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ABSTRACT 
 
 

Nowadays, most road accidents are caused by drivers more than the vehicles and envi-
ronmental conditions combined. One solution is to reduce the number of human deci-
sions in driving by using the autopilot system or driving assistant to help driving more 
secure. In order to make the decision, autonomous driving vehicles need to be aware of 
the surrounding moment for calculating and determine to drive precisely and safely. 
This thesis focuses on computer vision fields with the ability to interpret images of the 
environment around the car. Instead of using a LiDAR scanner, this using the front car’s 
camera and autoencoder neuron network technologies combined can also be used to 
identify any anomaly moment that occurs. 

In this study, the score is used to indicate anomaly events in the footage. An anomaly 
score is created by the fact that an abnormal moment occurs infrequently when the point 
of the system is to learn to reconstruct the image sequences by using an autoencoder 
network implement with Conv-LSTMs. The anomaly moment will get a greater error 
from reconstructing sequences. The system is also equipped with 2 subs networks for 
transform raw images into semantic segmentation images and dense optical flow im-
ages. This preprocess is for reducing the complexity of the images before sending them 
to the Conv-LSTMs autoencoder. 

To make a system that can interpret anomaly moments on the road, many parameters 
are trained and tested by the system such as input image size, sequences, number of 
color channels, and other parameters. The system is also unsupervised trained between 
images from the city and the rural scenarios. From the test results, the best system of 
road anomaly detection is quite well detecting the anomaly events on the road in the 
three different tests set, city dataset, rural dataset, and Extest dataset with the best F-
score of 64.12%, 63.53%, and 66.67 % correspondingly and the overall score is 62.12 
%. The best system is made by using HD resolution as input images in the preprocess 
network and then reducing the sequenced image’s dimension down to 256x256 pixels 
with 1 color channel in segmentation while has 3 color channels in optical flow for the 
Conv-LSTMs network. In the calculation of the anomaly event process, the anomaly is 
computed using the mahalanobis distance on a reconstruction score from the 2 different 
models, dense optical flow, and segmentation with thousand steps and thousand initial 
points. The network uses around 7-10 minutes in order to process a 1-minute-long video 
and can detect sudden changes around every 15-20 seconds. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Background of the Study 

In the 21st century, passenger cars are becoming an important mode of transportation 

of residential and commercial because cars are flexible and convenient for communi-

cation. Moreover, cars can access most of the areas and do not need expensive infra-

structure to be installed. On the other hand, rail transportation such as trains or subway 

must be on track or build the tunnel. According to statistical data from Statista, there 

are 92 million worldwide automobiles were produced in 2019. While in 2010, 77 mil-

lion automobiles were produced, and this number keeps increasing every year. 

Road accidents are one of the problems with the increase in automobiles on the road 

inevitable. According to the study from the U.S. Department of Transportation, most 

road accidents are caused by drivers more than the vehicles themself or even by the 

environment. The solution to reducing the number of road accidents is minimal people 

involved in driving or no people involved in driving. One of the solutions is using au-

topilot or pilot assistant to help drivers make decisions or drive more safely. Artificial 

intelligence is one of the watchful technologies of this decade. To develop the autopilot 

or pilot assistant, it would be equipped with a central computer system and many sen-

sors around the vehicles to improve obstacles detection and create automobiles that can 

understand an environment before making any driving decisions on behalf of humans. 

1.2 Statement of the Problem 

Autonomous driving vehicles need to be aware of the surrounding environment of the 

car in order to calculate and determine to drive precisely and safely. One of the solutions 

that Autonomous driving cars commonly used in environmental awareness and under-

standing is the installation of radar or laser scanners to detect the movement of other 

vehicles surrounding the cars and obstacles while driving. Which is highly accurate and 

can be used in all weather and times condition, but it comes with the expensive and 

complicated equipment setting. 
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Computer Vision is one of the most popular artificial intelligence research fields in 

recent years. Which it can manage how the computer understands information from 

digital images, video and understanding visual systems in the same way that humans 

understand and interpret images. With the ability of computer vision technology, this 

technology can be used to interpret images and videos of the environment around the 

car or the front of the car to enable the car to understand the environment from images 

and videos. The system can be used by the camera only to understand the environment 

or an event, and it is less complex and cheaper than using radar technology to help the 

cars make decisions. By using camera and autoencoder neuron network technologies 

combined can also be used to detect any anomaly events that occur. 

In the modern-day, autonomous vehicles can use some algorithm for detecting risky 

events through computer vision based. This crucial role not only gives a better under-

standing of the front-end environment but can also improve driving performance and 

reduces the burden for drivers on long-distance driving. 

1.3 Objectives of the Study 

The main purpose of this research is to design the system for detection of any events 

that are considered to be the anomaly that happens on the road from moving front cam-

era images sequence or the event that needs the driver’s attention before the accidents 

occur.  

• Make a system that can mimic human driving behavior through awareness of 

the surrounding especially the moment that needs a driver or car attention base 

on images processing network by using an autoencoder, Conv-LSTMs 

• Make a system for road anomaly detection that can detect things that obviously 

abnormal such as the car went off the road, the fast-moving nearby objects, or 

the obstacles with an overall score higher than 70% 
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1.4 Scope and Limitations 

The scope of this research is to make a neuron network base on an autoencoder network, 

especially Conv-LSTMs that can detect anomaly events on the road such as detection 

the fast-moving cars toward the camera, pedestrians, or dogs suddenly across the road, 

the car went off the road, obstacles or any other anomaly that can lead to accidents. The 

data for the detection and training process comes from the car’s front camera mount on 

the window point outward and receives the same point of view as the driver. The output 

from the network is the anomaly score interpreted from the events in the video. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Anomaly Detection 

Anomalies events in videos are usually described as events or sudden motions of the 

objects in the scenes that occur rare, unnatural, or can be some events that need atten-

tion. The purpose of anomaly detection is to localize both specific temporal sequences 

and spatial pixels in video sequences. Temporal localization is starting from the first 

frames of the anomaly event until the end. It is referred to as frame-level detection. 

Spatial localization is referred to recognize every corresponding pixel contained in that 

frame and can refer to the anomaly event. This is referred to as pixel-level detection. 

Anomaly detection in videos is an achievement for many researchers to study for a 

decade, while this problem is still hard to figure out due to the complexity of modeling 

that can capture rare events and the scarcity of data itself. Recognizing anomaly events 

from other regulars not only requires an understanding of complex spatial patterns but 

also requires an understanding dynamic of temporal relationships. 

Real-world anomaly events, especially on the road that occur rarely and happen sud-

denly. It is tough for any system that can detect all types of road anomalies. Despite 

these facts, cars crash footage is still easy to obtain from the internet or on social media 

and also comes from public security cameras. There are still not cover all possibilities 

of an anomaly event on the road. Furthermore,  most of the footage from the internet 

has low resolution and is difficult to control their consistency so the Unsupervised train-

ing method is introduced. Unsupervised methods are one of the methods that are capa-

ble of detecting anomaly events using only regular footage in the training set. Although 

the unsupervised methods are still unable to accomplish satisfying performance on real-

world scenarios, they are considered to have more flexibility to capture rare events pat-

terns. 

