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ABSTRACT 

In industrial applications, the PID controller has used because its structure is simple and 

easy to implement in the system. On the other hand, this controller still has an inevitable 

disadvantage which is it lacks robustness. As a consequence, the robust controller 

designed by the H-infinity technique is applying. Conventional H-infinity is a method 

to create a Robust controller by computing H-infinity controller γ-iteration. The loop-

shifting two-Riccati formulae are solved to find the optimal γ so that the cost function 

satisfies under desired tolerance. This controller is a complex one due to the higher-

order terms that make it is difficult to implement in the real system. However, it can 

provide good robust performance. The PID controller with a derivative first order is 

used to compare performance with the proposed controller designed by the 

conventional H-infinity method. Furthermore, the robustness test by varying the load 

mass and pressure of the system. 
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CHAPTER 1 

INTRODUCTION 

 Background  

The pneumatic actuator, which uses compressed air to control and transmit energy, is 

one of the most widely used systems of industrial and non-industrial applications. It has 

been applying for several applications such as clamping, drilling, or sawing of industrial 

applications. Moreover, it consists of some advantages over hydraulic and electrical 

actuators. Besides, it has benefits of low component cost, high power-to-weight ratio, 

lightweight, and readily usable power source, etc. The working fluid of the system is 

compressible. As a result, the pneumatic actuator has high nonlinearities. According to 

the nonlinear characteristic of the pneumatic actuator, position control is hard to 

perform. The nonlinearities occur from several causes such as valve behavior, friction, 

and air compressibility. Finally, many techniques had developed to achieve a good 

performance. 

In the present day, according to the simplicity and ease of implementation of the PID 

controller, this classical controller has developed several techniques to apply with the 

nonlinear system. The PI and PID controllers with the pneumatic actuator were studied 

in Design and experimental evaluation of a position controller for a pneumatic actuator 

with friction and A practical control strategy for servo-pneumatic actuator systems in 

2005 and 1999, respectively. The resulting control of a modified PID controller 

improved the stability of the pneumatic actuator. Moreover, the modified PID had a 

simple structure which was a feature of using this type of controller. However, PI and 

PID controllers still provide poor control performance and low robustness due to some 

uncertainties. As a result, robust control approach proposes to design a controller that 

can handle uncertainty.  

The Robust control purpose is to accomplish robust performance and stability within 

the bounds of the modeling error. In the late 1970s, Sliding Mode Control (SMC) was 

proposed to handle nonlinear systems.  The SMC is one of the robust control techniques 

that insensitive to uncertainties of the system. In addition, it is used when the system 

requires robustness and the tracking error to be in the desired boundary. The successful 

studies of applying the SMC to the pneumatic system have shown in P. Korondi, J. 
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Gyeviki study in 2006 and J Song, Y Ishida in 1997. However, this method still has a 

major problem which is chattering. It is phenomenal that has a finite frequency and 

amplitude oscillation. As a result, the system has low control accuracy. 

In the early 1980s, George Zames, J. William Helton, and Allen Tannenbaum 

introduced H-infinity methods to design robust controllers. Several techniques of H-

infinity have been proposing to simplify the complexity of H-infinity. For example, H-

infinity loop shaping combines the classical control method with H-infinity 

optimization. The H-infinity control addresses the stability and sensitivity in the 

calculation, but it requires high-level mathematical understanding.  The H-infinity 

comes from the optimization of the infinity norm. Thus, it computes the optimal value 

of the H-infinity controller by solving two Riccati equations. The resulting output can 

achieve under the desired tolerance. Some studies represented the result of applying H-

infinity to the unstable system. 

In system identification of the pneumatic actuator, the linear dynamic model of the 

position output of the actuator to input voltage applying to the valve is derived from the 

mathematic equations. The resulting model is described as a third-order dynamic 

system. Moreover, the model consists of a pole at an origin point. The unknown 

parameters of the equation can be determined in various ways. Some papers directly 

measured the unknown parameters to identify the mathematical model, while others 

modified the plant with a proportional controller. The modified plant is expressed as a 

first-order time-delay model. However, the time delay of this modified plant is 

enormous. Thus, the model is suggested to approximate as a second-order time delay 

instead. It is said that the correctness of the second-order approximation is higher than 

the first-order approximation of the modified plant.  

 Statement of the Problem 

Due to the nonlinearities from the compressed air, valve behavior, and friction the 

position control of the pneumatic system is difficult to perform. The uncertainties and 

disturbance are the causes that make the dynamic model of the pneumatic actuator is 

complicated to estimate. The position of the pneumatic actuator is controlled by the 

robust controller. 
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 Objective  

This thesis proposes a robust controller by H-infinity method to control the position of 

the pneumatic actuator. Then, compare its performance with the PID controller based 

on pole placement tuning method.  

 
 Limitations and Scope 

1. A linear pneumatic actuator is used Cylinder’s specification 

         Actuation:                                Double acting 

Maximum working pressure:  7 Bar 

Degree of freedom:                 1 Degree of freedom 

Stroke length:                          0.5 meters 

              Maximum load:       1.22 kg. 

2. The robustness performance will be tested by varying load mass and air 

pressure. 
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CHAPTER 2 

LITERATURE REVIREW 

 Open Loop Control System   

A non-feedback system is known as an open-loop system. The input signal of this 

continuous control system is independent of the output. In other words, the desired 

output is accomplished without using the feedback. Figure 2.1 depicts the open-loop 

control system black diagram. 

Figure 2.1                                                                                                                                                                                                                                                                                                                                                                                                     

The Open-Loop Control System Block Diagram 

 

 

 Closed-loop Control System   

The closed-loop control system is a continuous control system that the input depends 

on the feedback output.  In other words, the desired output of the closed-loop system is 

automatically provided to compare with the actual input. A block diagram of a negative 

feedback closed-loop control system is illustrated in Figure 2.2. 

Figure 2.2                                                                                                                    

The Closed-Loop Control System Block Diagram 
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 PID Controller 

A proportional–integral–derivative controller (PID controller) is a control loop tool 

employing feedback that is the most common control algorithm used in several 

industrial and non-industrial applications. The error between the desired output and the 

actual output is calculated in every loop to compute for the improved control signal 

based on the proportional, integral, and derivative terms. Each term provides different 

benefits for the system. 

 

2.3.1 Proportional Control  

Proportional control is the term that describes the algorithm in which the control signal 

is proportionally dependent on the error. 

𝐹(𝑠) =  𝐾𝑃𝐸(𝑠)          (2.1) 

Where, F(s) is the divergence in the control signal and Kp is the proportional gain. 

 

Figure 2.3                                                                                                        

Proportional Controller with the Closed-Loop System 

 

A first-order system when the step functions are applied as inputs, 

1. Even there is no disturbance applied to the system, the output never reaches 

its final value. This error is called an offset error. 

2. The time that it takes to approach the final value without oscillation, is 

inverse proportional to the proportional controller gain. 

3. The inverse of the proportional gain equal to the output error from the 

disturbance at a steady state.  
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2.3.2 Integral Control 

The offset error that happens from the proportional control can be developed by the 

integral control algorithm. 

𝐹(𝑠) =  
𝐾𝐼

𝑠
 𝐸(𝑠)          (2.2) 

𝑓(𝑡) =  𝐾𝐼  ∫ 𝑒(𝑡) 𝑑𝑡
𝑡

0
        (2.3) 

Where, KI is the integral gain. 

 

Figure 2.4                                                                                                              

Integral Controller with the Closed-Loop System 

 
 

2.3.3 Derivative Control 

Derivative control is applied to damp out oscillations. The derivative controller is the 

occasion of the derivative of the error signal. 

𝐹(𝑠) = 𝐾𝐷𝑠 𝐸(𝑠)          (2.4) 

𝑓(𝑡) =  𝐾𝐷  
𝑑

𝑑𝑡
 𝑒(𝑡)         (2.5) 

Where, KD is the derivative gain. 

Because of the error rate, derivative control must never be used alone. 

 

Figure 2.5                                                                                                             

Derivative Controller with the Closed-Loop System 
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2.3.4 PID Control 

The union of the proportional, integral, and derivative controller provides the output of 

the PID controller. 

