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ABSTRACT 
 

 

Indoor mobile robots are robotic systems that have a certain level of autonomy. These 

vehicles have been studied thorough out the years for applications in the mapping and 

localization. Simultaneous localization and mapping (SLAM) is one of the underlying 

problems that concurrently estimates the map while identifying the pose estimate of the 

robot. This study proposed to design a synchronous drive mobile robot with 

independent steering and driving mechanisms guided by a chain/belt transmission 

Furthermore, the implementation of EKF-SLAM is addressed in this study using the 

information from the odometry and laser scanner. The EKF filter has two steps, the 1) 

prediction step and the 2) correction step. The predicted measurement is used to initially 

determine the state of the robot of the robot and the correction step uses the actual 

measurement for comparison with the prediction. In detail, the landmarks are extracted 

in the environment using point clustering. Clustered points less than 15 points reject 

these clusters which aren’t included in the observed landmarks. Also, a middleware 

called Robotic Operating System (ROS) is used to communicate the robot’s 

microcontroller to the computer and employ packages related to SLAM. The EKF 

SLAM method is evaluated through the calculation of the root mean square error 

between the predicted measurement (calculated EKF-SLAM data) and the observed 

measurement (actual measurement in the environment). It was found out that drifting 

of the chains contributed to the increase in the root mean square error of 0.2981 m (x-

axis) and 0.1589 m (y-axis). Also, the mean square error from the overall theoretical 

distance of 4.48 m gives the error of 2.70%.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study  

Wheeled Mobile Robots (WMR) are mobile systems have a certain level of autonomy. 

It is one of the most expanded and invested research because of its numerous 

applications in the field of surveillance, medical care, rescue operations, and so on 

(Bruzzone et al., 2021; Takahashi et al., 2010).  These versatile systems move in 

different physical environment and operate more efficiently with the inclusion of 

position sensors, tilt sensors, and laser scanners for applications such as localization, 

mapping, and navigation (Chen et al., 2021).  

The most common type of indoor WMR design is the differential drive wheeled robot 

which composed of independent driven motors Being a configuration where its wheels 

directly connected to the motor, synchronization and deviation from the motion of the 

robot exists (Chung & Iagnemma, 2016). As a result, inaccuracies and inconsistencies 

with the movement persists using the motor driven wheel approach.  One overlooked 

drive configuration is the synchronous-drive mobile robot which uses a chain/belt 

transmission and two independent motors to move the system in a certain direction. The 

introduction of separate steering and driving mechanism allows a simple and stable 

linear control (Marin-Reyes & Tokhi, 2010). This design also guarantees straight-line 

motion from dynamically controlling the separated motors.  

As synchronous-drive robots are presently operated in indoor environments, 

Simultaneous Localization and Mapping is one of the well-known problems to discuss. 

Indoor mobile robots provided the foundation of the SLAM problem because of the 

line-of-sight problem introduced by the Global Position Devices (GPS) (Chan et al., 

2021). Simultaneous localization and mapping is one of the underlying problems that 

concurrently estimates the map while identifying the pose estimate of the robot. It is 

like a chicken-or-egg problem that requires a map to be able to localize and a pose 

estimate for generate the map. Among the approaches developed in SLAM, a state 

estimator called Extended Kalman Filter (EKF) is introduced. EKF is discussed the 

seminal paper of Smith and Cheeseman in 1986 focusing on the focuses on the 

estimation pose and uncertainty associated among the objects (Smith & Cheeseman, 
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1986). One main advantage of EKF is its significance in solving non-linear models 

which provides non-linear state update or measurement equations.  

1.2 Statement of the Problem 

With the emergence of different drive configurations in mobile robots common to 

academic researches, education, and industry, less attention is given to the synchronous 

drive design. The differential drive, having an uncomplex design and easily 

programmable, faces problems in terms of the control due to inconsistencies and motor 

asynchronization. Divergence to the resulting path is possible and yields to inaccurate 

results (Chung & Iagnemma, 2016). The car-type (Ackermann Steering) configuration, 

on the other hand, performs best for straight line motion. However, non-holonomic 

planning is required and has a minimum turning radius (Agrawal et al., 2021). 