In recent years, deep learning methods have been developed until they are able to take 

advantage of big data and powerful computation devices combined with unsupervised 

anomaly detection techniques. This makes deep learning methods conquer the anomaly 
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detection scope. One of the successful networks based on deep learning techniques is a 

deep autoencoder, there are several proposed based on this network. 

In the year 2016, Hasan et al. propose an autoencoder-based detection that can capture 

and identify the anomaly from multiple scenarios. A fully convolutional feed-forward 

autoencoder can learn the latent features and classifies regular patterns. The trained 

model predicted regularity score based on the reconstruction error from reconstructed 

sequences. The reconstruction error is low in regular motion sequences and but will get 

a high reconstruction cost in unusual moments. (Mahmudul Hasan, Jonghyun Choi, Jan 

Neumann, Amit K. Roy-Chowdhury, Larry S. Davis, 2016) 

Gong et al. propose the developed version of the deep autoencoder by adding a memory 

module called the memory-augmented autoencoder or MemAE. This module working 

as memory storage for the reconstruction process after receives the encoded data from 

the encoder. In the training, the memory content inside the module will get an updated 

approach to represent the regular data. In testing,  the memory content inside the mod-

ule will freeze and use for reconstruction data from memory records that now represent 

the regular patterns. ( Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa 

Reda Mansour, Svetha Venkatesh, 2019) 

Ionescu et al. propose an anomaly detection network based on training convolutional 

autoencoders on top of an object detection network. The results are concatenated be-

tween motion and appearance latent information. They are clustered in the training pro-

cess by applying k-means clustering and are classified in the inference phase. The sam-

ple will be considered irregular when the classification score is negative, or the result 

is not associated with any class. (Radu Tudor Ionescu, Fahad Shahbaz Khan, Mariana-

Iuliana Georgescu, Ling Shao, 2019) 

To better understand the temporal relationship within a video, a combination of FCN 

and LSTM (long short-term memory) is proposed. Yong Shean Chong et al. propose a 

spatiotemporal network for detecting anomalies in videos. Based on convolutional 

LSTMs autoencoder (ConvLSTM-AE), this model is equipped with two main compo-

nents, the first is for spatial features, and another one for learning the temporal progres-

sion or the spatial features that make it capable detects normal appearance and motion 

patterns simultaneously. Luo et al. also propose a combination network between FCN 
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and LSTM as a ConvLSTM-AE to better model the temporal correlation and further 

improve the performance of the autoencoder framework. ConvLSTM-AE can detect 

the regularity of appearance and motion for regular moments. ( Yong Shean Chong, 

Yong Haur Tay, 2017) (Weixin Luo, Wen Liu, Shenghua Gao, 2017) 

Shi et al. propose the use of autoencoder-based architecture for a forecast rainfall in-

tensity in the region over a short period by implementing the power of stacked convo-

lutional LSTM layers  (Conv-LSTMs). This model can beat the state-of-the-art, 

ROVER algorithm and FC-LSTM network for precipitation nowcasting. (Xingjian, Shi 

Zhourong, Chen Hao Wang, Dit-Yan Yeung, 2016) 

Medel et al. propose the other use of autoencoder-based architecture for anomaly de-

tection by using a special regularity evaluation algorithm at the model’s top and the 

Convolutional Long Short-Term Memory (Conv-LSTMs) module. This model can un-

derstand the regular temporal patterns in videos and the progression or movement of 

the objects in the images sequence. (Jefferson Ryan, Medel Andreas Savakis, 2017) 

Instead of directly computing regularity scores based on the reconstruction of current 

frames, another trend is to reconstruct the future frames based on the current frames. 

The reconstructed error is then computed based on the difference between predicted 

future frames and the real future frames. The model that is capable to do this task is 

GANs or Generative Adversarial Networks. It consists of 2 main components; the dis-

criminator module is trying to distinguish between the predicted future frames and the 

actual ones while a generator module is trying to render predicted future frames close 

to the actual future frames as much as possible. 

Liu W et al. proposes Generative Adversarial Network (GAN) based network for anom-

aly detection. In this network, U-net is used as a generator to generate a predicted future 

frame.The spatial constraints on gradient and intensity is a commonly used method 

however, they also propose the use of motion or temporal constraint in sequence pre-

diction by implementing the optical flow between predicted frames and actual frames. 

Pretrained Flownet is responsible for this task and the optical flow between those two 

should be consistent. (Wen Liu, Weixin Luo, Dongze Lian, Shenghua Gao, 2018) 

Ye et al. propose a brand-new network based on both reconstruction and prediction 

methods in an end-to-end framework that shares the related architecture with U-Net 



7 
 

architecture except for the last layer that implements the ERM module, AnoPCN. This 

network introduces 2 main modules, a predictive coding module (PCM) and an error 

refinement module (ERM). PCM is a convolutional recurrent neural network equip with 

feedback connections for sending predicted frames and feedforward connections for 

sending the errors. ERM is used to reconstruct the prediction and also sharpening it. 

(Ye Muchao, Peng Xiaojiang, Gan Weihao, Wu Wei and Qiao Yu, 2019) 

M. Sabokrou proposes other more efficient techniques a deep anomaly that is based on 

the pure power of convolutional neural using trained fully modified convolutional neu-

ral networks (FCNs). The pre-trained supervised FCN is turned into an unsupervised 

FCN for detecting anomalies in frames. FCN-based on 2 main responsibilities, feature 

representation, and outlier detection. After extracting the regional features, In the later 

stage 2 Gaussian classifier is used for labeling them. ( M.  Sabokrou, M.  Fayyaz, M. 

Fathy, Z. Moayed, and R.Klette, 2017) 

Ryota et al. also propose a network based on the power of CNN that can define the 

events in the human-understandable style by combining joint detection and recounting 

of anomaly moments in videos. Recounting is used for describing why these events are 

supposed to be abnormal to help human observers quickly determine and understand if 

they are false alarms or not. In this paper, a general CNN model and environment-

dependent anomaly detectors have been integrated for learning multiple visual tasks 

that are useful for recognizing and recounting anomaly events. ( Ryota Hinami, Tao 

Mei, and Shin’ichi Satoh, 2017) 

2.1.1 Conv-LSTMs Encoder-Decoder 

Conv-LSTMs Autoencoder is an autoencoder that combines convolutional layers with 

recurrent LSTM layers together. Convolutional layers are a popular network for their 

superior performance in image recognition, while LSTM is a recurrent layer that is 

generally used for sequence learning and detect long-term temporal relationships. They 

have proved performance in many applications such as text-to-speech conversion and 

handwriting recognition. It can be separated into 2 main categories, the spatial and the 

temporal extractor module. (Yong Shean Chong, Yong Haur Tay, 2017) 
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Figure 2.1  

Shows an Overall Conv-LSTMs Autoencoder Network 

Reconstructed images sequences

Deconvolution: 11 x 11 , 1 filters , stride 4

Deconvolution: 5 x 5 , 128 filters , stride 2

Temporal Decoder

Convolution: 5 x 5 , 64 filters , stride 2

Convolution: 11 x 11 , 128 filters , stride 4

Input images sequences

Temporal Encoder

Spatial 
Encoder

Spatial 
Decoder

10 x 256 x 256

10 x 128 x 64 x 64

10 x 64 x 32 x 32

10 x 64 x 32 x 32

10 x 64 x 32 x 32

10 x 128 x 64 x 64

10 x 1 x 256 x 256

10 x 256 x 256

 
 

Note. Adapted from "Abnormal Event Detection in Videos using Spatiotemporal Autoencoder," 

by Yong Shean Chong, Yong Haur Tay,  arXiv preprint arxiv:1701.01546, 2017. 