𝐹(𝑠) = (𝐾𝑝  +  
𝐾𝐼

𝑠
+ 𝐾𝐷𝑠 ) 𝐸(𝑠)       (2.6) 

 

Figure 2.6                                                                                                                       

PID Controller with the Closed-Loop System 

 
 

2.3.5 Advantages of the PID Controller 

1. It does not require several sensors. In other words, it only acts on the error  

between the desired and the controlled signal. Therefore, extra measurements 

of the internal states are not necessary. 

2. The tuning can be done easily by trial and error.  

3. It is efficient and robust against some uncertainties if the system is properly 

tuned. 

4. Inexpensive 

 

2.3.6 Disadvantages of the PID Controller 

1. The controller is not suited for nonlinear plants. 

2. Derivative amplify noise 

 

 State-Space Control Theory 

This part describes the state-space which is the classical control method. There are four 

approaches to the state-space. First, the first-order equations are used for all differential 

equations. Second, the number of the first-order equations defines the order of the 

system. Third, the state variables are the dynamic variables that represent in the first-

order equations. Last, even though the identity of the state variables may not be unique, 

the number of these variables is unique. 



 

 8 

For k order system, the state variables and control inputs can be expressed as:  

𝑥 =  [

𝑥1

⋮
𝑥𝑘

]    𝑎𝑛𝑑  𝑢 =  [

𝑢1

⋮
𝑢𝑙

]         (2.7) 

Where, x = state vector and u = input vector. 

In a linear process, the state equation can be shown as: 

�̇� =  𝐴(𝑡)𝑥 + 𝐵(𝑡)𝑢   (2.8) 

 

𝐴(𝑡) =  [
a11(t) ⋯ a1k(t)

⋮ ⋱ ⋮
ak1(t) ⋯ akk(t)

]   and 𝐵(𝑡) =  [
b11(t) ⋯ b1l(t)

⋮ ⋱ ⋮
bk1(t) ⋯ bkl(t)

]     (2.9) 

Where, A(t) = state matrix and B(t) = input matrix 

For linear time-invariant processes, the state equation 

�̇� =  𝐴𝑥 + 𝐵𝑢          (2.10) 

Where, A and B are constant matrices. 

 

Measured outputs can be shown as: 

𝑦 =  [

𝑦1(𝑡)
𝑦2(𝑡)

⋮
𝑦𝑚(𝑡)

]          (2.11) 

Where, y(t) = output vector or observation vector. 

In a linear system the output vector can be expressed as: 

𝑦(𝑡) =  𝐶(𝑡)𝑥(𝑡) + 𝐷(𝑡)𝑢(𝑡)       (2.12) 

Where, C(t) = output matrix 

For time-invariant, C(t) and D(t) are constant matrices. 

𝑦 =  𝐶𝑥 + 𝐷𝑢          (2.13) 

Furthermore, there are two types of input. The first one is the control inputs (u). They 

are produced intentionally by the operation of the control system. On the other hand, 

exogenous inputs are the second one. It shows in the environment and not subject to 

control within the system. 

As a result, the general representation of a linear system is 

�̇� =  𝐴𝑥 + 𝐵𝑢 + 𝐸𝑥0       (2.14) 

A block diagram representing the general linear system is illustrated in Figure 2.7. 
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Figure 2.7                                                                                                                     

General Linear System Block Diagram 

 

 

 Robust Control 

The controller that can deal with uncertainty is the one designed by a robust control 

method. Several techniques have been developed such as H-infinity loop shaping or 

sliding mode control. A block diagram of the Plant and Controller with disturbance 

input and disturbance output is illustrated in Figure 2.8. 

 

Figure 2.8                                                                                                                       

The Plant and Controller Block Diagram with Disturbance Input and Reference 

Output 
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The open-loop system obtains from the above figure is: 

[
𝑧
𝑦] = 𝑃 [

𝑤
𝑢
] =  [

𝑃𝑧𝑤 𝑃𝑧𝑢

𝑃𝑦𝑤 𝑃𝑦𝑢
] [

𝑤
𝑢
]         (2.15) 

While the closed-loop transfer function from disturbance as an input to reference as 

an output is: 

𝑇𝑧𝑤 = 𝑃𝑧𝑤 + 𝑃𝑧𝑢𝐾(𝐼 − 𝑃𝑦𝑢𝐾)
−1

𝑃𝑦𝑤       (2.16) 

 

  H-infinity Loop Shaping 

H-infinity loop shaping is one of the robust control techniques which is developed to 

deal with uncertainty. The sensitivity of the system controlled by this method is 

minimized for every value of frequencies, and the system deviation is guaranteed to be 

in the exacted trajectories even there are disturbances applied to the system. One of the 

most applied structures is PID with a filter derivative. The gains of the structure 

specified mixed sensitivity H∞ controller obtained by using some optimization methods 

such as GA, PSO.  The gain can be written as: 

𝐺 =  𝐾𝑃 + 
𝐾𝐼

𝑠
+ 

𝐾𝐷𝑠

𝑇𝐷𝑠+1
         (2.17) 

In 2004, the research named a genetic algorithm-based fixed structure robust H∞ loop-

shaping control of a pneumatic servo system was conducted by Somyot Kaitwanidvilai. 

The robust controller was designed by optimal H∞ control. The H∞ loop shaping was 

implemented. In addition, The H-infinity loop shaping is optimized by the genetic 

algorithm. The performance of the PI, PID and the proposed H-infinity loop-shaping 

controller to control the pneumatic actuator is compared. The experiment was set up as 

shown in Figure 2.9. The experiment is tested by a pneumatic actuator with a stroke 

length of 200 mm, and it can work with a maximum pressure of 7 bars (0.7 MPa). The 

5/3-ways proportional valve used in the test. A linear potentiometer was used to 

measure the position. The nominal pressure of 550 kPa is sustained by a pressure 

regulator. 
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Figure 2.9                                                                                                              

Experimental Set Up of a Pneumatic Servosystem 

 

 

H∞ loop-shaping control is an effective way to design a robust controller. The desired 

open-loop shape is required in this method. The weighting functions of W1 and W2 are 

used to shape the plant model to achieve the desired loop shape. The augmented plant 

is represented as Gs, and it is separated into the nominator Ns and denominator Ms 

factors. According to this approach, the shaped plant Gs can be expressed as: 

𝐺𝑠 = 𝑊2𝐺𝑊1 → [
𝐴 𝐵
𝐶 𝐷

]         (2.18) 

𝐺𝑠 = (𝑁𝑠 + ∆𝑁𝑠
)(𝑀𝑠 + ∆𝑀𝑠

)−1      (2.19) 

The weighting function can be written as: 

𝑊1 = 𝐾𝑊
𝑠+ 𝛼

𝑠+ 𝛿
,        𝑊2 = 𝐼         (2.20) 

Where, KW, α and δ are positive numbers.  

Next, calculate the optimal cost which is the inverse of ε. The robustness of the desired 

loop shape is measured. After succeeding in the calculation for the, select the value of 

ɛ which is lower than the optimal one. Then, we will get the final K value of the 

controller as: 

𝐾 = 𝑊1𝐾∞𝑊2            (2.21) 

After obtaining the final value of the controller, the PID controller fixed-structured with 

a derivative first-order is applied. The structure of the controller is explained as: 

𝐾(𝑝) =  𝐾𝑃 + 
𝐾𝐼

𝑠
+ 

𝐾𝐷𝑠

𝜏𝐷𝑠+1
        (2.22) 

KP, KI, KD and 𝜏𝐷 are unknown parameters to be estimated. 
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Figure 2.10 illustrates the desired loop shape provided by the H∞ controller. It explains 

that the proposed method can perform as a robust controller correlates to the desired 

loop shape. The bode plot of the PI and PID controller performs like the desired loop 

shape. The calculated value of the optimal stability margin ɛopt was founded to be 

0.5793. Thus, for designing the robust controller, the ɛ is selected equal to 0.5475. After 

100 generations of the genetic algorithm were run, the stability margin was 0.5298 and 

0.4975 for the PID controller and PI controller, respectively. Figure 2.11 represents a 

plot of the infinity norm of the cost function which is the inverse of the stability margin 

to each iteration of the genetic algorithm. According to the result of the ɛ, robustness 

can be guaranteed by the proposed robust controllers. 

