboard AIV. The power 

distribution switches as well as the main voltage emergency cut-off is equipped. 

Figure 3.24  

24V Li-ion Battery 
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Figure 3.25  

Power Distribution 

 
 

 

3.3 Robotic Operating System 

The Robot Operating System is a framework to write the software of the robot. There 

are numbers of tools, libraries, and methods that are helpful for the creation of the 

complex tasks and reliable the behavior of the robot across the platform variation. 

Figure 3.26  

ROS Framework 

 
 

ROS allows user to group the programs into packages. There can be multiple packages, 

each handles a specific task in the robot operation. Separation of the programs into 

packages reduces code complexity and makes it easy to scale the application and debug. 
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It is possible to have more than one program in a package. A node in ROS is define as 

each program. A node is an executable program or a process that performs computation 

inside the application.  Each node is launched separately. ROS communication 

functionalities, for example topic, services, actions, etc.  are used for the 

communication of each node between each other. 

ROS Topics are labeled buses that nodes interchange messages. Topic is anonymously 

publishers/subscriber denoted. Topics are unidirectional streaming communication. 

Multiple nodes can publish and subscribe to a topic while a node can publish and 

subscribe to multiple topics. Nodes subscribe to a relevant topic interested and publish 

generated data to the relevant topic.  

In this thesis, the programs for the AIV are implemented the ROS melodic running on 

Ubuntu 18.04 LTS.  

Figure 3.27  

ROS Nodes and Topics 

 

 

3.4 ROS Tf 

Tf is a package that users can keep track of the coordinate frame. Users can transform 

points, vectors, between coordinate frames at any preference at any given time.tf also 

carry on the transformation between the 2 frames is recorded   

There are 2 types of transformation between coordinate frames, static transformation, 

and dynamic transformation. Static transform is a constant transformation between 2 
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frames, whereas dynamic transform is subject to changes overtime. In this application, 

the static transformation is the transformation of the sensors frames to the base of the 

robot. In is AIV the base of the robot is called “base_link”. Then the frame of other 

sensors is referred to this frame. Each sensor has their own frame. Therefore, the data 

refers to the sensors can be transformed to another frame. The dynamic transformation 

on the other hand is the transform between the “base_link” to the “odometry” frame as 

an example. As the AIV move, the transformation between these 2 frames is updated.   

The tf_broadcaster node written in C++ is responsible for publishing the static 

transformations. While the dynamic transformation is taken care by another package 

that will be discussed later in this thesis report.  

Figure 3.28  

Static TF Broadcaster Node 
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Figure 3.29  

TF Visualization on Rviz 

 

 

3.5 Motion Control Software Implementation 

The motor controller is used for controlling the speed of the motor to exact command 

speed. Proportional Integral Derivative (PID) is a motor controller which is applied in 

this function.  

Figure 3.30  

PID Controller 

 

The transfer function of the plant which is the motor and gear reduction assembly from 

micro controller PWM output to wheel velocity is required. The transfer function can 

be defined using system identification method. The system identification method can 

be used to determine the transfer function of an unknown system which is considered 

as a black box. The input is feed into the system then the output is measured. From the 
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relation of the input to the output, the transfer function can be estimated. In our 

approach, the time series PWM signal is feed to the motor driver and the time series 

output wheel velocity is logged to the log file. The PWM signal consists of square 

signal, step signal, sinusoidal signal, saw tooth signal with different frequency are used 

the output are logged into their respectable signal. Then MATLAB is utilized to 

estimate the transferring function by using system identification toolbox.  

Figure 3.31  

Input Signal U1 and Output Signal Y1 Data for System Identification 
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In MATLAB System Identification Toolbox, the sets of input and output signal are 

imported. Each data set is used to estimate a transfer function as can be seen in figure 

below. 

Figure 3.32  

MATLAB System Identification Toolbox Window 

 
 

After doing testing and validating it can be seen that the transfer function that best fit 

the validating date is t1.  

Figure 3.33  

Transfer Function Validation 
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Figure 3.34  

Transfer Function TF1 

 
 

After the transfer function is obtained the PID controller can be design. MATLAB 

Simulink is used to design and simulate result. Trial and error approach is used to tune 

the controller while focusing on minimizing overshot and control effort and 

considerable response time. The PID Transfer function based PID tuner is use for this 

job. 