 

The spatial extractor modules consist of stacked convolutional neural networks. It 

accepts video input in a sequence of reshaped frames in chronological order. The ex-

tractor reshapes and downsamples the video input into a stack of features vectors. The 

series of frames will lose some information in this process in order to extract character-

istic features from the input images. A convolutional network can capture and store the 

latent patterns of these features depending on the number of filters layers during the 

training process. More filters are involved in more image features getting extracted and 

the better for the network for recognizing hidden patterns in images. However, more 

filters would result in increased computation time, so the number of filters needs to be 

adjusted. 
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The temporal extractor modules consist of a stacked Convolutional Long Short-term 

Memory (Conv-LSTMs) model that was introduced by Shi et al. Conv-LSTMs is one 

variant of the LSTMs architectures. This is a modified version from fully connected 

LSTM (FC-LSTM). It uses the convolution network instead of matrix operations. This 

allows Conv-LSTMs to work by propagating each spatial characteristic temporally 

through each Conv-LSTMs layer and result in better work with image sequences. More-

over, this modified convolutional also attaches with an optional shortcut connection to 

allow the network to acquire former information better.  

These make Conv-LSTMs lighter and yield a better result for extracting spatial feature 

maps from images. The difference between using the Conv-LSTMs layer and tradi-

tional convolutional neural networks is the output of each Conv-LSTMs layer can di-

rectly feed into the next layer, instead of using max-pooling layers. The Conv-LSTMs 

model related formula can be summarized : 
 

ft = σ(Wf ∗ [ht−1, xt, Ct−1] + bf ) 
it = σ(Wi ∗ [ht−1, xt, Ct−1] + bi) 
Ĉ t = tanh(WC ∗ [ht−1, xt] + bC ) 

Ct = ft ⊗ Ct−1 + it ⊗ Ĉ t 
ot = σ(Wo ∗ [ht−1, xt, Ct−1] + bo)  

ht = ot ⊗ tanh(Ct) 
 
Note. These equations share the similarity to equations that use for LSTMs. Instead of using 

weights for every connection, Conv-LSTMs uses convolutional filters. 
(The symbol ∗ denotes a convolution operation) 
 

2.2 Optical Flow using Deep Learning. 

To analyze real-time video, most implementations of these techniques only use rela-

tionships between the objects within the same frame or only in spatial information, not 

including temporal information. In short, each frame is processed independently. How-

ever, in real-world circumstances, video is recorded the images sequences in a specific 

temporal resolution in frames per second. This indicates that information in a video is 

not only encoded independently in the same frame but also sequentially relate to the 

other frames in a specific order. We need to consider the relationships between sequen-

tial frames to give us a better understanding of motion or to recognize and classify 

actions in the events. 
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The idea of Optical flow has been proposed since the 1980s in the form of handwriting 

approaches based on brightness constancy. They assume pixel brightness is approxi-

mately constant without regard to their movement and try to determine how the bright-

ness of the pixels moves across the screen over time. On the other hand, they try to 

estimate optical flow displacement vectors. In short, if the original pixel position ap-

plies with the displacement vector, the next pixel position appears. Optical flow is the 

motion extraction of the objects that relate to the movement between the objects in the 

different frames. Novel researchers are now focusing on applying deep learning to the 

Optical flow and they have shown satisfying results. In general, Optical flow ap-

proaches take two video frames as input and output the optical flow data in the color-

coded image. Processing optical flow approaches with deep learning is now a popular 

topic with variant networks such as FlowNet, SPyNet, PWC-Net, and some outper-

forming one another on several benchmarks. (Lin, 2019) (Gituma, 2019)  

FlowNet is proposed by Smagt et al. based on the general U-Net architecture and con-

volutional neural networks (CNNs) for solving supervised flow estimation problems. 

FlowNet consists of 2 modules, FlowNetSimple (FlowNetS) and FlowNetCorr 

(FlowNetC). FlowNetSimple is used to extract the motion information from feeding 

images pair through a stacked convolutional neural network (CNN). FlowNetCorr is 

used for determining the correlates feature vectors at different image locations by cre-

ating two identical images stream and recombine them at the refinement stage. (Alexey 

Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazırbas, Vladimir 

Golkov, 2015) 

FlowNet2 is a developed version of the original FlowNet. It was proposed by Ilg et al. 

The network is based on stacked many flow-related modules, FlowNet, FlowNetC, 

FlowNetS, and FlowNet-SD combined into a larger model which can outperform state-

of-the-art methods and performs much faster. The model has a specific module that 

focuses only on the large displacement flow and a module FlowNet-SD that particularly 

focused on small displacement flow. FlowNet2 performance is slightly slower than the 

original FlowNet but can further reduce the estimation error by more than half. ( Eddy 

Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, Thomas 

Brox, 2016) 
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Ranjan A. and Black M. propose to use the Spatial Pyramid technique in SPyNet. This 

network is using a standard spatial pyramid with deep learning and uses a coarse-to-

fine strategy to determines motion flows. The flow images are computed and updated 

through each pyramid level. This approach makes Spatial Pyramid Network (SPyNet) 

plainer and more efficient for embedded purposes. (Anurag Ranjan, Michael J.  Black, 

2016) 

Sun D. et al. propose a compact and effective deep learning flow estimation network, 

PWC-Net. The model consists of many optical flow techniques such as image pyramid, 

warping layer, and cost volume layer. A stack of the feature pyramid layer for extraction 

features. Warping layer for warping the second image features approaching the first 

image using the upsampled flow and the cost volume layer is for constructing cost vol-

ume from their feature. ( Deqing Sun, Xiaodong Yang, Ming- Yu Liu, and Jan Kautz, 

2018) 

2.2.1 Optical Flow using Deep Learning PWC-Net 

PWC-Net has been designed based on standard methods of optical flow, and then be 

modified to have better performance from the traditional coarse-to-fine approaches. The 

key components of PWC-Net are modified and different from the traditional coarse-to-

fine approaches. Firstly, PWC-Net uses the warping operation from the conventional 

approach in order to estimate large changes. Secondly, PWC-Net uses learnable feature 

pyramids instead of fixed feature pyramids, and third, PWC-Net has a specific layer to 

construct the cost volume which is a more particular representative of the optical flow 

than original images. The final optical flow image is constructed by CNN layers from 

the cost volume. Moreover, after training cost volume layers and the warping layers are 

freezing which can shrink the model size.  Finally, PWC-Net uses a context network to 

utilize spatial information based on CNN which reduces computation, and it is more 

energy-efficient to refine the optical flow than the traditional methods such as median 

filtering and bilateral filtering. An overview of the PWC-Net architecture is shown in 

figure 2-2. (Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz, 2018) 
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Figure 2.2  

Shows an Overview Architecture of PWC-Net 

 

Note. Adapted from " Models Matter, So Does Training:  An Empirical Study of CNNs for 

Optical Flow Estimation,"   by Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz, 

arXiv preprint arxiv:1809.05571v1, 2018. 