 

Figure 2.10                                                                                                               

Bode Plot of Desired Loop Shape and the Proposed Controllers 

 
 

Figure 2.11                                                                                                                  

The Plot between Genetic Algorithm Iterations and the Cost Function 
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 Sliding Mode Control (SMC) 

Sliding mode control (SMC) is a powerful technique for robust control of nonlinear 

systems. The dynamics of a nonlinear system are changed by sliding along the surface. 

 

In 2014, Xiaotao Liu et al., the sliding mode control was implemented to an 

electrohydraulic actuator (EHA) system. Normally, the hydraulic system is controlled 

by a valve. On the other hand, this paper proposed the EHA system controlled by a 

pump. The pump always provides the uncertainties, disturbances, and measurement 

noise to the system. Thus, the integral sliding mode control is suggested to control the 

system. The optimal feedback gain is derived by the H-infinity and the pole placement 

tuning method. The important and sufficient condition is calculated to obtain the 

optimal value. The sliding mode reaching law is satisfied by developing a sliding mode 

control law. To compare the performance of the proposed controller, the H∞ PI plus 

feedforward controller was used as a comparison. Figure 2.12 shows comparison of 

the performance between the proposed controller and the optimal H∞ PI plus 

feedforward controller. 

 

Figure 2.12                                                                                                               

Comparison of the Control Performance between the Proposed Controller and the 

Optimal H∞ PI Controller 
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When the input to these two controllers was compared, the control input of the optimal 

H∞ PI controller was approximately 5 times higher than the proposed controller. 

Because the optimal H∞ PI plus feedforward controller is sensitive to noise, the control 

input is extremely fluctuating when the uncertainty, disturbance, and measurement 

noise are applied to the system. In other words, it can be implied that the energy 

consumed by the optimal H∞ PI plus feedforward is greater than the proposed controller 

for a similar performance. Figure 2.13 illustrates the control input to the proposed 

controller and the optimal H∞ PI controller.  Furthermore, Figure 2.14 depicts that the 

proposed controller performs a much better tracking error than the optimal controller.  

 

Figure 2.13                                                                                                            

Comparison of the Control Input between the Proposed Controller and the H∞ PI Plus 

Feedforward Controller 

 

Figure 2.14                                                                                                           

Control Performance of an Immediate Desired Position 
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In conclusion, the sliding mode control is tested with the EHA system by proposing an 

integral sliding mode surface. The quasi-sliding mode surface can be reached by 

developed a sliding mode control law to drive the EHA system. The proof that the 

controller is robust to the acceptable bounded uncertainty is the value of the resulting 

stability margin. 

 
 H-Infinity Synthesis 

H-infinity control, proposed by George Zames, J. William Helton, and Allen 

Tannenbaum is a method to design a robust controller which well handles uncertainties. 

The robust controller designed with this technique does not go unstable easily when 

faces with some disturbance or noise. The H-infinity synthesis is a powerful tool for 

designing robust multi-input/multi-output control system that the singular value 

satisfies the loop shaping specifications. The H-infinity optimal control computes 

continuous H-infinity for γ-iteration by solving two Riccati equations. The output γ is 

the optimal value which provides the acceptable cost function of the equation (2.23) 

under a preset tolerance. 

‖𝑇𝑧𝑤‖∞  ≤ 1          (2.23) 

Where 

𝑇𝑧𝑤  ≝  [
𝑊1𝑆
𝑊2𝑇

]          (2.24) 

The usual H-infinity control is sometimes referred to H-infinity small gain problem. 

Normally, the H2 and H∞ are simultaneously applied, the H2 to perform the first cut to 

determine what level of performance can be achieved. Then, the outcome of the first 

process is used to select the H∞ performance criterion. The H-infinity theory needs four 

necessary conditions. 

1. D11 must be small enough to have constant feedback such that the closed-

loop matrix satisfies. 

2. The H-infinity full-state feedback control Riccati equation must have a real, 

positive semidefinite solution P. 

3. The Riccati equation associated with observer dual of the H-infinity full-state 

feedback problem must have a real, positive semidefinite solution S. 

4. The maximum eigenvalue of the resulting output of the two Riccati equations 

must be less than one. 
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It is necessary that these four conditions must be achieved to provide a feedback control 

law that the standard H-infinity control problem is solved. The search for optimal γ 

stopped when the γ relative adjacent error is less than the indicated limit. 

 

Figure 2.15                                                                                                               

Block Diagram of Controlled System with Disturbance 

 

 
Figure 2.15 illustrates the block diagram of the system with disturbance where the plant 

is G(s), controller is K(s), with unity negative feedback. Disturbance input is in the form 

of reference input R(s), measurement error is V(s), actuator error is W(s), and output 

disturbance is D(s). According to the block diagram, the looping function is found as: 

  𝐿(𝑠) = 𝐺(𝑠)𝐾(𝑠)          (2.25) 

Sensitivity function is expressed as: 

  𝑆(𝑠) =  (1 + 𝐿(𝑠))
−1

         (2.26) 

Complementary sensitivity function is: 

𝑇(𝑠) =  (1 + 𝐿(𝑠))
−1

𝐿(𝑠)        (2.27) 

Thus, 

𝑆(𝑠) + 𝑇(𝑠) = 𝐼           (2.28) 

To design the controller such that provides the least influence of disturbance D(s) to 

output Y(s), and measurement noise V(s) to output Y(s), 

𝑚𝑖𝑛 ‖[
𝑊1𝑆
𝑊2𝑇

]‖
∞

         (2.29) 
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Figure 2.16                                                                                                                   

Block Diagram of System Showing Influence of Measurement Noise to Output 

 

The augmented plant is expressed as: 

𝑃(𝑠) =  [
𝑊1 −𝑊1𝐺
0 𝑊2𝐺
𝐼 −𝐺

]       (2.30) 

With state-space realization, it can be presented as: 

𝑃(𝑠) =  [
𝐴 𝐵1 𝐵2

𝐶1 𝐷11 𝐷12

𝐶2 𝐷21 𝐷22

]      (2.31) 

It is essential that the weighting functions are selected so that the generalized plant 

has a full column rank of matrix D12 or D12 must be a nonzero small value. 

 

 Weighting Function 

The weighting function can be selected at any value depends on the task of the designed 

controller. Normally, W1 is chosen large within the control bandwidth to get a small 

sensitivity function that provides good performance on reference tracking and 

disturbance rejection. W2 is chosen large outside the control bandwidth to obtain small 

T for robustness and noise attenuation purposes.  

 

In 2011, the automatic weight selection algorithm which used for designing an H-

infinity controller was proposed by S. Nair. Weighting functions for designing an H-

infinity controller conducted by a proposed algorithm called automatic weight 

selection. This algorithm provides the weight of W1 and W2 which the resulting cost 

function γ from the optimization process is lower than 1. The major disadvantage of 

this algorithm is that many parameters are needed to be fixed. Initially, the weighting 

functions are expressed as shown in equations (2.32) and (2.33). 
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W1 or the weight function for sensitivity function, S(s) 

𝑊1 = 
𝑠

𝑀
+ 𝜔𝑏

𝑠+ 𝜔𝑏𝐴
          (2.32) 

where ωb is the cut off frequency, M is the high frequency gain and A is the low 

frequency gain. 

W2 or the weigh function for complementary sensitivity function, T(s), 

𝑊2 = 
𝐿𝑠+1

2( 0.5𝐿𝑠+1 )
         (2.33) 

where L is a constant. 

Initially, this paper proposed that the starting value of A, M, and L is 0.1, 1, and 0.01, 

consecutively. The final value of A, M, and L for the weighting functions is accepted 

when the system meets all requirements shown in Figure 2.17. 

 

Figure 2.17                                                                                                                 

Automatic Weight Selection Algorithm 
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The resulting weight functions from the algorithm are shown in equation (2.34) and 

(2.35) 

𝑊𝟏(𝑠) =  
0.33333(𝑠+300)

(𝑠+5)
       (2.34) 

𝑊2(𝑠) =  
(𝑠+100)

(𝑠++200)
        (2.35) 

With the cost function γ equal to 0.7772. 

 

To summarize, an automatic weight selection was proposed for synthesizing a robust 

H-infinity controller for active magnetic bearing systems. Two weighting functions 

normally came from the trial-and-error method. The H-infinity controller can be 

integrated from these weighting functions automatically. All requirements for 

designing an H-infinity controller have been made for this system. 