Additionally, the car-type design has a complicated steering structure making the 

parking control motion difficult. Alternative drive configuration system should be 

considered that eliminates the problem of the mechanical control, the synchronous drive 

mobile robot. The independent steering and driving make the synchro-drive robot 

control easier and its straight-line motion is mechanically guaranteed.  

 

Another problem to consider is the errors present in indoor localization. Global 

positioning systems (GPS) doesn’t work well in obstructed places from walls without 

a clear view to the satellite (Maliha Monsur, 2021). To deal with this dilemma, a 

technique called SLAM must be considered. The information from the environment is 

processed and utilized to determine the mobile robot’s location in the environment. 

 

This research considers a drive system called synchronous mobile robot. A system 

requires two motors, 1 for steering and 1 for driving. As a result, this guarantees a 

straight-line motion of the system compared to the differential drive type. The 

application of a synchronous-drive in mobile robot for SLAM has potential and will be 

further investigated in this thesis. 
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1.3 Objectives of the Study 

The primary focus of this thesis is to develop a synchronous drive mobile robot and 

implement the Extended Kalman Filter-SLAM (EKF-SLAM) into the proposed system. 

In order to achieve this goal, the following tasks are included.  

 

1. To construct a three-wheeled synchronous drive mobile robot with a 

hexagonal-shaped platform, and  

2. To perform EKF-SLAM and determine the estimated state and map of the 

proposed system using a laser scanner.  

1.4 Scope and Limitation 

This thesis mainly focuses on designing a three standard wheeled synchronous drive 

mobile robot with special emphasis in an indoor planar environment and applying the 

proposed mechanism to explore the problem space. It should be noted that the area is 

not known and is limited to the presence of static obstacles. Additionally, the robot 

chassis’ geometry will be a regular hexagon with 6 lines of symmetry instead of the 

conventional three or four-sided design. The landmark detection is also included in the 

EKF-SLAM operation using point clustering method. Other specifications of the 

mobile robot are stated as follows. 

 

1. The maximum driving speed of the mobile robot is 0.16 m/s. 

2. The maximum elevation of the flat surface has an angle of 5.0 degrees 

3. Three uniform standard wheels is incorporated in the robotic system 

4. The synchro-drive design always rotates about the center of the robot and being 

an omnidirectional system, the heading can’t be changed when the wheel legs 

are being steered. 

5. The total run time of the robot is 10 minutes. 

6. The considered landmarks are limited to shapes such as rectangle, circle, and 

square. Moreover, colored landmarks can’t be detected by the system. 

7. The landmark detection rejects the cluster of points of less than 15 points.  

An extension of this research is the addition of the obstacle avoidance to illustrate the 

application of the proposed robot. The experiment uses two obstacles that are placed in 

the robot environment and is tasked to arrive at the desired location.  
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It is emphasized that the main contribution of this research is the design of the synchro-

drive mobile robot together with the wheel structure design. The EKF-SLAM is then 

applied to the system using the information from external sensors, laser scanner and 

encoders, which uses a configured landmark detection.   

 

1.5 Organization of the Study 

This thesis is organized as follows:  

 

• Chapter 2 provides an overview of the wheel mobile robot drive configurations, 

its recent development and applications, the theoretical concepts of robot 

localization and mapping, filtering techniques such as Kalman Filter and its 

variants, and the integration of ROS and SLAM.  

• Chapter 3 focuses on the hardware and software implementation on the 

synchronous-drive robot and discusses the process of implementing Extended 

Kalman Filter with ROS. 

• Chapter 4 presents the results between the actual measurement and the 

calculated measurement from the EKF-SLAM which includes the discussion of 

the landmark extraction results.  