 

The abstract concepts for all components, feature pyramid extractor, warping layer, op-

tical flow estimator, and context networks are explained in figure 2-3. 
 

Figure 2.3  

Shows Each Layer and Component of PWC-Net 

 

Note. Adapted from " Models Matter, So Does Training:  An Empirical Study of CNNs for 

Optical Flow Estimation,"   by Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz, 

arXiv preprint arxiv:1809.05571v1, 2018. 
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Feature pyramid extractor is used to generate feature representation from input im-

ages pair I1 and I2. The pyramid has L-levels for the feature extractor while the images 

pair is feeding through the bottom (zeroth) level. To generate feature representation, 

layers of convolutional filters are used to downsample and extract the features at each 

pyramid level by a factor of 2. It has a number of feature channels 16, 32, 64, 96, 

128,192 sequentially from the first to the sixth levels. 

The warping layer is used to warp latent features from the I1 image approaching the 

I2 image after the drafted flow be upsampled and rescaled by a factor of two. 
 

cl
w(x) = cl

2 (x + 2 × up2 (wl+1) (x)) 
 

Note. Where x is the pixel index and up2 denote the ×2 upsampling operator. 

Bilinear interpolation is used to execute the warping process and calculate the gradients 

to the input CNN features and backpropagation flow. Warping can also compensate for 

the geometric deformities and put the image back to the right scale. 

The cost volume layer is used to calculate a cost volume from the features which store 

the matching costs between individual pixels and their correlating in the next frame. In 

short, the cost volume layer is to find the degree of relation between features of the first 

image from warped features from the second image in terms of cost.  
 

cvl (x1, x2) = 1/N (cl
1 (x1)) T cl

w(x2) 
 

Note. Where N is the length of the column vector cl
1 (x1) and T is the transpose operator. 

An optical flow estimator is used to construct fine flow images wl from matching cost 

and features and previous upsampled optical flow by stacked CNN. The optical flow 

estimators at different levels have unique characteristics instead of sharing the same 

things. 

DenseNet connections can be used to improve the performance of the estimator by crate 

more direct connections between every convolutional layer and its early layer. This 

makes DenseNet has more direct joints than standard layers and also gives a significant 

improvement in the image classification field. 
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The context network is used to refine the flow after passing through the optical flow 

estimator by taking the estimated flow and features of the second last layer through 

feed-forward CNN and then outputs as a refined flow, ŵl0
Θ(x). 

The context network uses a 3×3 spatial kernel and different dilation constants. Convo-

lutional layers that have large dilation constants can extend the receptive field unit at 

each output without demanding extensive computation. The dilation constants at each 

convolutional layer are 1, 2, 4, 8, 16, 1, 1 sequentially. 

 

2.3 Semantic Image Segmentation 

Image segmentation is one of the computer visions tasks which can label segment re-

gions of an image corresponding to the objects being shown. More precisely, image 

semantic segmentation is used to identify each pixel of an image with a related class of 

what objects are being represented. This method is generally referred to as dense pre-

diction. 

One thing different for semantic image segmentation is it does not separate instances 

that share the same class, it only considers which category of each pixel refers to. On 

the other hand, if the image has multiple objects in the same class in the input image, 

the segmentation map does not intrinsically identify these as two objects. To separate 

objects in the same class, there is an instance segmentation model, that can identify two 

separate objects in the same class. 

Generally, the Image segmentation process can take either RGB color images or gray-

scale images and outputs a segmentation map that each pixel has a corresponding class 

label. In-depth, it generates a prediction map that has an output channel for each corre-

sponding class. A prediction map can be flattening into a segmentation map by taking 

the Argmax of each depth-wise pixel vector. 

A neural network architecture for semantic image segmentation task is simply stacking 

convolutional layers or deep convolutional networks with the same padding to preserve 

the spatial information before output a final segmentation map. This directly determines 

how to map from the input image to its corresponding classes through the continuous 

filter or transformation of feature mappings. In earlier layers, it attends to learn low-

level concepts while higher layers extend more high-level and specific pattern feature 
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mappings. In order to maintain the latent information, it typically requires a growing 

number of feature maps or channels as going further into the network. Despite this, this 

method is considered to be computationally extensive for preserve the information of 

the image throughout the network.  

Another conventional method for image segmentation tasks is using an autoencoder-

based structure. The network extracts the latent information by downsamples the input 

images and forms lower-resolution features which are discovered to be an effective way 

to distinguishing classes, and for upsampling that lower-resolution features back into a 

full-resolution segmentation map. (JORDAN, 2018) 

In late 2014,  Long et al. proposed the other method of using the pure power of fully 

convolutional network (FCN) trained, pixels-to-pixels for the image segmentation task. 

The network is implemented by modifying existing and well-studied image classifica-

tion networks, eg. AlexNet, the VGG net, and GoogLeNet, to work as the encoder mod-

ule for the network. A decoder module is implemented with transpose convolutional 

layers for slowly upsampling the encoded information, connecting skip connections 

from earlier layers, and combining these two feature maps into a high detailed full-

resolution segmentation map. (Jonathan Long, Evan Shelhamer, Trevor Darrell, 2015) 

Ronneberger et al. also propose the use of fully convolutional networks for biomedical 

image segmentation based on U-Net architecture. The U-Net architecture uses symmet-

ric expanding in the contracting path that allows precise localization to capture latent 

information and the upsampling part that has a large number of feature channels 

to  propagate context to higher resolution layers. 

The general U-Net architecture compost stacked convolution operations for each block 

in the structure. Recently many researchers developed an original U-Net model and 

propose more superior modules that can be replaced instead of sequenced convolutional 

layers. (Olaf Ronneberger, Philipp Fischer, and Thomas Brox, 2015) 

Drozdzal et al. introduce skip connections into the U-Net structure, one favor of residual 

blocks for building very deep FCNs. The short skip connection is used in the same 

block while allowing for faster convergence and allow for deeper models to be trained. 