 
  Bilinear Transform 

There are several methods to discretize continuous time-domain into discrete time-

domain. Bilinear transform or Tustin’s method is one of the discretization techniques 

used to transform a continuous-time system into a discrete-time. There are several 

methods to approximate the value on the z-plane from the s-plane. The first method is 

a first-order approximation.   

𝑧 =  𝑒𝑠𝑇            (2.36) 

Need to linearize with Taylor series expansion: 

𝑧 =  𝑒𝑠𝑇 = 1 + 
𝑠𝑇

1
+ 

(𝑠𝑇)2

2
+ 

(𝑠𝑇)3

6
+ …   (2.37) 

The higher-order term can be neglected because the value is very small. Thus, z can 

be written as: 

𝑧 ≈ 1 + 𝑠𝑇          (2.38) 

To put z in the form of  
a+bs

c+ds
 

𝑒𝑠𝑇 = 𝑒(
𝑠𝑇

2
)𝑒(

𝑠𝑇

2
) = 

𝑒
(
𝑠𝑇
2

)

𝑒
−

𝑠𝑇
2

      (2.39) 

𝑒
(
𝑠𝑇
2

)

𝑒
−

𝑠𝑇
2

= 
1+ 

𝑠𝑇

2
+ 

(𝑠𝑇)2

8
+ …

1− 
𝑠𝑇

2
+  

(𝑠𝑇)2

8
− …

       (2.40) 

𝑧 ≈  
1+ 

𝑠𝑇

2

1− 
𝑠𝑇

2

           (2.41) 
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The equation (2.41) provides a more accurate first-order approximation than the 

equation (2.36). 

Another method is trapezoidal integration. Given 

𝑦(𝑥) =  ∫ 𝑓(𝑥) 𝑑𝑥
𝑥1

𝑥0
        (2.42) 

It can be approximated with a trapezoid 

𝑦(𝑥) =  ∫ 𝑓(𝑥) 𝑑𝑥 ≈  (𝑥1 − 𝑥0) [
𝑓(𝑥0)+𝑓(𝑥1)

2
]

𝑥1

𝑥0
   (2.43) 

𝑦(𝑥1) ≈  (𝑥2 − 𝑥1) [
𝑓(𝑥1)+𝑓(𝑥2)

2
] + 𝑦(𝑥)      (2.44) 

Now, it can be generalized to any point xk 

𝑦𝑘 = ∆𝑥 [
𝑥𝑘−1+ 𝑥𝑘

2
] + 𝑦𝑘−1        (2.45) 

Apply integration to the system 

𝐺(𝑠) =  
𝑌(𝑠)

𝑋(𝑠)
= 

1

𝑠
         (2.46) 

 

Take inverse Laplace transform to equation (2.46) 

𝑦(𝑡) =  ∫ 𝑥(𝑡) 𝑑𝑡
𝑡

0
        (2.47) 

Break up by sample periods, T 

𝑦(𝑘𝑇) =  ∫ 𝑥(𝑡) 𝑑𝑡
𝑘𝑇

0
       (2.48) 

Separate into two integrals 

𝑦(𝑘𝑇) =  ∫ 𝑥(𝑡) 𝑑𝑡 + ∫ 𝑥(𝑡) 𝑑𝑡
𝑘𝑇−𝑇

0

𝑘𝑇

𝑘𝑇−𝑇
      (2.49) 

It can be seen that equations (2.45) and (2.49) represents the sum of new and old area. 

𝑦(𝑘𝑇) ≈ 𝑇 [
𝑥(𝑘𝑇)+𝑥(𝑘𝑇−𝑇)

2
] + 𝑦(𝑘𝑇 − 𝑇)      (2.50) 

𝑦(𝑘) =  𝑦𝑘−1 + 
𝑇

2
(𝑥𝑘 + 𝑥𝑘−1)         (2.51) 

Take Z- transformation 

𝑦(𝑧)(1 − 𝑧−1) =  
𝑇

2
𝑥(𝑧)(1 + 𝑧−1)     (2.52) 

Rearrange to get transfer function 

𝑌(𝑧)

𝑋(𝑧)
= 

𝑇

2

(𝑧+1)

(𝑧−1)
          (2.53) 

𝑌(𝑠)

𝑋(𝑠)
=

1

2
≈ 

𝑇

2

(𝑧+1)

(𝑧−1)
        (2.54) 

𝑠 =  
2

𝑇
 
(𝑧−1)

(𝑧+1)
           (2.55) 
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Equation (2.55) represents the bilinear transform approximation of differential 

equations using trapezoidal integration. 

 

A discrete-time PID controller was proposed by Ibrahim A. El- Sharif et al., 2014. The 

purpose of this study was the comparison between PID controllers in continuous-time 

and discrete-time. Figure 2.18 represents the block diagram of the digital control 

system in this experiment.  

 

Figure 2.18                                                                                                                   

The Main Structure of Digital Control System 

 
 

The discretization used in this study was zero-order hold and Tustin’s rule to compare 

the performance of discrete PID controller with the one with continuous time. The 

closest result to the continuous response is the one provided by the Tustin method as 

shown in Figure 2.19. 

 

Figure 2.19                                                                                                                       

The Comparison of the Response between Two Digital Compensators and a 

Continuous Compensator 
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Furthermore, the response of the analog and digital PID controller is compared in 

Figure 2.20. Both designs had adequately fast response times. However, its damping 

ratio was less than the designated one. 

 

Figure 2.20                                                                                                                    

Response Time of Digital PID Design 

 
 

As a result, there were several benefits provided from using digital instead of a 

continuous PID controller. The advantages that can be made from digital PID 

controllers were accuracy, implementation errors, flexibility, speed, and cost. Thus, a 

digital controller was one of the choices when the system was needed to be controlled 

instead of using only a continuous-time domain. Moreover, Tustin’s rule shows that it 

was one of the most reliable techniques to discretize the continuous time-domain into 

discrete-time-domain. 

 
  The Dynamic Model of a Pneumatic Actuator 

Due to the nonlinearities from the compressible fluid, behavior of valve, and 

thermodynamics, the approximation of a dynamic model of a linear pneumatic actuator 

is complex. Besides, the mass flow rate through the valve is another difficulty because 

it is a nonlinear function of the servo valve input voltage. 

 

A dynamic model of the pneumatic system was studied in the position control of a 

pneumatic actuator. The paper proposed by K. Hamiti et al., 1996. The study was about 

the position control of a pneumatic actuator. Before the dynamic model of the 

pneumatic system could be derived, the system assumed an adiabatic system, and air 
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performed as an ideal gas. Furthermore, the relation between the mass flow rate of the 

air and the change of the pressure in the chambers can be made by applying the energy 

conservation law.  As a result, the dynamic model represents the pneumatic system 

obtains as a third-order transfer function. The mathematical model expresses the 

pneumatic plant is shown below: 

𝐺𝑝(𝑠) =  
∆𝑦(𝑠)

∆𝑢(𝑠)
= 

𝑘2

𝑠(𝑠2+ 
𝐶

𝑀
𝑠+ 𝑘1)

       (2.56) 

where 

𝑘1 = 
𝛾

𝑀
 (

𝑆𝑝
2𝑃𝑝𝑂

𝑉𝑝𝑂
+ 

𝑆𝑛
2𝑃𝑛𝑂

𝑉𝑛𝑂
) 

(2.57) 

𝑘2 = 
𝛾𝑅𝑇𝑠𝐺𝑖

𝑀
(

𝑆𝑝

𝑉𝑝𝑂
+ 

𝑆𝑛

𝑉𝑛𝑂
) 

where y(s) is position output of the piston, u(s) is the input voltage to the valve, γ is 

specific heat ratio of air, C is the viscosity coefficient, M is piston mass, Ts is supplied 

air temperature, R is gas constant. S, V, and P are the area of the piston, volume, and 

pressure in each chamber. Also, subscript p and n denote chamber p and n of the piston 

and O denote to operation point. Last, Gi is the linearized air mass flow rate coefficient. 