• Chapter 5 summarizes and concludes the findings from the research. This 

section also recommends any improvement discovered and observed from the 

results.  
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CHAPTER 2 

LITERATURE REVIEW 

This chapter discusses several works related to the design of wheeled mobile robot 

(WMR) and its applications such as the synchronous drive robot, the concurrent 

localization and mapping, and filtering techniques like the Kalman filter (KF) and the 

approximation of nonlinear functions, the Extended Kalman Filter.  

2.1 Wheeled Mobile Robot 

Before diverging into the navigational process, the mechanical design of the mobile 

robot must be defined. The structure of the robotic system needs to be in agreement 

with the unique constraints from a particular mobile robot application. For instance, the 

delivery robots have a main objective of transferring products from position A to 

position B. The design of the robotic system must include a mechanism that allows the 

robot to climb certain elevation. If not, the goods will not arrive at the destination point. 

Mobile robots have different configuration depending on the application. Stated below 

are several drive configurations that are applicable for implementation. 

2.1.1 Drive Configuration 

Three fundamental issues are considered in designing the mobile robotic system; 

mobility, control, and balance. Conventionally, three wheels are necessary for satability 

stability and incorporating suspension design to the wheels resolve the problem on 

uneven surfaces (Siegwart et al., 2011). In addition, a trade-off between 

maneuverability and controllability exists. Advantages and disadvantages of several 

drive configurations are described and stated as follows.  

 

One of the well-known drive mechanisms is the differential drive. Motors are 

independently driven to produce the robot’s trajectory. Additionally, this mechanism 

can produce a zero turning radius (Chung & Iagnemma, 2016). The problem emerges 

when the driving motors move at different speeds or not synchronized even with the 

same applied voltage. As a result, the route of the robotic system will not achieve the 

desired movement which also applies for an inconsistent terrain (Jones et al., 1998).  
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Another type is the Ackerman steering (car-type drive) which is usually a common 

mechanism in automobiles. This configuration consists of two front steered wheels and 

two driven rear wheels and has an advantage of straight driving motion. However, the 

mechanism doesn’t have the capacity of turning on the spot which requires a certain 

minimum radius. Moreover, the rear driving wheels experience slippage in curves 

(Bräunl, 2008). 

 

Last of the configuration types is the synchronous drive mechanism that controls the 

two independent motors either simultaneously driving or steering the wheels. This gives 

less control effort and favors the indoor environment. However, the arrangement suffers 

from an orientation error when backlash or loose coupling takes place (Siegwart et al., 

2011). 

2.1.2 Synchronous-drive Mobile Robot and its Applications 

In the endeavor of minimizing the constraints in the design for a certain mobile robot 

application, several drive configurations are available for implementation. Among 

those configurations examined from the previous section, the synchro-drive principle 

was used in this study for the mechanical design of the mobile robot. This new drive 

system’s body maintains a constant orientation which allows the sensor facing towards 

the direction of travel (Miller, 1986). Short discussions of several synchro-drive designs 

are reported as follows.  

 

A geared mechanism was introduced by Tatar et al. which uses a three-paired standard 

wheel design with a hexagonal layered platform. Figure 2.1 illustrates the mechanical 

design of the omni-directional robot. The upper platform’s gears allow the forward or 

backward driving of the wheels while the lower part is intended for wheel steering 

(Tătar et al., 2015).  

 

An alternate design was proposed by Goris in his thesis about the mobile robot 

mechanical design (Goris, 2005). He used the chain transmission mechanism to transfer 

the motor’s rotary motion to the wheels and pointed out that using gears in the 

mechanical platform takes a lot of space and is heavy. Moreover, the chain mechanism 

was implemented because it solves the problem of slippage which was evident in belts.  
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Figure 2.1 

Synchro-drive Design using Geared Transmission 

 
Note.  This image was adapted from (Tătar et al., 2015). 

 

Figure 2.2 shows the platform design and the transmission mechanism of an 

autonomous mobile robot. Similar to the design of Tatar et al (2015), the design uses 

two DC motors that controls the driving and orientation of the wheels. The design is 

composed of an upper belt transmission for wheel driving while the lower belt 

transmission is intended for wheel steering. 