The long skip connection is used for connection between encoder and decoder modules. 
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The very deep FCNs can beat near-to-state-of-the-art. ( Michal Drozdzal, Eugene 

Vorontsov, Gabriel Chartrand, Samuel Kadoury, and Chris Pal, 2016) 

Jegou et al. proposed the network that each layer is directly connected to every other 

layer in a feed-forward method as known as Densely Connected Convolutional Net-

works (DenseNets). This direct connection makes the network more precise and easier 

to train. In short, these connections make network reuse features more efficient by giv-

ing an opportunity to carry more low-level features from earlier layers along with 

higher-level features from newer layers. ( Simon Jegou, Michal Drozdzal, David 

Vazquez, Adriana Romero Yoshua Bengio, 2017) 

Chollet from Google Inc. proposes a network inspired by the Inception network. Instead 

of Inception modules, this deep convolutional neural network uses a depthwise separa-

ble convolutions layer. The background for this idea comes from the possibility of to-

tally decoupled between spatial relationships and cross-channel mapping. The stacked 

depthwise separable convolution module makes this architecture easy to define, mod-

ify, and more efficient use parameters. (Franc¸ois Chollet, 2017) 

A small and efficient model is proposed by Howard et al. from Google Inc. called Mo-

bileNets. This model has used a depth-wise separable convolution layer that imple-

ments a single filter to each input channel and a streamlined architecture base for mobile 

and embedded applications. ( Andrew G.  Howard, Menglong Zhu, Bo Chen, Dmitry 

Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam, 2017) 

In early 2019, MobileNetsV2 is a developed version of MobileNets was introduced by 

Sandler et al. from Google Inc. MobileNetsV2 is built based on DeepLabv3 but on a 

smaller version called Mobile DeepLabv3. The model uses an inverted residual struc-

ture to create a shortcut between the thin bottleneck layers and also uses lightweight 

depthwise convolutions to filter features from its central expansion layer. ( Mark 

Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang- Chieh Chen, 

2019) 

MobileNetV3 is also introduced later in the same year as MobileNetsV2 by Howard et 

al. from Google Inc. This network implements a combination of hardware with network 

architecture search (NAS) from the NetAdapt algorithm and Lite Reduced Atrous Spa-

tial Pyramid Pooling (LR-ASPP) to achieve a new state-of-the-art and also compatible 
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with the mobile phone CPU. (Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh 

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay 

Vasudevan, Quoc V.Le, Hartwig Adam, 2019) 

2.3.1 Semantic Image Segmentation Using Xception Network 

Chollet et al. from Google Inc. propose a segmentation network name Xception, which 

is short for “Extreme Inception”. The network is based on fully depthwise separable 

convolution layers in convolutional neural network architecture. The background con-

cept comes from the idea that “the mapping of cross-channel relationships and spatial 

relationships in the feature maps of convolutional neural networks can be completely 

decoupled”. This hypothesis is a more intense version of the Inception architecture. In 

the Inception model, this concept is just independently looking across spatial and cross-

channel correlations by performing a set of 1x1 convolutions before applying regular 

3x3 or 5x5 convolutions. 

The Xception network can be separated into three-unit: entry flow, middle flow and 

exit flow. The detail of network architecture is shown in figure 2-4. 
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Figure 2.4  

Shows The Detail of Xception Network Architecture 

Conv 32, 3x3, stride 2x2
ReLU

Conv 64, 3x3
ReLU

SeparableConv 128, 3x3

ReLU
SeparableConv 128, 3x3

MaxPooling, 3x3, stride 2x2

ReLU
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ReLU
SeparableConv 256, 3x3

MaxPooling, 3x3, stride 2x2

ReLU
SeparableConv 728, 3x3

ReLU
SeparableConv 728, 3x3

MaxPooling, 3x3, stride 2x2

ReLU
SeparableConv 728, 3x3

ReLU
SeparableConv 728, 3x3
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19 x 19 x 728 feature maps

Repeated 8 times

19 x 19 x 728 feature maps

2048-dimensional vectors

Optional Fully-connected 
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19 x 19 x 728 feature maps

Conv 1x1
Stride 2x2

Conv 1x1
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Stride 2x2

Conv 1x1
Stride 2x2

Entry Flow Middle Flow Exit Flow

 

 

Note. Adapted from "Xception:  Deep Learning with Depthwise Separable Convolutions,"  by 

Franc¸ois Chollet, arXiv preprint arxiv:1610.02357, 2017.  

 

The depthwise separable convolution layer is used to independently perform spatial 

convolutions on every non-overlapping segment of the output channels after being pro-

cessed by a large 1x1 convolution and a pointwise 1x1 convolution layer while creating 

the new channel space from the channel’s output. 

The depthwise separable convolution layer shares the same similarity with the extreme 

version of an Inception. However, there are some minor differences. In the extreme 

Inception module, the 1x1 convolution is performed first and then followed by channel-

wise spatial convolution. Another difference is ReLU non-linearity operations are im-

plemented in extreme Inception modules instead of linearities operations which are usu-

ally implemented in depthwise separable convolutions. 
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Figure 2.5  

Shows an Extreme Version of The Inception Module 

 

Note. This figure demonstrated an extreme version of the inception module, which performs 

one spatial convolu-tion per output channel of the 1x1 convolution. Adapted from "Xception: 

Deep Learning with Depthwise Separable Convolutions," by Franc¸ois Chollet, arXiv preprint 

arxiv:1610.02357, 2017.  
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CHAPTER 3 

METHODOLOGY 

 

 

The method used for detecting a change in the road environment or road anomaly events 

is based on reconstructed sequences that represent the regular patterns. when an abnor-

mal event happens, that recent image sequence will contain an anomaly and be signifi-

cantly different from the other frames. Inspired by deep learning techniques, a deep 

autoencoder is suitable for reconstructed these sequences. It is an end-to-end model 

that can extract and understand spatial and temporal features together. 

Unsupervised training methods are preferred to train the system for detecting anomaly 

events by using regular road footage in the training set. The objective of the model is 

to minimize the reconstruction error between the actual video frames and the recon-

structed video frames from the trained network. After the model is well trained, normal 

scenarios are supposed to have low reconstruction error due to the high probability of 

that frames being represented in the footage videos, whereas irregular scenes are sup-

posed to be rarely represented and have high reconstruction error.  

Based on this hypothesis, the AE model would be able to detect and distinguish when 

and where an irregular event occurs. The optical flow and semantic segmentation tech-

niques are introduced to ensure the discrimination between normal events and abnormal 

events by the network. The input frames are preprocessed or be reduced to the spatial 

resolution by the optical flow network, PWC-Net, or by the semantic image segmenta-

tion, DeepLab Xception network before further sending to the deep autoencoder for 

detection of anomaly events in the input frames. 

3.1 Conv-LSTMs Encoder-Decoder 

A Conv-LSTMs  Autoencoder is the main component for road anomaly detection. It is 

supposed to learn and understand the regular patterns in the training videos by learning 

spatial and temporal relationships in the events. To interpret spatial and temporal rela-

tionships, it requires to consist of spatial and temporal extractor modules. The spatial 

extractor is used to extract the latent spatial patterns of each frame in the videos.  
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For more details, the spatial extractor structure has stacked convolutional and deconvo-

lutional layers and has the temporal extractor layer in between. The temporal layers 

have 3 convolutional long short-term memory (Conv-LSTMs) layers used for learning 

temporal patterns of the encoded spatial structures. 