Figure 3.35  

Wheel Speed PID Controller Loop 

 
 



 

 42

The Figure 3.36 shows the P, I, and D parameter gain after tuning. The loop has 0.515% 

overshot and settle time of 0.673 second. 

Figure 3.36  

Parameter form PID Tuning 

 
 

 

Figure 3.37  

Vr Step Response 
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Figure 3.38  

Simulation of Control Loop 

 
 

The PID controller transfer function of the loop can be calculated using the formula 

below: 

���(�) = � + � �
1

�
� + �

�

1 + �
1
�

 

By plug in the parameter obtain from tuning. 

� = 19.8725 

� = 967.272 

� = 0 

Then  

���(�) =  
19.87 � + 967.3

�
 

Then the transfer function can be discretize using Zero Order Hold (ZOH) at time 

interval of 0.01 second corresponds to 100 Hz looping 

���(�) =  
19.87 � − 10.2

� − 1
 

The difference equation can be obtained: 
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�[�] = 19.87 �[�] − 10.2 �[���] +  �[���] 

The obtained difference equation can then be used to implement in microcontroller. 

Then 2 more PID control loops need to be designed to control AIV velocity in x 

direction (cmd_v) and the angular velocity in z direction (cmd_w). The same approach 

to above is implemented for these controllers. 

Figure 3.39  

AIV Motion PID Controller Loop 

 

The controller loop for linear velocity in x direction (cmd_v) can be turned in PID 

Transfer function based PID tuner. The figures bellow shows the output parameter and 

performance of controller. 

Figure 3.40  

Cmd_v Step Response 
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Figure 3.41  

Cmd_v Controller Parameter and Performance 

 

Figure 3.42  

Simulation of Cmd_v Control Loop 

 

The PID controller transfer function of the loop can be calculated using the formula 

below: 

���(�) = � + � �
1

�
� + �

�

1 + �
1
�

 

By plug in the parameter obtain from tuning. 

� = 0.3478 
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� = 2.362 

� = 0 

Then  

���(�) =  
0.3479 � + 2.376

�
 

Then the transfer function can be discretize using Zero Order Hold (ZOH) at time 

interval of 0.01 second corresponds to 100 Hz looping 

���(�) =  
0.3479 � − 0.3241

� − 1
 

The difference equation can be obtained and implemented in microcontroller 

�[�] = 0.3479 �[�] − 0.3241 �[���] + �[���] 

The obtained difference equation can then be used to implement in microcontroller. 

Likewise, the controller loop for angular velocity in z direction (cmd_w) can be turned 

in PID Transfer function based PID tuner. The figures bellow shows the output 

parameter and performance of controller. 

Figure 3.43  

Cmd_w Step Response 
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Figure 3.44  

Cmd_w Controller Parameter and Performance 

 

Figure 3.45  

Simulation of Cmd_w Control Loop 

 

By plug in the parameter obtain from tuning, 

� = 0.3479 

� = 0.3241 

� = 0 
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Then  

���(�) =  
0.3479 � + 2.376

�
 

 

Then the transfer function can be discretize using Zero Order Hold (ZOH) at time 

interval of 0.01 second corresponds to 100 Hz looping. 

���(�) =  
0.3479 � − 0.3241

� − 1
 

The difference equation can be obtained and implemented in microcontroller 

�[�] = 0.3479 �[�] − 0.3241 �[���] + �[���] 

3.6 Odometry 

In robotic, Odometry is defined some legged or wheeled to estimate the position related 

from starting to ending location. The sensitive point in this method is the errors of the 

integration of velocity measurement over time that is used to allocate and estimate the 

location. The effectively used of Odometry in most cases include rapid and accurate 

data collection, instrument calibration, and the processing.  

Encoder_dometry node written in C++ is responsible for this task. It keeps 

transformation between “base_link” to “odom” frame. The node subscribes to 

“/right_wheel1_velocity” and “/left_wheel2_velocity” which are the wheels velocity of 

the AIV’s right and left wheel respectively. The publisher is responsible for publishing 

these topics is serial_node_teensy which reads, calculates, and publishes the topics once 

in 0.02 second or 50Hz. Then the data is calculated and publishes the odometry data in 

topic “/odom” 
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Figure 3.46  

Odometry Calculation and Update 

 

3.7 Mapping 

SLAM Gmapping is implemented for map generating. ROS node called 

slam_gmapping. 2-D occupancy grid map, like a building floorplan, can be created 

using slam_gmapping from the laser and pose data collected by AIV.  