 

Figure 2.2 

Mechanical Design of an Autonomous Mobile Robot using Belt Transmission 

 
Note. This image was adapted from (Goris, 2005). 
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Tatar and Cirebea developed a reconfigurable wheeled mobile robot using a 

combination of multiple active and passive hexagonal modules together with the 

parallelepipedic module (Tătar & Cirebea, 2018). These active and passive modules are 

interconnected with the passive controller module at the center to reconfigure the 

robotic system. In addition, both the active and passive module incorporates a reducer 

and an encoder in the design. The model of the hexagonal module is illustrated in Figure 

2.3. 

 

Figure 2.3  

Three-wheeled (Left) and Four-wheeled Hexagonal Modular Robot (Right) 

 
Note. This image was adapted from (Tătar & Cirebea, 2018). 

 

According to Goris (2005), the cylindrical-shaped robot has a learning edge over the 

square-shaped platform because of the former’s structure when subjected in confined 

spaces. The square platform will most likely be trapped in a narrow passage. Figure 2.4 

further illustrates the concept between the cylindrical and square shape. Once trapped, 

the square geometry will have to move backwards and rotate before entering the 

confined space. The cylindrical shaped on the other hand doesn’t need to do this 

process. 
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Figure 2.4  

Obstacle Representation of a Cylindrical and Square Robot Shape 

 
Note. This image was adapted from (Goris, 2005).  

 

2.2 Localization  

A mobile robot that estimates its current location with respect to a fixed reference frame 

(also known as localization) can localize itself through the use of sensorial observation 

from proprioceptive and exteroceptive sensors. While GPS is widely used in outdoor 

environments, these radionavigation system show a limitation in indoor or with solid 

structures. Examples of proprioceptive sensors include wheel encoder and inertial 

measurement units (IMUs) that acquires motion information from the robot.  On the 

contrary, exteroceptive sensors consist of a laser range scanner or camera that obtains 

measurement from the external environment. Incorporating only the proprioceptive 

sensors produces errors from odometry uncertainties due to wheel slippage, drifting of 

wheels, or uneven floor surface (Borenstein & Feng, 1996).  With the inclusion of 

sensors such as the laser scanners, the robot acquires additional and useful information 

concerning its environment.  

 

Researchers have provided techniques to adhere to the problem of mobile robot 

localization which are organized into two main group, relative localization and absolute 

localization. The discussion of each type is further illustrated in the following sections. 
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2.2.1 Relative (Local), Absolute (Global), and Combined Localization 

In terms of its position information, relative localization uses environmental 

information such as images or edges of landmarks to distinguish whether the robot has 

traveled or not (Kim, 2019). Dead reckoning (DR) utilizes the wheel encoder data thru 

wheel rotation count to estimate the position of the robot with respect to its starting 

position. For longer distances, errors using this process will accumulate over time.  

 

Absolute localization, on the contrary, utilizes the fixed frame of the Earth to provide 

vehicle location from measurement sensors such as the Global Navigation Satellite 

System (GNSS), wheel encoders, and IMU.  Compared to the accumulative error from 

dead reckoning, the error growth in the absolute localization is reduced. The reason 

about the mitigated error came from the time and location independency of the robot’s 

position. However, absolute localization has disadvantages over small distances when 

tracking the robot using a GPS (Goel et al., n.d.). 

2.2.2 The Simultaneous Localization and Mapping Problem 

The introduction of SLAM dates back to the seminal paper of Smith and Cheeseman in 

1986 which focuses on the estimation method (position and orientation) and uncertainty 

associated among the objects (Smith & Cheeseman, 1986). 

 

Well-known mapping algorithms have one thing in common in literature, it has a 

probabilistic nature. This approach is prominent to robot mapping because it models 

noise sources and analyze the influence to the measurements (Thrun, 2003). Being a 

posterior probability problem, Simultaneous Localization and Mapping or SLAM is a 

joint estimation method that determines the pose estimate of the mobile robot while 

incrementally constructing the map of its environment (Durrant-Whyte & Bailey, 

2006).  