 

Figure 3.1  

Shows Vanilla Conv-LSTMs Autoencoder 

 

Note. This figure demonstrated the overall vanilla Conv-LSTMs pathway. The color image 

sequences are fed directly into the Conv-LSTMs network to reconstruct sequences and predict 

anomaly score 

 

3.2 Optical Flow using Deep Learning PWC-Net 

PWC-Net is introduced for estimating the flow vector from the series of the input. The 

input frames are transformed into dense optical flow images before being interpreted 

by the Conv-LSTMs autoencoder.  

PWC-Net is used to reduce the spatial features that the autoencoder requires to learn. 

PWC-Net can be separated into two main levels. In the first level, a feature pyramid 

extract features from the images pair. At the end of the first level, a cost volume is 

created by comparing the difference of features from the first image with corresponding 

features from the second image. This level has a miniature spatial resolution, the cost 

volume is then constructed using a small search range. The CNN is then used to draft 

the predicted flow from this cost volume and features of the first image. This drafted 

flow then being upsampled and rescales before sending through the second level.  

In the second level, the features of the second image are transformed toward the first 

image for reconstructs a new cost volume from these warped features and the first im-

age’s features. PWC-Net still uses a small search range to create the second level cost 

volume because the warping technique already compensates for the large motion. The 

CNN is again used to draft the new predicted flow from the second level cost volume, 



22 
 

the upsampled flow, and features from the first image. This second drafted flow then 

being upsampled and rescales before sending through further to the next level. This 

process is then repeated until reaching a satisfying level. 

 

Figure 3.1  

Shows Overall PWC-Net-Conv-LSTMs Autoencoder 

 

Note. This figure demonstrated the overall PWC-Net-Conv-LSTMs Autoencoder pathway. The 

input frames sequences are transformed into dense optical flow images before being interpreted 

by the Conv-LSTMs autoencoder 

 

3.3 Semantic Image Segmentation 

The DeepLab Xception network is introduced for construction segmentation images. It 

is used to reduce the spatial features by reducing the resolution of the input images to 

the colour-related segmentation images before being interpreted by Conv-LSTMs  Au-

toencoder. In order to build segmentation images, the input images need to pass through 

many stacked depthwise separable convolution layers in the network. 

The segmentation model is based on the Xception architecture. It consists of 36 stacks 

of depthwise separable convolution layers with residual connections in every module 

except for the first and last modules. These convolutional layers are constructed into 14 

modules. 
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Figure 3.2  

Shows Overall Xception-Conv-LSTMs Autoencoder 

 

Note. This figure demonstrated the overall Xception-Conv-LSTMs Autoencoder pathway. The 

input frames sequences are reduced the spatial features before being interpreted by the Conv-

LSTMs autoencoder 

 

3.4 Anomaly Score 

The anomaly score can be calculated from the reconstruction error between the actual 

video frames and the output reconstructed video that has been constructed from the 

autoencoder. The reconstruction error is an absolute anomaly score. The huge recon-

struction error indicates the anomaly events. In practice, this absolute score cannot be 

directly usable. It already interferes with the environment in the long term because it 

already has a low resolution to recognize any irregular events. In order to accurately 

calculate the anomaly score, the time interval base and GMM base are introduced to 

calculate the relative anomaly score in one period of time.  

The reconstruction error = matrix norm (The actual video frames - The output reconstructed 
video frames) 

 

The anomaly score = The reconstruction error / (Max of the reconstruction error of that time 

interval – Min of the reconstruction error of that time interval) 
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Figure 3.4  

Shows The Reconstruction Error Mapping 

 

 

In time interval base, the time interval needs to be short enough to prevent long term 

environmental changes to affect and needs to be long enough to encase irregular events. 

For simple interpretation, the anomaly score is normalized in the 0-1 range format. Zero 

is completely abnormal and one is normal. The formula to calculate the anomaly score 

is the reconstruction error divided by the max-min score range of that time interval. If 

the anomaly score is less than 0.2, that moments will be considered as anomaly events. 

GMM base or Gaussian Mixture Modelling is used for clustering the reconstruction 

error from the 2 models. The algorithm will calculate the best number of clusters from 

thousand steps and thousand initial random starting points or call it ‘max’. if starting 

points fix is used, it calls ‘rt’.  It can further be divided into the mahalanobis distance 

method and the Mean method. 

Mahalanobis distance is used to calculate the distance from any point in the 2-model 

pair score to the centroid in the mahalanobis distance method and also used to calculate 

the distance from the combined score point to the mean of that cluster in the mean 

method. If the distance is higher than the threshold, it will be considered as anomaly 

points. 
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Figure 3.3  

Mahalanobis Distance Method on Pair 

 
 

Figure 3.6  

Mahalanobis Distance Method on Mean 

 

 

3.5 Training 

In the training process, the Conv-LSTMs model is trained with 160 videos footage or 

160 minutes duration of the road scenes.  The video footage consists of a city dataset 

and a rural dataset. The model is shuffling training with sequenced images from these 

2 datasets. To prevent overfitting in a specific scenario, the model is trained with an 

epoch equal to one. To construct sequenced images, the sliding technique is also used 

to triple the training images at a different order of sequenced images. 
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Figure 3.4  

Example of Training Image from Cityset 

 
 

Figure 3.8  

Example of Training Image from Ruralset 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

 

 

The implementation of 2 subnetworks is time-consuming and computation consuming 

result in the prediction is far beyond real-time implementation especially in the Conv-

LSTMs network. The video 1 minute long takes at least 400 seconds or over 6 times 

the length of the input video duration before presenting the resulting graph.  

In the evaluation process, the test data will be divided into 3 main categories. First, the 

city dataset collects the footage in the urban environment with high traffic. it contains 

high rise building scenes, a sky train rail track, the overbridged, construction site scenes 

and the real congestion scenes on the roads. Second, Rural and AIT campus dataset that 

contain traffic scenes in the suburban areas with fewer cars on the road, narrowed roads 

and the trees along the side. The third dataset is an extended test, which contains the 

scenes in specific conditions such as off-road scenes, dense areas road scenes, late af-

ternoon light conditions and crash detection test. 

There is no ground truth for categorization anomaly events from the footage, therefore 

the human sense is approximately used to classify the events that are obviously abnor-

mal and sudden change for analyzing the performance of the model. The system also 

detects sudden changes around every 15-20 seconds depending on the scenarios.  

Overview: 

There are two variations of the results, both are tested with the input frames size at 

256x256. First is the time interval base with 2 versions of weight ratio between dense 

optical flow to semantic segmentation of 1:1 and 2:1. The second is the GMM base 

score, the mahalanobis and mean. 