To do the mapping, it requires 2 topics: 

 /scan: Laser scan data  

 /odom: Odometry from wheel encoder. 

The important parameter can be set in the launch file, such as the topic name of the 

Laser scan data, base frame, the odom frame and other parameters. Below figure show 

the launch file utilizing the gmapping package and the configured parameter for map 

scanning. 
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Figure 3.47  

Gmapping Launch File 

 

Figure 3.48  

Grid Map Obtained from Gmapping 
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3.8 Localization and Navigation 

Robot navigation means the ability define its own position in the reference frame. Robot 

navigation be able to plan the pathway to its goal location. Robot and other mobility 

device need to representation in order to navigate in the environment.  

3.8.1 Sensors Fusion 

In this AIV, the sensor fusion is implemented using robot localization package. There 

are 3 sensors be fused such as odometry (/odom), IMU sensor, and command velocity 

(/cmd_vel). The package results the fused odometry (/odom_fusioned). 

The figure below shows the implemented configuration of each sensor. Odometry 

sensor position x, y, yaw, IMU yaw, cmd_vel x and v_yaw are used.  

Figure 3.49  

EKF Parameter Setup 
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Figure 3.50  

Robot Localization Launch File 

 

3.8.2 Particle Filter (AMCL) 

AMCL algorithm is used for robot localization in the given map. The AMCL algorithm 

is a probabilistic localization technique that uses a particle filter to track the pose of a 

robot in a known map. The odometry keeps track of the robot position relative to the 

odometry map. However, the odometry data is drifting overtime, the accumulated error 

makes it unusable for a long period of time. Therefore, the odometry data is only use in 

a short time to give the idea where the robot was and where it should be after a period 

of time continuously. The laser scan data is used in combination with the odometry data 

is used to compare to the existing map data to estimate the robot’s position and update 

the translation from odom frame to map frame. Therefore, the translation between 

base_link frame to odom frame is a continuous translation while the translation between 

base_link frame to odom frame is a discrete translation. 

Figure 3.51  

AMCL Map Localization 
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Figure 3.52  

Launch Files for AMCL Node and Configured Parameter 

 
 

3.8.3 Navigation Stack 

This package in ROS is helpful to navigate using SLAM. The path generating with 

navigation function is also handled by this package.  

The list below indicates the parameter to be include on move_base launch file. 

 Costmap common param 

 Global costmap params 

 Local costmap params 

 Move base params 

 Global planner params 

 Local planner params 

Move_base subscribe to the topic bellow, 

 Goal pose 

 map 

 scan data 
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Figure 3.53  

Move_base Launch File 

 

3.8.4 Cost Map 

A cost map is a fundamental concept in autonomous robotics. It represents the cost 

(difficulty) of traversing different areas of the map. In the case of a ground robot 

working on rough ground the cost map could be a 2D map with lower values where the 

ground it flat and higher where the ground is rough/sloping. The values held in a cost 

map are usually abstract and do not directly represent any measurement of the world, 

they are simply used to guide a route planning algorithm to find efficient and safe routes 

across the ground. 

The grid occupancy is defined as bellow: 

 Black as occupied  

 White as free 

 Gray as unknown  

Figure 3.54  

Cost Map Common Parameter 
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 Map Inflation. Inflation is the process of generate cost values out from 

occupied cells that decrease with distance.  

Cost map defining step: 

 Lethal 

 Inscribed 

 Possibly circumscribed  

 Free space 

 Unknown 

Figure 3.55  

Cost Map Defining Step 
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Figure 3.56  

Global Cost Map Parameter 

 

Figure 3.57  

Local Cost Map Parameter 

 

Figure 3.58  

Grid Map vs Inflated Cost Map 

 

3.8.5 Global Path Planner 

Path Planning is a process of calculating a sequence of valid configurations in order to 

send the object of the current position to destination. Path planning process considers 

the current known environment (map), the location where the object is currently placed 
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(localization) and destination. Then the algorithm calculates the optimum path, which 

is considering the path length, feasibility of the object for moving in the environment, 

the energy consumed, and other variation factors the mark the path. 