 

The SLAM technique favors indoor applications which solves the problem raised by 

the inaccuracies of GPS in indoor environments (Cadena et al., 2016). Moreover, the 

nature of the SLAM problem yields to an improved result as the number of observations 

is increased and its correspondence to other attributes rises. However, the increase in 

landmark count is quadratically scaled and results as a drawback. This restricts the real-

time application to small and medium scaled domain (Durrant-Whyte & Bailey, 2006). 
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The SLAM problem can be classified into two categories; online SLAM and full 

SLAM. For the case of online SLAM, the posterior distribution is estimated with the 

robot pose, 𝑥𝑡, and the model of the map, M, which yields to  

𝑝(𝑥𝑡, 𝑀|𝑍𝑇 , 𝑈𝑇) (2.1) 

where 𝑈𝑇 represents the odometry and 𝑍𝑇 represents the observations (Siegwart et al., 

2011). This approach estimates only the current pose.  

 

The full SLAM problem, on the contrary, is approximated with the entire robot path, 

𝑋𝑇, and M, results to  

𝑝(𝑋𝑇 ,𝑀|𝑍𝑇 , 𝑈𝑇) (2.2) 

 

The graphical model of the aforementioned SLAM problem is illustrated in Figure 2.5.  

 

Figure 2.5 

Graphical Representation of Full SLAM and Online SLAM 

  
Online SLAM Full SLAM 

(a) (b) 
Note. These images are adapted from (Chung & Iagnemma, 2016) . 

 

2.3 Filtering-based Techniques in SLAM 

Three major classifications of the SLAM paradigm is introduced in this section which 

consists of the Kalman Filter, Particle-based techniques, and the Graph-based 

implementations. The discussion of the mentioned techniques is examined below. 
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2.3.1 Particle Filter, Graph-based, and Kalman Filter Approach 

The particle filters (PFs) apply a sample set of particles that approximates the state’s 

actual configuration. Particle-based SLAM or the sequential Monte-Carlo method is 

not limited to linear models or Gaussian noise which is a great advantage for nonlinear 

models compared to the Kalman Filter. However, the negative aspect of this technique 

is the exponential growth of particles as the space dimension increases resulting to a 

higher computational requirement (Chung & Iagnemma, 2016). Furthermore, this type 

of filter displays an inaccurate result because of its inability to omit the past data. One 

of the examples under this filter is the Rao-Blackwellized particle filter (RBPF)  which 

stems back to the paper by Murphy in 2000 (Doucet et al., 2013; Murphy, 1999).   

 

In 1997, Lu and Milios formulated the graph-based technique in the SLAM problem 

which involves the graph generation where nodes constitute the state (robot pose or 

landmarks) and the edge in between two nodes encodes a sensor measurement (Grisetti 

et al., 2010; Lu & Milios, 1997). One of the advantages of the graph-based SLAM is 

its ability to constantly update time of the graph and the required memory linearity in 

the feature. Although, the graph optimization can become computationally expensive 

if the robot path is long.  

 

A simulation was conducted by Nguyen to analyze the performance of the Bayesian 

filtering techniques such as Extended Kalman Filter, Unscented Kalman Filter (UKF), 

and FastSLAM over an identical set of parameters; 150 landmarks, 3° steering control 

noise, 0.1 m range, and a bearing of 1°. Also, the velocity of the mobile robot was 

assumed to 3 m/s and the maximum sensor range is 30 m. Results show that EKF 

technique showed good performance amongst others (H. K. Nguyen, 2014). 

Additionally, Table 2.1 further demonstrates the edge of one algorithm to the other. 

 

A notable filtering approach in the SLAM problem is the Kalman Filter (KF) which 

was presented by Rudolf E. Kalman in 1960 (Kalman, 1960). This filter utilizes linear 

transition functions in a state described by a Gaussian distribution (Montella, 2014). 