In the city test set, from 13 footage videos. The best method is the time Interval base 

20s and model ratio 2:1. It can predict 69 anomaly events that can be divided into true-

positive 42 times and false-positive 27 times. Comparison with human sense at 62 

anomaly events, the system has the precision at 60.87 percentage, the recall at 67.74 

percentage and the F1 score at 64.12 percentage.  
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In the rural test set, from 8 footage videos. The best method is the mahalanobis 70 max 

in the GMM base model. It can predict 48 anomaly events that can be divided into true-

positive 27 times and false-positive 21 times. In comparison with human sense at 37 

anomaly events, the system has the precision at 56.25 percentage, the recall at 72.97 

percentage and the F1 score at 63.53 percentage. The performance of the time Interval 

base slightly drops possibly come from the fixed time interval that is not suitable for 

rural scenarios. 

In the Extest test set, from 13 footage videos. There are 2 methods that have the exact 

same score, the time interval base at the 20s and model ratio of 1:1 and the GMM base 

is the mahalanobis  70 at a score of 66.67 percentage. The time Interval base can predict 

69 anomaly events that can be divided into true-positive 45 times and false-positive 24 

times. In comparison with human sense at 66 anomaly events, the system has the pre-

cision at 65.22 percentage, the recall at 68.18 percentage and the F1 score at 66.67 

percentage.  

The GMM base, the mahalanobis 70 can predict 75 anomaly events that can be divided 

into true-positive 47 times and false-positive 28 times. In comparison with human sense 

at 66 anomaly events, the system has the precision at 62.67 percentage, the recall at 

71.21 percentage and the F1 score at 66.67 percentage.  

In the other test set such as AIT footage, the system can detect similar to the rural da-

taset. It can recognize the tree, parking roof, building but it fails when the car hits a 

bumper. For the night test set, the system predicts barely accurately due to poor camera 

night vision, high noise level and lack of training for night scenes. There is some envi-

ronment that can lead to false detection such as the tree’s shadow. the sunlight directly 

to the camera, dawn time and other low light conditions. 

To summarize, the best system for all datasets comes from the GMM base method, the 

mahalanobis 70 max of overall weight F1 score at 62.12 percentage. In comparison 

with the best time interval base method, the time Interval at the 20s and model ratio 2:1 

at 60.87 percentage of the F1 score. The overall performance of the system is no sig-

nificant difference between the model weight ratios. 
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Table 4.1  

Score Comparison on Different Methods 

 City Set Rural Set Extest Set Average Weight Average 
Time Interval 20s 1:1 58.39416 53.01205 66.66667 59.35763 60.29079823 
Time Interval 20s 2:1 64.12214 51.85185 63.15789 59.71063 60.86633037 
Time Interval 30s 1:1 54.26357 38.80597    
Time Interval 30s 2:1 62.0155 41.17647    
Time Interval 15s 1:1 58.75 56.52174 64.82759 60.03311 60.54948629 
Mahalanobis 70 max 56.71642 63.52941 66.66667 62.30417 62.12398217 
Mahalanobis 60 max 54.54545     
Mean 80 46.4 53.33333    
Mean 60 55.62914     

 

Table 4.2  

Score Comparison on Different Methods on Bar Chart 

 
 

The anomaly events can be evaluated in terms of category, the Extest dataset is used 

for these specific events. The below table shows the GMM base method, the mahalano-

bis 70 max test on Extest dataset with category on events. 
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Table 4.3  

Score Comparison on Different Category 

 Ground truth Mahalanobis 70 max Percentage 
Off road 6 6 100% 
Intersection 4 3 75% 
Dog 2 0 0% 
Obstacle 5 3 60% 
Car pass front 1 1 100% 
Car stop 2 2 100% 

  

The results show that the system is good at detecting cars driving off-road. car passing 

in front, intersection, and car stop however it cannot detect dog sitting on the road due 

to its small area compared to the whole frame. The system fails to detect the front car 

obstacles. It may consider them as cars parking in the traffic. 

In this chapter, the effects of changing some parameters on the results will be further 

discussed below. 

The specification of the computer that used to train and evaluate is: 
 

Device name: HP Z440 Workstation 

Processor:  E5-2678V3 2.50-3.40GHz 12C 24T 

RAM:   Memory 64 GB 

SSD:   2.5" 512GB 

OS:   Windows 10 Pro 64Bit 

Graphic card:  GTX 1070 8GB 

 

Device name: DESKTOP-95MU2RL 

Processor: Intel(R) Core (TM) i7-9700F CPU @ 3.00GHz   3.00 GHz 

RAM:  Memory 16.0 GB 

HDD:    1TB 

OS:   Windows 10 Education 

Graphic card: RTX 2070 8GB 
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4.1 Conv-LSTMs Encoder-Decoder 

The vanilla Conv-LSTMs  Encoder-Decoder as the anomaly detection network is quite 

good. It has the ability to detect the change in the surrounding environment such as a 

huge building, walk bridge, sky train station but it also has nonsense false detection, 

and it can be affected by some vibration.  The overall graph is in low-resolution detec-

tion compared with other networks. 

In the city dataset, it can detect motorbikes, the front car ahead breaking, and the build-

ing near the road. In the rural dataset, it detects the passing cars, trees, houses. 

 

Figure 4.1  

The Vanilla Conv-LSTMs from Cityset81 

 
 

4.1.1 The Effect of Input Images Size on Conv-LSTMs 

The video dataset used to train the model is recorded in HD resolution or 1280 x 720 

pixels. In order to reduce the dimension for capable of training and conserve the ratio 

of the sequenced images. The images have reduced the resolution to 640 x 340 pixels. 

For comparisons of the effect of input images size, another training model further re-

duces the dimension down to 256 x 256 pixels.  

The result shows that the low-resolution input has a higher score than the high resolu-

tion. This suggests at the lower resolution, the system is better in capturing latent data 

than the high-resolution images, although the high-resolution training images can make 

the system a little bit more sensitive to the change in the environment. 
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Figure 4.2  

The Result of Input Image Size 256x256 from Cityset81

 

 

Figure 4.3  

The Result of Input Image Size 640x360 from Cityset81 

 
 

4.1.2 The Effect of Input Images Sequence on Conv-LSTMs 

The Conv-LSTMs network requires the input sequenced images to learn the latent con-

tent in the sequenced images. The sequenced images must be large enough to capture 

and distinguish the normality in the events. The sequenced images relate to the frame 

rate of the videos in the dataset. The framerate in the video is 30 fps. It is too large to 

train 30 frames or 1-second duration at once, so the model is trained with 10 frames per 

sec instead and for comparison 1 frame per sec is also trained. 

The result shows that at 1 fps, the time gap between images is too high for the system 

to capture the latent content in the events and provide a false prediction. 
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4.1.3 The Effect of Color Channels of Input Images Sequence on Conv-LSTMs 

The output of the sequenced images from semantic image segmentation appears in 1 

color channel result from a hot-code method, the number in the pixels represent a cor-

responding class of that pixel. To make an array be an image, it can translate to an RGB 

image with color in that pixel corresponding to class it be, or it can be translated to a 

grayscale image that the corresponding class is separated between 0-255 values. 