It was difficult to measure all unknown parameters in equation (2.56). Furthermore, 

there is a pole at the origin point in equation (2.56) which makes it harder to identify 

the transfer function. As a result, the dynamic model in equation (2.56) was modified 

to eliminate the pole at origin and the effects of uncertainties by adding a proportional 

controller to the system and called it an inner loop as shown in Figure 2.21. The Chien-

Hrones-Reswick (Table 2.1) was used to tune for the PI parameter to control the 

modified plant, this loop was called the outer loop. 

 
Figure 2.21                                                                                                                   

Analog Inner Loop Block Diagram 
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Table 2.1                                                                                                                         

Chien-Reswick Tuning Formulas 

Controllers Overshoot = 0% 

Type Parameters Regulation Tracking 

PI KP 
0.6

𝑇

𝜏
 0.35

𝑇

𝜏
 

TI 4 𝜏 1.2T 

 
However, the integrator causes the system to stick and slip near the desired location due 

to the presence of stiction. In order to achieve a good steady-state accuracy, the integral 

gain weighted by a function 𝛼(𝑓)  is needed to eliminate the limit cycle. The 

experimental result was separated into 5 cases. First, the controller without the auxiliary 

block 𝛼(𝑓) = 1 for all errors is designed in this experiment. Due to the lack of the 

function 𝛼(𝑓), the system never appointed to the desired location due to stiction that 

could not be represented in the plant model as shown in Figure 2.22.  

 
Figure 2.22                                                                                                                     

The Resulting Step Response when the Stiction at Low Velocity is Applied 
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Second, the test was designed to verify the ability to progressively eliminate the limit 

cycle of the auxiliary block. Figure 2.23 represented that the target location was 

reached, the control signal then stays constant. Since the weighting factor was small, 

the integral part did not affect. 

 
Figure 2.23                                                                                                                       

The Step Response when the Automatic Tuning is Used 

 
 

Third, variation in load mass was considered in order to verify the robustness of the 

control strategy. Figure 2.24 clearly shown that the additional load mass could not 

affect the responses of the system. 

 
Figure 2.24                                                                                                                          

The Step Response when the 12 kg is Added in Curve a, and 0.4 kg is Added in           

Curve b 
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Fourth, the disturbance rejection ability was to be validated by moving the load jerkily 

from the steady-state point. Figure 2.25 illustrated that the position with the proposed 

controller well performed even the integral part behaved worse. Thus, it can be 

summarized that the proposed controller had good disturbance rejection. 

 
Figure 2.25                                                                                                                   

The Step Response when External Load Disturbance is Applied 

 
 
Last, an ability to track the non-periodic path of the system was conducted. It could be 

seen in Figure 2.26 that good tracking was maintained even on an arbitrary path. 

However, the system overshot the final value when the relatively fast motion was 

applied. 

 
Figure 2.26                                                                                                                        

The System with an Arbitrary Non Periodic Path and the Curve Tracking of the 

Control Signal 
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To conclude, the complexity of the pneumatic plant model can be reduced by modifying 

the system with a proportional controller to eliminate the pole at the origin. Moreover, 

nonlinearities and stabilizes can be handled with an integrator. The integral weighting 

provided significant output to eliminate the limit cycle. Thus, the tuned PI controller 

gave a good location response as well as the additional load mass as a disturbance 

response. Finally, the control strategy could be applied with various PI and PID 

formulas to produce the desired motion.   
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CHAPTER 3                                                                       

METHODOLOGY  

 
 Concept 

The position control of the pneumatic actuator by a robust controller with a full-order 

H-infinity optimal control method is proposed. The controller is directly derived by H∞ 

synthesis as a high-order controller. In the beginning, the weigh function is predefined 

by the Automatic weight selection algorithm. Then, H-infinity synthesis is implemented 

to compute for the optimal controller which the resulting gamma minimizes the infinity 

norm. Even though the infinity norm is difficult to compute, MATLAB has a tool to 

solve it called hinfopt. As a result, a robust controller is computed for a multivariate 

feedback control system represented as a controller transfer function. Finally, the 

bilinear transformation is applied to transform the continuous-time controller transfer 

function into a discrete-time transfer function.   

 

 Experimental Design 

This thesis is focusing on position controller design by H-infinity synthesis and PID 

controller based on pole placement tuning method. Then, the performance of each 

controller will be compared. The system is designed as shown in Figure 3.1.  

 

Figure 3.1                                                                                                      

Experimental Setup of the Pneumatic System 
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 Equipment Selection 

The selected piston is a magnetically coupled rodless cylinder as presented in Figure 

3.2. A low friction pneumatic cylinder SMC CDY1S10H has specifications described 

in Table 3.1. The valve used in this experiment is a 5/3-way proportional valve MPYE-

5-1/8-HF-010B to control the extrusion and intrusion movement of the cylinder 

depicted in Figure 3.3. Moreover, the specification of this valve is represented in Table 

3.2. The sensor used in this study is a linear displacement encoder MLO-POT-500-TLF 

shown in Figure 3.4. Finally, the selected microcontroller to control the valve is the 

Arduino Due (Table 3.3) shown in Figure 3.5 

 
Figure 3.2                                                                                                                

Magnetically Coupled Rodless Cylinder 

 

Figure 3.3                                                                                                                

Proportional Directional Control Valve 

 

 

Figure 3.4                                                                                                                    

Displacement Encoder 
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Figure 3.5                                                                                                             

Microcontroller 

 

 

Table 3.1                                                                                                               

Piston’s Specifications 

Slider type Slide Bearing 

Bore size 10 mm 

Maximum working pressure  7 bar (0.7 MPa) 

Speed of the piston 50 to 400 mm/s 

Standard stroke  500 mm 

 
Table 3.2                                                                                                                

Valve’s Specifications 

Valve type Proportional directional control valve 

Function of the valve 5/3-way 

Setpoint value input Analog voltage signal 

Nominal size 6 mm 

Nominal flow rate 700 l/min 

Power supply  17-30 V DC 

Setpoint value 0-10 V 

Valve mid-position 5 (±0.1) V DC 
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Table 3.3                                                                                                                  

Sensor’s Specifications 

Encoder type Analogue displacement encoder 

Measuring principle Potentiometric 

Stroke length 500 mm 

Resolution 0.01 mm 

Max. speed of travel 10 m/s 

Max acceleration 200 m2/s 

 
Table 3.4                                                                                                        

Microcontroller’s Specifications 

Operating voltage 3.3 V 

Supply voltage 7-12 V 

SRAM 96 KB 

Clock speed 84 MHz 

 

 System Identification 

According to equation (2.56), there are several unknown parameters needed to be 

identified. Thus, to simplify the calculation, the dynamic model is estimated as the 

second order of strictly proper transfer function. The model is presented as the 

following equation: 

y(s)

u(s)
= 

b1s+ b0

s2+ a1s+a0
           (3.1) 

where  

b1, b0, a1, and a0 are constant real numbers. 

The unknown parameters in equation (3.1) can be identified via the system 

identification App in MATLAB. The objective of this app is to estimate and validate 

the linear model from Single-input/Single-output (SISO) data. The process of the linear 

model estimation can be written in steps. 

1. Import input and output data to the System Identification app. Time-

domain data is used to estimate the linear model by specifying the 

initial and sample time of the data.  

2. Remove the mean of input and output by subtracting by its mean. As 

a result, the data has a zero-mean value. 
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3. Order of poles and zeros of the desired transfer function are specified 

as non-negative number. Then, the transfer function is estimated as a 

continuous-time domain. 

 

3.4.1 Time-domain Data Estimated for the Continuous-time Transfer Function 

The estimation algorithms are different depending on several factors. In this paper, by 

specifying the initial and sample time of the input and output data, time-domain data 

can be used to estimate for a plant model in the continuous-time domain. There are two 

main parts in the estimation using Time-Domain data. The first one is parameter 

initialization, and the second one is parameter update. 

 

Initially, the algorithm estimates the parameters via the Instrument Variable method. 

Prefiltered data is used by the State-Variable Filters (SVF) approach and the 

Generalized Poisson Moment Functions (GMPF) approach to estimate a continuous-

time parameter. The simplified refined method (SRIVC) has a prefilter which is the 

denominator initialized with the SVF of the current model. The prefilter iterates until it 

reaches the defined maximum iterations, or the model change is less than the desired 

tolerance. 

 

In parameter update, the nonlinear least-squares search method is used to update the 

initialized parameter. In addition, the objective of this searching technique is to 

minimize the weight prediction error norm.    