Therefore, the Path Planning requires, 

 A known stating-position 

 The desired destination 

 Robot Geometry (footprint) 

 Geometric description of the world such as map, local costmap, global costmap. 

 A* Algorithm. A* is a search algorithm that based on the term of weight 

graphs. It focuses on the allocation of the path to goal node with the smallest cost. The 

tree path from the start point is conserved during the calculation until the best path is 

determined. 

 It performs this process by maintaining a tree of paths originating at the start node and 

extending those paths one edge at a time until its termination criterion is satisfied. 

A* determine which paths to explore at each iteration main loop. The performance is 

based on the path cost. The estimation of the cost required to explore the path all the 

way to the goal. A* result path the ensure the least cost path to the goal. 

    �(�) = �(�) + ℎ(�) 

n: node  

g(n): path cost from the start  

h(n): heuristic function of the path from goal from n 
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Figure 3.59  

A* Algorithm 

 

3.8.6 Local Path Planner 

Similar to Global path planner, the Local path planner plan the short path to navigate 

according to the global path while focusing avoiding the obstacles or the changes in the 

environment. The local path planner can be considered as obstacle avoidant planner.  

 Dynamic Window Approach (DWA). Dynamic Window Approach 

choose the best trajectory that the ensure the robot to navigate safely from any obstacle. 

The trajectory is planned by selecting a velocity command pair (v, ω), linear velocity 

and angular velocity. 

Dynamic Window Approach (DWA) algorithm function as follow: 

 Discretizing the space. 

 Forward simulation according to the robot station 

 Command velocity pair the result the highest score trajectory is chosen 

 clear and repeat 
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The cost function score of the best trajectory is evaluated using this formular: 

���� = 

  ���ℎ_��������_���� ∗  (�������� �� ���ℎ ���� �ℎ� �������� �� �ℎ� ���������� �� ������) 

  + ����_��������_���� 

∗  (�������� �� ����� ���� ���� �ℎ� �������� �� �ℎ� ���������� �� ������) 

  + �������_����� ∗  (������� �������� ���� ����� �ℎ� ���������� �� �������� ���� (0 − 254)) 

 

where,  

 Path distance bias: the weight defines how close the DWA path to the global 

path. 

 Goal distance bias: the weight defines the controller attempt to get to the goal 

also controls speed 

 Occdist scale: the weight defines the controller attempt to avoid object. 

Figure 3.60  

DWA Local Planner Parameter 
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3.9 AprilTag Detection and Localization  

ROS April tag is utilized to detect, decode, and localize the tag.  The detection 

supported AprilTag family tag36h11, tag36h10, tag25h9, tag25h7, and tag16h5. 

However, it cannot detect multiple AprilTag family at the same time. In this project 

tag36h11 family will be tested. 

The node subscribes to 

 /camera/camera_info, where the details of the camera using is stored and the 

calibration metrices. 

 /camera/image_rect, which contains the image from the camera.  

The node publishes to  

 /tf topic the relative pose between each detected tag to the camera frame.  

 /tag_detections, the information that include the tag id, size, and pose. 

 /tag_detections_image, the image with the detected tags ID overlayed. 

Figure 3.61  

Apriltag ROS Node 

 

However, the camera must be calibrated before using. The figure below is calibration 

the camera. The 25 mm square chessboard grid is use as templet for this calibration. 

After calibration, the calibrated parameters are saved to the package and utilized one 

the node is launched. 
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Figure 3.62  

Camera Calibration 

 
Similarly, the tag ID, size, tag bundle must be declared. The figure below is the tag 

declaration yaml file. 

Figure 3.63  

Tag ID Declaration 
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3.10  Cart Finding and Engaging  

Until now the AIV can be able to build the map and navigate in the map from place to 

place autonomously. It can also identify the tag and localize the position of the tag to 

itself. The cart finding and engaging is implemented to enhance the ability of the AVI 

to perform a task autonomously.  