The differences between an RGB image and the grayscale image is insignificant and 

can be negligible hence, a grayscale image is chosen to reduce model loads and make 

prediction faster. The Conv-LSTMs network that uses greyscale as input can reduce the 

computation time by around 5 minutes per 1-minute footage. 

 

4.2 Optical Flow as Preprocess Network 

The optical flow using PWC-Net combined with Conv-LSTMs is very good at detecting 

moving objects around the car including the structure that builds nearby the road. The 

limitation is the low range of field detection. The objects must be near or huge enough 

before the network can detect them and the objects must be moved between two frames 

therefore, it is harder to recognize obstacles in front of the car because the pixels are 

barely moving, however it is excellent at detecting sharp edges when passing the other 

car or a wall’s corner. It can also notice the acceleration, deceleration and some kind of 

car’s vibration. 

In the city dataset, it can detect motorbikes, the passing car, the building, or the car that 

park near the road. In the rural dataset, it detects the nearby passing cars, trees, wall. 

 

Figure 4.4  

The Optical Flow from Cityset81
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4.3 Semantic Image Segmentation as Preprocess Network 

The semantic image segmentation using Deeplab Xception combined with Conv-

LSTMs is good at detecting the change in the surrounding environments such as mo-

torbikes, people, side buildings, walk bridges, sky train stations and huge trees at higher 

resolution or sensitivity than vanilla Conv-LSTMs. Further, it can also distinguish the 

intersection and off-road moments. The disadvantage is the segmentation process can 

predict false detection easily and the network is delicate to vibration. 

 

Figure 4.5  

Example of Segmentation as Preprocess from Cityset81 

 
 

4.3.1 The Effect of Input Images Size on Semantic Segmentation 

In the image semantic segmentation process, the input image could be at a high resolu-

tion as possible because at a high resolution, the system will predict the classes with 

higher accuracy than low resolution and the Conv-LSTMs can furthermore achieve the 

fine detail of the environments. 

In the city dataset, it can detect motorbikes, people, the passing, and lane changing car, 

the building and in the rural dataset, it detects trees, walls and off-road scenes. 

 

4.4 Anomaly Score Interpretation 

4.4.1 The Combined Score Between Optical Flow and Semantic Image Segmenta-

tion 

To overcome the limitation of both models, a combined score is applied. A combined 

score is a combination of anomaly score from the Optical Flow model and the semantic 

image segmentation that is calculated from the average score between 2 models. It is 
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sensitive to either change in the surrounding environment or nearby moving objects. 

Further, the combined score can reduce the effect of false prediction from any model 

by equalizing it. The result from the combined score reveals the best accuracy compared 

to the individual model. 

4.4.2 The Effect of Model Weight Ratio for Time Interval-Based Prediction. 

Normally, the combined score is calculated from the average score from the Optical 

Flow model and the semantic image segmentation or at the ratio of 1:1 however, this 

ratio can be changed to any number. In the experiment, 2:1 is chosen because the optical 

flow is better in detecting the surrounding environment and less sensitive to the vibra-

tion than the semantic image segmentation. This ratio can slightly reduce the number 

of false predictions caused by false segmentation and vibration, except it also reduces 

the number of predicted abnormal events. This downside is overcome its advantages, 

thus the model ratio at 1:1 is preferred. 

 

Figure 4.6  

Result of Model Weight Ratio at 2:1 (New) and 1:1 from Cityset81 

 
 

4.4.3 The Effect of a Time Interval for Time Interval-Based Prediction. 

In order to distinguish between normal scenes and anomaly scenes, the score is used. If 

the score is less than 0.2, indicate this moment is an anomaly event and to calculate the 

relative score, the length of a time interval is applied. 

The best time interval for calculating anomaly moments is 15s for capturing all possible 

anomaly events including passing the trees, passing side road building, the car passing 

that happen in a short period. If the time interval is too high, the system will predict a 
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long-term anomaly score and the graph will be smoother with small fluctuation instead 

of rapid change between normal and abnormal moments. However, this time interval 

setting makes the system more delicate to false prediction and vibration in calm condi-

tions and suburban areas.  

 

Figure 4.7  

The Citytest 81 at 15s-Time Interval 

 
 

Figure 4.8  

The Citytest 81 at 30s-Time Interval
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4.4.4 The Effect of Distance Percentile for GMM Based Prediction. 

Mahalanobis distance is used to calculate the anomaly points from the points that have 

a distance higher than the control percentile. The best average percentile that results in 

the highest score is 70 percentiles without fix the initial point in the mahalanobis dis-

tance method and gets around 60 percentiles in the mean method. 

 

Figure 4.9  

The Citytest 81 at The Mahalanobis 70 Percentiles 

 

Note. The red dots in this figure indicate moment that be considered as an anomaly. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

 

 

5.1 Conclusion 

The final model of road anomaly detection can detect the anomaly events on the road 

in the three different tests set, city dataset, rural dataset, and Extest dataset quite well 

but unfortunately, the overall performance is not getting an F-score higher than 70 per-

cent. The best score from the three datasets is 64.12%, 63.53%, and 66.67 %, corre-

spondingly and the overall score is 62.12 %. The best system is made by using HD 

resolution as input images in the preprocess network and then reducing the sequenced 

image’s dimension down to 256x256 pixels with 1 color channel in segmentation while 

has 3 color channels in optical flow for the Conv-LSTMs network. In the calculation of 

the anomaly event process, the anomaly is computed using the mahalanobis distance 

on a reconstruction score from the 2 different models, dense optical flow, and segmen-

tation with thousand steps and thousand initial points. The network uses around 7-10 

minutes in order to process a 1-minute-long video and can detect sudden changes 

around every 15-20 seconds. 

The limitation of the system is it cannot be used in low light conditions. The weather 

needs to be clear for the highest performance. The system is also delicate to every form 

of vibration or any rapid acceleration such as irregular road,  road bumper, and fast 

turning or breaking however there is some evaluation that considers these as anomaly 

events. 

5.2 Recommendations 

To improve the overall performance of the system, the camera that use to capture the 

footage should have a good image stabilization system and night vision mode to capture 

the footage steady and reduce the noise in the low light environment, the camera better 

installs outside of the car to minimize the shadow and light glare error on the car’s 

window. With better camera equipment, the system can be further trained in low light 

and night conditions and can be trained in other weather conditions such as the raining 

and foggy environment. 
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To reduce the sensitivity to the change in the surrounding environment, the input im-

ages can be cropped sky out, reduce the visibility and view angles to mainly focus on 

the road. Sky and cloud conditions can influence the predicted results.  

To increase the precision in the rural dataset and other environments, in the time interval 

base method adjustable time interval should be used. The time interval can be related 

to the speed of the car or the magnitude of the flow vector in the optical flow process 

can be used to estimate the car speed. In the other method, the system might be trained 

with longer periods and varying situations. 

To reduce the computation time of the system, the higher computation graphic card and 

larger RAM capacity can be used to make the system close to real-time detection. The 

other higher efficient and newer model network can replace Conv-LSTMs in future 

work. 
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