 

 PID Controller based on Pole Placement Tuning 

The Pole placement method is a method to place closed-loop poles of a plant at the 

desired location in the s-plane. The system response depends on the poles’ location. If 

the poles are placed further from the Imaginary axis, the speed of the response will be 

fast. On the other hand, the further the poles from the Real axis, the more system 

oscillation frequency. From Figure 2.6 the PID controller can be expressed as: 

GC(s)= KP+ 
KI

s
+ KDs          (3.2) 
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A closed-loop transfer function can be written as: 

TC(s)= 
GC(s)G(s)

1+GC(s)G(s)
           (3.3) 

The value of KP, KI, and KD by pole placement method is calculated by equating the 

characteristic equation of the closed-loop transfer function with the location of available 

poles. 

 

The location of the poles can be done based on the relationship between the voltage 

and error of the system. 

 

Figure 3.6                                                                                                                         

Pole Location Selection 

 

The maximum possible error of the pneumatic actuator is 0.5 m because its maximum 

stroke length is 0.5 m. While the range of the applied voltage to the valve is 0 to 10 V. 

In addition, the voltage 0 to 5 V is used to move the piston from the left to the right 

side. On the other hand, to move the piston from the right-hand side to the left, voltage 

5 to 10 V is applied. After removing the means value, the relation between the supplied 

voltage and error can be presented as shown in Figure 3.6. The acceptable proportional 

gain must lie on this linear function as expressed in the equation below. 

Voltage= error x KP         (3.4) 

At the maximum error of 0.5 m, the system must provide the maximum voltage of 5.0 

V either. As a result, the location of the poles that make the proportional gain 

approximately equal to 10 is acceptable. 
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 Optimal Control Theory 

Optimal control theory is the optimization process to deal with the control for a dynamic 

system. In other words, the system with multiple-input or multiple-output provides 

infinite solutions. To obtain the best solution that minimizes the cost function, the 

optimal control theory must be applied to the system. 

 
 γ-Iteration of H∞ Synthesis (hinfopt) 

This is the command in MATLAB to calculate for the optimal controller via H-infinity 

γ-iteration. The two-Riccati formulae are solved to find the optimal γ so that they 

provide the cost function in equation (2.23) under desired tolerance. The H-infinity 

theory uses a reliable procedure to design for the robust controller.  This method 

satisfies singular value loop shaping specifications optimally. The benefits and 

drawbacks of using H-infinity methods over other methods are summarized in Table 

3.5. 

 

Table 3.5                                                                                                                   

Summarize Advantages and Disadvantages of each Technique 

Methods Advantages Disadvantages 

H∞ Stability and sensitivity 

meet the requirement 

The resulting controller is 

calculated as a full order, 

the designer needs some 

understanding of 

mathematic. 

Readily available method 

H2 Stability and sensitivity 

are focused on designing 

It may take several 

iterations in computation 

Guaranteed the stability of 

the closed loop 

LQR Provide a good stability 

margin 

full-state feedback is 

required 

Only focus on the 

controller gain 

The exact plant model is 

required 

Can take many iterations 
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Methods Advantages Disadvantages 

LQG The noises are used in 

calculation 

Stability margin cannot be 

sure 

Need exact plant model 

Can take many iterations 

LQG/LTR Provide a good stability 

margin 

The resulting controller has 

high gain 

µ synthesis The structured/ 

unstructured uncertainty is 

combined in designing 

process 

Controller size is huge 
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CHAPTER 4                                                                                         

RESULT AND DISCUSSION 

 

 Overview 

This section presents the step-responses simulation and bode plot of the proposed 

conventional H-infinity controller compare with the PID controller based on the pole 

placement tuning method. Furthermore, the experimental output from the position 

control of the pneumatic system is represented to verify the robustness of the proposed 

controller by varying load mass to 3 kg and supply pressure is adjusted to 1, 4, and 5 

bar (0.1, 0.4, and 0.5 MPa). 

 

 Evaluation and Validation Data 

For this experiment, the dynamic model of the pneumatic system is determined with 

the supplied of 4 bars (0.4 MPa) without additional load mass applied to the piston. The 

valve is controlled by Arduino due by supplying the analog input voltage to control the 

direction of the pneumatic actuator. The generated voltage is between 0-10 V. The input 

voltage to the valve and the position of the cylinder are measured to investigate the 

relation between these data. Two sets of data have been collected separately as 

evaluation data and validation data, depicted in Figure 4.1 and Figure 4.2, respectively.  

 

The input voltage is generated every 0.01 s. Thus, the sampling time in the identification 

is 0.01 s. The evaluation data is a set of data used to identify unknown parameters of 

the desired transfer function, while the validation of the estimated transfer function is 

done by the validation data. The validation data is used to determine the correctness of 

the estimated model. Moreover, the data at which the piston hit with both ends is 

unacceptable to use as evaluation and validation data.  The mean value of these data is 

to be removed before it can be used to identify the plant model. 
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Figure 4.1                                                                                                            

Evaluation Data 

 
 

Figure 4.2                                                                                                                  

Validation Data 
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 Plant Model from System Identification 

After obtains the evaluation data and validation data, the system identification on 

MATLAB is applied to identify the plant model. The starting time of the data has been 

set at 0 s. By specifying the number of zero as one and the number of poles as two the 

estimated plant transfer function obtains as equation (4.1). Figure 4.3 depicts the 

comparison between the experimental output from the measurement with the simulated 

output from the estimated model. 

Gp(s)= 
-0.2415s+2.473

s2+10.95s+104.2
         (4.1) 

 

Figure 4.3                                                                                                            

Comparison of the Model and Measured Output 

 

 
 PID Controller based on Pole Placement Tuning Method 

According to the strictly proper transfer function of the plant is defined as equation 

(4.1). Initially, the poles of the plant are located at -5.47+8.62j and -5.47-8.62j as shown 

in Figure 4.4. 

 

 
 
 
 



 

 39 

Figure 4.4                                                                                                                       

Location of Poles and Zero of the Plant 

 
 

The derivative first-order PID controller is tuned based on the pole placement tuning 

method. Equation (3.2) represents the structure of the controller. Figure 3.6 describes 

that the allowable Kp gain must lie on the linear function between position error and 

supplied voltage. Therefore, the proportional gain is selected approximately equal to 

10.0. The poles at which provide the desired proportional gain are selected as -5.5, -

5.5+7.1j, and -5.5-7.1j. As a result, by equating the poles' location with the closed-loop 

characteristic equation, the PID controller gain is obtained as equation (4.2). 

GC(s)=10.1453+ 
125.7199

s
+ 1.2388s        (4.2) 

 
Figure 4.5                                                                                                               

Desired Poles’ Location for Tuning PID Controller 
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 Weighting Function 

To compare with the PID controller, a conventional H-infinity optimal controller is 

proposed. The weighting function must be determined before the conventional H-

infinity controller is designed. The weighting functions which meet all requirements 

have the crossover frequency at 4.0 rad/s and they are represented as: 

W1 = 
0.5s+4.0

s+0.04
,  W2= 

s+100

s+200
          (4.3) 

 

These weighting functions are used to improve robustness and performance. Figure 4.6 

shows the bode diagram of the inverse of both weighting functions. Figure 4.7 depicts 

that the Sensitivity function (S) is lower than 
1

𝑊1
for every frequency. Also, Figure 4.8 

illustrates that all Complementary sensitivity function (T) is lower than 
1

𝑊2
 for every 

frequency. Last, Figure 4.9 presents the Sensitivity and Complementary sensitivity 

function. At the crossover frequency of 4.0 rad/s, the value of S and T should be less 

than 1.0. 

 

Figure 4.6                                                                                                                    

Inverse Weighting Functions 
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Figure 4.7                                                                                                         

Comparison between Sensitivity Function (S) and Inverse of W1 

 
 
Figure 4.8                                                                                                            

Comparison between Complementary Sensitivity Function (T) and Inverse of W2 
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Figure 4.9                                                                                                                 

Bode Magnitude of S(s) and T(s) 

 
 

 Augmented Plant 

After the weighting functions are obtained, the plant is augmented to form an 

augmented plant. There are 2 inputs and 3 outputs from the augmented plant. They can 

be expressed as equations (4.4) to (4.9). 