There are 2 tags attached to each identical cart. One tag is used as cart ID tag and another 

is used as guiding tag. The tag is attached at predefined position.  

Figure 3.64  

Cart ID Tag in Blue, Guiding Tag in Red 

 

The feature of finding, engaging the cart and move is written in python script. It is the 

implemented using ROS Actionlib. The function requires the coordinate of cart picking 

area, the cart ID tag, guiding tag and coordinate of cart destination. 
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The python script is working as in the flowchart bellow. 

Figure 3.65  

Cart Finding and Engaging Flowchart 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Motion Control 

The PID controller is implemented at the frequency of 100Hz for each loop. It can be 

noticed that for the inner loop, the loop controlling the velocity of the right wheel and 

the velocity of the left wheel, and the outer loop, the loop controlling the linear velocity 

and the angular velocity, the parameter tuned by MATLAB results as 0 for Derivative 

gain. It means that the derivative part is not requires to make the velocity follow the set 

velocity. Similarly, since there is no derivative part the filter N is not necessary as well. 

Therefore, from the parameter tune by MATLAB, the controller is a PI controller.  

The figure bellow shows the performance of the inner loop controlling the right wheel 

(cmd_vr). 

Figure 4.1  

Cmd_vr Performance 
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Figure 4.2  

Cmd_vr Performance with Marking 

 

From the graph above, it can be seen that 

 The rise time: 0.48 second 

 Peak: 0.82 m/s 

The figure bellow shows the performance of the outer loop controlling the forward 

velocity (cmd_v). 
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Figure 4.3  

Cmd_v Performance 

 

Figure 4.4  

Cmd_v Performance with Marking 
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From the graph above, it can be seen that 

 The rise time: 066 second 

 Peak: 0.85 m/s 

The figure bellow shows the performance of the outer loop controlling the angular 

velocity (cmd_w). 

Figure 4.5  

Cmd_w Performance 
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Figure 4.6  

Cmd_w Performance with Marking 

 

From the graph above, it can be seen that 

 The rise time: 0.71 second 

 Peak: 3.17 rad/s 

The controller performance is close to what designed and tuned in MATLAB. The 

controller drives the velocity to the setpoint with minimal oscillation. 

4.2  Mapping 

Gmapping SLAM is evaluated in here according to loop closure and performance. The 

map scanning is experimented in ISE building ails. The AIV is manually maneuvered 

along the ails of the building for one round as arrow-indicated figure below. Starting 

form position  follows the blue arrow, the green arrow, and the yellow arrow. 
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Figure 4.7  

AIV Path for Map Scanning 

 

To start mapping, the node that taking care of merging the laser scan data, odometry 

must be launched in advance. After checking that the require topic is available, the 

gmapping can be launched. 

The mapping experiment is going to be tested as shown in Table 4.1 Table 4.1. 

Table 4.1  

Mapping Experiment 

Laser Particle Value Scan Round Resolution 

Dual Laser 360-degree scan 30 1 0.05 m/pixel 

Dual Laser 360-degree scan 30 2 0.05 m/pixel 

Dual Laser 360-degree scan 60 1 0.05 m/pixel 

Dual Laser 360-degree scan 60 2 0.05 m/pixel 

 

The first experiment is started with particle value of 30 and AIV is maneuvered around 

the building one round. The parameter below are some key parameters used for this 

test.  

 Iterations = 5 

 map_update_interval = 5.0 

 maxUrange = 16.0 

 linearUpdate = 1.0 

 particlesvalue = 30 
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Figure 4.8  

ISE Map Particle Value 30 0.05m/pixel One Round 

 

The second experiment is started with particle value of 30 and AIV is maneuvered 

around the building for 2 rounds. The parameter is kept the same as the first experiment. 

Figure 4.9  

ISE Map Particle Value 30 0.05m/pixel 2 Round 
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The third experiment is started with particle value of 60 and AIV is maneuvered around 

the building one round. The parameter below are some key parameters used for this 

test.  

 Iterations = 5 

 map_update_interval = 5.0 

 maxUrange = 16.0 

 linearUpdate = 1.0 

 particlesvalue = 60 

Figure 4.10  

ISE Map Particle Value 60 0.05m/pixel One Round 

 

The fourth experiment is started with particle value of 60 and AIV is maneuvered 

around the building for 2 rounds. The parameter is kept the same as the third 

experiment. 
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Figure 4.11  

ISE Map Particle Value 60 0.05m/pixel 2 Round 

 

Comparing the map from experiment 1 it can be seen that there are many spots along 

the ails where the map is registered as unknow or fault positive spot as indicated in the   

Figure 4.12  

ISE Map Particle Value 60 0.05m/pixel 2 Round Analysis 
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Figure 4.13  

Map Defection 

 

Unknow registered map is shown in the yellow rectangles and the fault positive 

registered map in blue rectangles. It happens at the place where the laser scanner 

reaches its maximum measurable value which is not reliable and neglected.  

However, when comparing the first experiment to with the second where the AVI scans 

the area for 2 rounds, the problems mentioned above are no longer existed. Scanning 

the area for 2 rounds give more data for the algorithm to work with resulting the more 

refined map while the map-feature-capturing is also improved. 

The figure below shows the comparison of the first experiment map and the second 

experiment map side by side. 
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Figure 4.14)  

Map Side by Side Comparison Experiment 1 (above) and 2 (below 

 

Similarly, comparing experiment 3 and 4, map refinement improves when the area is 

scanned for 2 rounds.  
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Figure 4.15  

Map Side by Side Comparison Experiment 3 (above) and 4 (below) 

 

Beside the number of scan round, the difference between the experiment 1,2 and 3,4 is 

the number of particles. Increasing the number of particles increases the calculation. As 

tested, the peak CPU usage of the NVIDIA increase from about 80 percent when using 

30 particles to about 95 percent when using 60 particles. 

However, the result of the mapping is not significantly different when increasing the 

particle number from 30 to 60 due to the reason that the map is not very complex.  

4.3 AMCL 

The Localization of the AIV is handle by the AMCL. The Algorithm initially starts by 

distribute the particle throughout the map. The particles converge to the real location of 

the AIV as it moves. 
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Figure 4.16  

Particle Distribution at Time 0 

 
 

Figure 4.17  

Particle Distribution at Time 1 
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Figure 4.18  

Particle Distribution at Time 2 

 
 

Figure 4.19  

Particle Distribution at Time 3 
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4.4 Navigation 

4.4.1 Global Path Planner 

Both A* and Dijkstra algorithm as can be seen in Figure 4.20 and Figure 4.21 provides 

the optimum path.   

Figure 4.20  

A* Path 

 
 

Figure 4.21  

Dijkstra Path 

 
 



 

 79

4.4.2 DWA Local Path Planner   

The DWA simulate the trajectory according to the situation at that time. The simulation 

time determine the approximate position if the velocity command pairs (cmd_v and 

cmd_w) are apply. The longer the simulation time results in the further the prediction, 

so the robot can predict well ahead. Below figure shows the different in simulation time. 

The trajectory is chosen according to the score of cost function at that particular time, 

which consist of goal bias, path bias, and occdist scale. 2 of them greatly affect the path 

selection of the DWA. As already discussed, the local planner DWA follows the global 

path planned by the global path planner to the goal. By varying the 2 biases, the path 

produced by the DWA deviates or follows the global path. The higher the path bias, the 

trajectory tend to follow the global path while the higher the goal bias the trajectory 

tend to deviate from the global path to toward the goal. The behavior of the path is 

evaluated below. 

The test is to move from point A (on the right-hand side) to point B (on the left-hand 

side) in the map as shown in the figure below with various path bias and goal bias value. 

Figure 4.22  

DWA Path Bias 18 Goal Bias 15 

 

The values of the parameters are: 
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 path bias 18 

 goal bias 15 

From the path above, rms error is calculated. 

 RMS path deviation = 0.3127 meter 

Figure 4.23  

DWA Path Bias 18 Goal Bias 30 

 

The values of the parameters are: 

 path bias 18 

 goal bias 30 

From the path above, rms error is calculated. 

 RMS path deviation = 0.4479 meter  

It can be noticed that the DWA path deviates global path more comparing to the 

previous test while it tends to lean toward the goal as the parameter suggests. The path 

also tends to go near the wall where it is close to the goal. 
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Figure 4.24  

DWA Path Bias 36 Goal Bias 15 

 

The values of the parameters are: 

 path bias 36 

 goal bias 15 

From the path above, rms error is calculated. 