From input 1 to output: 

1:  
0.5s+4.0

s +0.04
            (4.4) 

2: 0              (4.5) 

3: 1              (4.6) 

From input 2 to output: 

1:  
0.1207s2-0.2705s-9.892

s3+10.99s
2
+104.6s+4.168

       (4.7) 

2: 
-0.2415s2-21.68s+247.3

s3+210.9s
2
+2294s+20840

       (4.8) 

3: 
0.2415s-2.473

s2+10.95s+104.2
          (4.9) 

 

This augmented can be transformed into state-space form as follows: 

𝑃(𝑠) =  [
𝐴 𝐵
𝐶 𝐷

]           (4.10) 
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Where, 

A= 

[
 
 
 
 
 
 
 
-0.0400

0
0
0

0

0
0
0
0

0
-10.9900
8.0000

0

0

0
0
0
0

0
-13.0798

0
0.5000

0

0
0
0
0

0
-1.0420

0
0

0

0
0
0
0

0
0
0
0

-210.9500

64.0000
0
0
0

0
0
0
0

-35.8469

0
16.0000

0
0

0
0
0
0

-20.3516

0
0
0
0

0
0
0
0

0

0
0

-10.9500
8.0000

0
0
0
0

0

0
0

-13.0250
0 ]

 
 
 
 
 
 
 

 

 

B= 

[
 
 
 
 
 
 
 
 
2

0
0

0
0

0
0

0

0

0

2
0

0
1

0
0

1

0]
 
 
 
 
 
 
 
 

 

 

C= [
1.9900 0.0604 -0.0169 -1.2365 0 0 0 0 0

0 0 0 0 -0.2415 -0.3387 0.2415 0 0

0 0 0 0 0 0 0 0.2415 -0.3091

] 

 

D= [
0.5000 0

0 0

1.0000 0

] 

 
 H-infinity Controller 

H-infinity optimal control synthesis via γ-iteration is applied to solve for the optimal 

H-infinity controller using two-Riccati equations. The optimal γ is found to be 0.9922. 

The resulting optimal H-infinity controller is: 

𝐾(𝑠) =

−5000𝑠9+ (1.543𝑥107)𝑠8+(3.827𝑥109)𝑠7

+(1.196𝑥1011)𝑠6+(2.362𝑥1012)𝑠5+(2.826𝑥1013)𝑠4

+(2.391𝑥1014)𝑠3+(1.211𝑥1015)𝑠2

+ (3.802𝑥1015)𝑠+ (1.502𝑥1014)

𝑠9+5041𝑠8+ (1.145𝑥107)𝑠7

+ (2.058𝑥109)𝑠6+ (4.348𝑥1010)𝑠5+ (6.228𝑥1011)𝑠4

+ (4.297𝑥1012)𝑠3+ (1.997𝑥1013)𝑠2

+ (1.577𝑥1012)𝑠+ (3.14𝑥1010)

     (4.11) 
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 Step Response and Bode Plot 

After the conventional H-infinity controller has been calculated, the step response and 

bode plot of closed-loop feedback of PID controller and H-infinity controller are 

compared in Figure 4.10 and Figure 4.11, respectively. From the step response of the 

PID controller, the Settling time is 0.747 s, and the final value of 1. While the H-infinity 

controller provides the Settling time of 0.478 s with the final value of 0.991. 

Furthermore, the bode diagram presents the gain and phase margin of the PID controller 

and H-infinity controller as 7.39dB, -180 deg, and 2.26 dB, infinite deg, consecutively. 

 

Figure 4.10                                                                                                                 

Step Responses of the PID based on Pole Placement Tuning Method and Proposed H-

infinity Controllers 

 

Figure 4.11                                                                                                                         

Bode Plot of PID and Proposed H-infinity Controllers 
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 Discretization 

Later than the proposed controller is obtained, Bilinear transform is used to discretize 

the continuous-time domain controller transfer function to the discrete-time domain. 

The relation between the s-domain and z-domain transfer function is represented as the 

equation (2.55). The sample time of discretization is 0.1 s. As a result, the controller 

transfer function in discrete time is shown as: 

 

K(z)= 

64.29z9-104.1z8+9.531z7

+115.5z6-126.2z5+32.59z4

+34.66z3-39.02z2+16.32z-3.252
z9-0.8548z8-1.802z7

+2.184z6+0.2838z5-1.698z4

+0.8634z3+0.2491z2-0.3448z+0.1199

      (4.12) 

 

Rearrange equation (4.12) in the form of input function (e) and output function (f), 

K(z) =
f

e
= 

64.29z9-104.1z8+9.531z7

+115.5z6-126.2z5+32.59z4

+34.66z3-39.02z2+16.32z-3.252
z9-0.8548z8-1.802z7

+2.184z6+0.2838z5-1.698z4

+0.8634z3+0.2491z2-0.3448z+0.1199

     (4.13) 

 

Divided all terms by 
1

𝑧9 

f

e
= 

64.29-
104.1

z
+

9.531

z2

+
115.5

z3 -
126.2

z4 +
32.59

z5

+
34.66

z6 -
39.02

z7 +
16.32

z8 -
3.252

z9

1-
0.8548

z
 -

 1.802

z2

+
2.184

z3 +
0.2838

z4 -
1.698

z5

+
0.8634

z6 +
0.2491

z7 -
0.3448

z8 +
0.1199

z9

        (4.14) 

 

𝑓(𝑘) = 0.8548𝑓(𝑘 − 1) + 1.802𝑓(𝑘 − 2) − 2.184𝑓(𝑘 − 3) − 0.2838𝑓(𝑘 − 4)

+ 1.698𝑓(𝑘 − 5) − 0.8634𝑓(𝑘 − 6) − 0.2491𝑓(𝑘 − 7) + 0.3448𝑓(𝑘 − 8)

− 0.1199𝑓(𝑘 − 9) + 64.29𝑒(𝑘) − 104.1𝑒(𝑘 − 1) + 9.531𝑒(𝑘 − 2)

+ 115.5𝑒(𝑘 − 3) − 126.2𝑒(𝑘 − 4) + 32.59𝑒(𝑘 − 5) + 34.66𝑒(𝑘 − 6)

− 39.02𝑒(𝑘 − 7) + 16.32𝑒(𝑘 − 8) − 3.252𝑒(𝑘 − 9) 

(4.15) 
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Equation (4.15) represents the output voltage to the valve f(k) at the current time, 

computed from the previous nine output voltage and the ten previous errors e(k) until 

the present time.  The equation (4.15) is implemented into the hardware to control the 

position of the pneumatic actuator and the results are presented in the next section. 

 

  Experiment 

This part shows the measurement position of the pneumatic actuator controlled by the 

PID and the proposed H-infinity controller. Moreover, the robustness of the controller 

is verified by varying load mass and supply pressure. The nominal pressure of the 

system is tested at 4 bar (0.4 MPa) without additional load mass to the system. The 

position is illustrated as shown in Figure 4.12. 

 

Figure 4.12                                                                                                                

Compare the Position of the Piston Controlled by Two Types of Controllers at a 

Setpoint of 0.25 m at 4 Bar (0.4MPa) Supply Pressure (Nominal Pressure) 

 

Test the robustness by changing the supply pressure to 1 and 5 bar (0.1 and 0.5 MPa). 

From Figure 4.13, it can be obviously seen that the system controlled by the H-infinity 

controller approaches the setpoint much faster than the PID controller. The PID 

controller takes approximately 5 min while the H-infinity controller takes just about 10 

s.  Moreover, the overshoot provided by the PID controller is extremely high. Thus, the 

H-infinity controller is much better than the PID controller at this level of pressure.   
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Figure 4.13                                                                                                                  

Compare the Position of the Piston Controlled by Two Types of Controllers at a 

Setpoint of 0.25 m at 1 Bar (0.1 MPa) Supply Pressure 

 
 

Figure 4.14                                                                                                                 

Compare the Position of the Piston Controlled by Two Types of Controllers at a 

Setpoint of 0.25 m at 5 Bar (0.5 MPa) Supply Pressure 
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Furthermore, the system is tested with an addition of 3 kg load mass to the system to 

verify the robustness. 