 RMS path deviation = 0.3283 meter  

Comparing the RMS path deviation to the previous path, it is closed to the first test. 

However, it is noticeable that the DWA path tend to follow the global path more than 

the first test. 

In case of there is obstacle on the path, different parameter values behave noticeably 

different. 

In the case below with the path bias and goal bias equals to 36 and 15 respectively, the 

AIV follows the path, however when it encounters the obstacle the AIV just stop and 

does not move forward anymore.   
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Figure 4.25  

DWA Path Bias 36 Goal Bias 15 Stuck in Front of Obstacle 

 

In the same situation, changing the path bias and goal bias to 18 and 15 respectively, 

the AIV navigate to goal without any problem.  

Figure 4.26  

DWA Path Bias 18 Goal Bias 15 Avoided Obstacle on the Path 
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The path bias and goal bias to 18 and 15 respectively give better performance. Below 

is the testing of these parameter value in a straight path. The RMS path deviation equals 

to 0.1935 meter. 

Figure 4.27  

DWA Path Bias 18 Goal Bias 15 Straight Path 

 

4.5 Tag Detection and Localization 

The tag detection and localization, it is important to check whether the required topics 

for the detection are available. Then the continuous detection node can be launched. 

The 36h11 family tags are used and tested. 

After launching the node if there are tags placed in the visible range of the camera, the 

tag ID will be detected and the transformation of the tags to camera, and image with 

detected tag coordinate frame overlay are published. The transformation from a known 

frame to the tag can be obtain using command for example, rosrun tf tf_echo /base_link 

/tag_2 and the result can be monitored on terminal reporting the translation and rotation. 

The frame of the tag can also be visualized on Rviz.  
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Figure 4.28  

Detected Tag_2 and the Transformation from Base_link to Tag_2 

 

Figure 4.29  

Tag_2 Visualization on Rviz 

 
 

The range of detection is tested with 3 36h11-family-tags, 60mm x 60mm, 80mm x 

80mm, and 130mm x 130mm, respectively. 

As the result, the 60mm x 60mm can be detected up to 6.6 meters from the camera, 

whiles 80mm x 80, and 130mm x 130mm is detectable up to 9 meters and 14 meters, 

respectively. 
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The tag localization is tested using the same tag size. The graphs below show the 

accuracy of the tag localization respective to the distance of the tag to the camera. 

Figure 4.30  

Tag Localization Error on X Axis 

 

Figure 4.31  

Tag Localization Error on Y Axis 
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Figure 4.32  

Tag Localization Error on Z Axis 

 

From the graph, the accuracy of localizing each tag size is similar in each axis. It can 

be seen that the error tends to diverge almost linearly relative to the further the distance 

in the tested range. The rate of error is calculated to be about 6% regarding to the 

distance. 

Therefore, the further the distance of tags to the camera, the bigger the error. In the 

range of about 1 to 2 meters apart, the error is between 0.02 meter to 0.06 meter which 

is acceptable comparing to other error in the system.  

4.6 Cart Engaging 

In the process of moving the cart, there are 3 main factor involves. The first one is the 

AIV need to be able to navigate to the pick-up place, which it is already tested and proof 

that it has ability to do so. Second, the ability to identify and locate the cart that have 

been discussed in previous chapter. The third one is the algorithm to engage the cart to 

AIV. 
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The mission is considered as not successful if any of the circumstances below does not 

meet. 

1. Navigate to pick-up goal 

2. Find and locate the cart 

3. Engage the cart to AIV (Fail if AIV could not engage after 3 tries) 

4. Move the cart to the destination 

5. Disengage the cart from the AIV. 

The experiment is tested for 10 rounds. The cart is placed randomly within the 2 meters 

radius of the pick-up goal facing into the goal with no wheel’s lock. 

Table 4.2  

First Experiment Testing Result 

Round Circumstance 

1 2 3 4 5 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

 

From the result above, majority of the round fails to engage the AIV to the cart. Success 

rate is 3/10.  