 

Figure 4.15                                                                                                              

Compare the Position of the Piston Controlled by Two Types of Controllers at a 

Setpoint of 0.25 m with 3 kg Load Mass at 4 Bar (0.4 MPa) Supply Pressure (nominal 

pressure) 

 
 

Figure 4.16                                                                                                         

Compare the Position of the Piston Controlled by Two Types of Controllers at a 

Setpoint of 0.25 m with 3 kg Load Mass at 1 Bar (0.1 MPa) Supply Pressure 
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Figure 4.17                                                                                                                 

Compare the Position of the Piston Controlled by Two Types of Controllers at a 

Setpoint of 0.25 m with 3 kg Load Mass at 5 Bar (0.5 MPa) Supply Pressure 

 
 
By adjusting supply pressure and additional load mass, the proposed H-infinity 

controller has almost the same characteristic, as shown in Figure 4.18 – 4.19 while the 

PID controller behaves differently when faces with various conditions. 

 

Figure 4.18                                                                                                                

Position of the Cylinder Controlled by the Proposed H-infinity Controller at a 

Different Supply Pressure 
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Figure 4.19                                                                                                                  

Position of the Cylinder Controlled by the Proposed H-infinity Controller with 

Different Additional Load Mass at a Nominal Pressure of 4 Bar (0.4 MPa) 

 
 
From Figure 4.12 to Figure 4.19, the Root Mean Square Error (RMSE) and 100% Rise 

time could be determined to compare between the proposed H-infinity controller and 

the PID controller based on pole placement tuning method in table 4.1 and table 4.2 

when they face uncertainties such as additional load mass and supply pressure. In 

addition, 0.0 kg refers to the system without additional load mass. 

 
Table 4.1                                                                                                                            

H-Infinity Controller Analysis 

 

 1 bar (0.1 MPa) 4 bars (0.4 MPa) 5 bars (0.5 MPa) 

Additional 

load mass 

(kg) 

0.0  1.5  3.0  0.0 1.5  3.0  0.0 1.5  3.0  

Root 

Mean 

Square 

Error (m) 

0.0602 0.0636 0.0586 0.0325 0.0317 0.0314 0.0327 0.0322 0.0357 

100% 

Rise time 

(s) 

5.00 5.00 4.40 1.40 1.25 1.50 1.40 1.20 1.30 
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Table 4.2                                                                                                                          

PID Controller based on Pole Placement Tuning Analysis 

 
According to the RMSE and 100% rise time, it can be seen that the RMSE of the PID 

controller at 4 bars where the plant model was identified is less than the RMSE of the 

proposed controller at every value of additional mass. However, the difference in the 

RMSE between these two controllers is only about 0.01 m. On the other hand, it is 

obvious that the 100% rise time or the time that the controllers take to bring the actuator 

to the setpoint for the first time of the proposed controller is smaller than the PID 

controller at any load mass. In addition, the lower the 100% rise time, the faster the 

actuator to the setpoint. Thus, the proposed controller could take the actuator to go to 

the setpoint faster than the PID controller with approximately 1.0 s at 4 bars (0.4 MPa) 

supply pressure. 

 

Furthermore, the supply pressure is changed to investigate the robustness of the 

controllers. The RMSE of the H-infinity controller at both 1 bar (0.1 MPa) and 5 bars 

(0.5 MPa) is less than the PID controller at every value of the additional mass. The 

RMSE of the H-infinity controller is smaller than the PID controller just about 0.05 m 

and 0.001 m at 1 bar (0.1 MPa) and 5 bars (0.5 MPa), respectively. Moreover, the 100% 

rise time of the H-infinity controller is considerably smaller than the PID controller. 

The rise time difference between these two controllers is about 4.5 s at 1 bar (0.1 MPa). 

At 5 bars (0.5 MPa), the rise time of the proposed is less than the PID controller only 

0.77 s which is almost the same as the one at 4 bars (0.4 MPa). 

 

 1 bar (0.1 MPa) 4 bars (0.4 MPa) 5 bars (0.5 MPa) 

Additional 

load mass 

(kg) 

0.0 1.5  3.0  0.0 1.5  3.0  0.0 1.5  3.0  

Root 

Mean 

Square 

Error (m) 

0.1189 0.1150 0.0903 0.0265 0.0261 0.0233 0.0430 0.0419 0.04 

100% Rise 

time (s) 

9.15 9.50 9.30 2.60 2.23 2.28 2.05 2.09 2.06 
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Moreover, the system with different setpoints for the cylinder has been introduced to 

the proposed controller, as shown in Figure 4.20. The setpoints are 0.15 m, 0.35 m, and 

0.25 m. This experiment is used to shows that the proposed H-infinity controller is 

useable with a wide range of the position. 

 
Figure 4.20                                                                                                                  

Position of the Cylinder at a Different Setpoint 

 
 
Furthermore, the 1.5 kg and 3.0 kg load mass are added to investigate the performance 

when the piston with additional mass has different desired locations, shown in Figure 

4.21 and Figure 4.22. 

 

Figure 4.21                                                                                                                   

Position of the Cylinder at a Different Setpoint with 1.5 kg Load Mass 
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Figure 4.22                                                                                                                    

Position of the Cylinder at a Different Setpoint with 3.0 kg Load Mass 

 
 
From Figure 4.20 to Figure 4.22, the RMSE of the system is calculated to determine 

whether the proposed controller still well perform when faces a variety of additional 

load mass and different locations of the setpoint at 4 bars (0.4 MPa). The RMSE of the 

system without additional mass with different setpoints is 0.0251 m. Moreover, the 

RMSE of the system with 1.5 kg and 3.0 kg load mass is almost the same as the previous 

system. The values of the RMSE are 0.0253 and 0.0216 for 1.5 kg and 3.0 kg, 

consecutively.   
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CHAPTER 5                                                                            

CONCLUSIONS AND RECOMMENDATION 

 
 Conclusion 

The pneumatic system has experimented with two controllers which are a PID 

controller based on pole placement tuning method, and the proposed H-infinity 

controller to control the position of the pneumatic cylinder. The plant model is 

calculated at the nominal pressure of 4 bars (0.4 MPa) without any additional load mass.  

The proposed controller has been designed by a conventional H-infinity control. The 

controller is computed based on H-infinity optimal control synthesis via the γ-iteration 

method. The controller is designed as a full-order structure. By applying two weighting 

functions, the proposed controller successfully provides a good robust performance. 

The proposed controller has the optimal γ for which the cost function achieves under a 

preset limit of 0.9922. In addition, the gain and phase margin of the proposed controller 

is 2.26 dB, infinite deg, consecutively. The experiment result of the conventional H-

infinity controller compares with the PID controller is done at various conditions. 

According to the measurement result of the position of the pneumatic piston, the RMSE 

and 100% rise time can be determined. It is shown that the cylinder controlled by the 

proposed one can go to the desired location faster than the PID controller in every 

condition. However, the PID controller provides a little bit better RMSE than the 

proposed controller at the nominal supply pressure. When the supply pressure is 

changed to 1 bar and 5 bars, it could be seen that the H-infinity controller can handle 

the change better than the PID controller according to the smaller RMSE. Furthermore, 

the additional load mass in the same level of the supply pressure could not affect the 

system much because the RMSE of the proposed controller is almost the same. 

Moreover, the overshoot of the cylinder controlled by the proposed controller is 

extremely less than the one controlled by the PID controller. Different desired locations 

of the cylinder also provide in order to verify the robustness of the designed controller. 

From the RMSE of the experiment with different desired locations, it could be told that 

several desired locations and additional load mass do not affect the performance of the 

proposed controller because it still provides the RMSE close to the system with only 

one desired setpoint. 

 



 

 55 

To summarize, this paper designs a full-order H-infinity optimal controller. Although, 

the structure of the controller is complex, the designed controller guarantee that it can 

be used with a nonlinear system such as the pneumatic system as shown in this paper. 

 
 Recommendation 

1. Design the H-infinity controller with other weighting functions. Because the 

weighting function used in this study comes from a method like trial-and-

error, it might have another value of weighting function that provides a better 

result. 

2. Estimate the plant with higher order than the second-order because it could 

describe the characteristic of the pneumatic system better than the one in this 

work. 

3. Due to the modification of the generated voltage by op-amp provided by the 

microcontroller is not accurate and different from the calculation, the 

position of the cylinder has some error. More precise voltage modification is 

required to provide a better result of the cylinder’s position. 
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