On the cart, there is a V shape guide rail to help align the triangle locking block to get 

the limit switches triggered and raise the locking block. The observed factor that made 

it fails is the cart move away while the AVI hits and tries to follow the rail. 

To solve the problem, the cart’s wheels will be locked while the AIV tries to engage to 

the cart. The design of the cart can then be proposed for further improvement.  

Thus, the experiment is conducted again with the cart’s wheels locked. 
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Table 4.3  

Second Experiment Testing Result 

Round 
Circumstance 

1 2 3 4 5 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

 

It can be noticed that the success rate improves from 3/10 to 6/10. However, the 4/10 

still fails at cart engaging stage.  

The position of the limit switch also has a major impact on the engaging part. Below 

are some figures show the orientation of the triangle locking block fails to get the limit 

switch triggered.  
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Figure 4.33  

Orientation That the Limit Switch Fails to Trigger 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The control software for the AIV is developed and implemented. The velocity-control 

motion controller for the AIV is design by first, determine the approximation of the 

transfer function of the AIV using MATLAB system identification toolbox, then use 

MALAB Simulink to design and test the PID controller, after that utilize the PID tuner 

to tune the PID loops. The AIV forward kinematic model is created and be able to 

control from the remote controller.  The odometry of the robot is produced using the 

wheels’ encoders and then fused with IMU data and command velocity input using 

Extended Kalman Filter. The 2 Laser scanner data is merged to produce a 360-degree 

scan. The map then can be created using odometry and laser scanner data using SLAM 

technic called Gmapping. The AIV is localized in the map using Adaptive Monte Carlo 

algorithm. The ROS navigation stack is implemented enabled the AIV to navigate in 

the map. ROS navigation stack utilizes global planner (A* and Dijkstra) and local 

planner Dynamic Window Approach (DWA). The A* algorithm and Dijkstra planned 

the optimal path that is followed by DWA as local obstacle avoidance.  

Moreover, the April tag detection and localization are implemented enabled the AIV to 

identify and locate the cart. The custom algorithm is designed to get the AVI engaged 

to the cart and move the cart to its designated goal. The AIV is engaged to the cart by 

a triangle locking block which use the limit switch as the trigger to raise the locking-

block. The position of the trigger-switch affects the engaging ability of the AIV. The 

design of the cart’s wheel affects the engaging ability drastically. 
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The Table 5.1 shows all the expense of this project. 

Table 5.1  

Project Expense 

No Description Amount Unit Price Price (THB) 

1 Aluminum fabricated part for main 

structure 
1 set 75,000 75,000 

2 Motor, gearbox, driver, and wheel 2 set 14,000 28,000 

3 Lift motor, gearbox, and driver 1 set 14,000 14,000 

4 Nvidia Jetson TX2 1 25,000 25,000 

5 Hokuyo URG-04LX 2 45,000 90,000 

6 Rotary Encoder 2 1,500 3,000 

7 Sparkfun Razor 9 DoF IMU 1 2,000 2,000 

8 Logotech Camera 1 2,000 2,000 

9 24V 50Ah Li-ion Battery 1 35,000 35,000 

10 Other  1 25,000 25,000 

   Total 299,000 

     

5.2 Recommendations 

From the design the robot wheel, in some situation where the floor is quite uneven, the 

robot’s drive wheels is not contacting the floor resulting robot to stuck. The suspension 

system is recommended, so that the drive wheel is contacting the floor all the time. 

The DWA gives good performance in locally planning the path. However, in some 

situation, the robot stuck while the cost function reaches the local minima. Therefore, 

it is recommended that there should be an algorithm designed to detect when the DWA 

cost function stuck in the local minima, so that the planner parameters can be dynamical 

changed according to the current situation or the planner can be switched to another 

planner to free the robot. 

The camera used for tag detection and localization should be upgraded to a higher 

resolution to helps improve the accuracy of localizing the tags. The cart’s wheels design 

change is recommended. The wheels should be able to lock itself and unlock 

automatically when the locking block is raised. Also, the position of the limit switch 

needs to be placed at place that ensure the maximum contact while robot is engaging. 

It is going to improve the engaging success rate which also improves the system overall.  
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Considering the implementation of the robot where there are many robots operating, 

the fleet management, and logistics management need to be implemented to share the 

work and managing the rout of the robots. 
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