Well-known examples under KF are the Extended Kalman Filter, Unscented Kalman 

Filter, Information Filtering (IF) or the Extended IF. Advantages of using KF and its 

variants is the ideal minimum mean-square error (MMSE) approximation of the robot  
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Table 2.1  

Comparison Table for Different Filter-based Techniques in SLAM 

 EKFSLAM FastSLAM GraphSLAM 

Complexity 𝑂(𝑛2) 𝑂(𝑘 ∗ 𝑙𝑜𝑔𝑛) 𝑂(𝑒) 

Distribution Gaussian Any 
Gaussian +  

outlier rejection 

Linearization 

Flexibility 

Once Not needed Re-linearize 

0 + ++ 

Large Scale - + ++ 

Parallelizability - + ++ 

Pros 
Easy to implement 

well known 

Can use negative 

information 

Scales well  

Robust 

Con 
Can’t handle large 

maps  

Hard to recover, need 

many particles to be 

robust 

Harder to implement 

Note. This table illustrates the comparison of different SLAM techniques such as EKFSLAM, 

FastSLAM, and GraphSLAM. Variables in the complexity row (n, k, and e) represent the number 

of landmarks, number of particles, and number of edges, respectively. This table is adapted from 

(Lindholm & Palsson, 2015).  

 

state and landmark positions. Also, the covariance matrix has a strong convergence 

(Aulinas et al., 2008). 

 

One solution isn’t always guaranteed for solving the concurrent mapping and 

localization problem because of certain dependencies between specific criteria or 

variables such as feature count in the environment, computation time, and map 

resolution. Hence, an optimal solution should be preferred when dealing with the 

SLAM problem.  

2.4 Kalman Filter 

Kalman Filter (KF) is a filtering method that approximates the state of the system using 

Gaussian distribution. This filter has been applied to numerous state estimation process 

with the addition of noise. In autonomous vehicles, KF is used for predicting succeeding 

states of the system without requiring any data history.  

 

2.4.1 Mathematical Model of Kalman Filter 

The process of Kalman Filter can be divided into two steps, the a) prediction and the b) 

update step. In the prediction step, the next position of the system at time interval t+1 

is based from the previous position and the system’s kinematic model. This step also 

predicts the covariance error. On the contrary, the update step compares the predicted 

state and the actual measurement from the sensors involved. It also includes a Kalman 
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gain that varies depending on where it will be biased to. The prediction step equation is 

given as follows.  

𝑥′ = 𝐹𝑥 + 𝐵𝜇 + 𝑣  (2.3) 

𝑃′ = 𝐺𝑃′𝐺𝑇 + 𝑄 (2.4) 

where 𝑥′  is the predicted value or the a priori estimate, 𝑃′ is the predicted error 

covariance or uncertainty measure in the estimated state, F is the state transition matrix, 

B is the control input matrix, v is the process noise present in the system, G is the 

Jacobian matrix, and Q is the process noise/motion noise (Singh, 2018). The update 

step of the KF process yields to the difference of the actual measurement and predicted 

measurement value given by the Equation (2.5).   

𝑦 = 𝑧 − 𝐻 𝑥′ (2.5) 

where z is the actual measurement and H is the state transition matrix. Another step in 

the KF process is the summation of error from the measurement error and prediction 

error given by S which later yields to the Kalman gain, K. 

𝑆 = 𝐻𝑃′𝐻𝑇 + 𝑅 (2.6) 

𝐾 = 𝑃′𝐻𝑇𝑆−1 (2.7) 

The Kalman gain serves as a bias and heavily decides whether the measurement or the 

predicted value mainly contributes to the state vector. The behavior of the Kalman gain 

is observed in Equations (2.6) – (2.8) from variables 𝑅 and 𝑃′. When the value of R 

approaches 0, the gain yields to H-1 which shows that the measurement value mostly 

influences the state vector. As 𝑃′ goes to a smaller value, Equations (2.6) and (2.7) 

become 0 and the resulting value in Equation (2.8) is mainly influenced by the a priori 

estimate. The update equation of KF is illustrated in Equations (2.8) and (2.9). 

𝑥 = 𝑥′ + 𝐾𝑦 (2.8) 

𝑃 = (𝐼 − 𝐾𝐻)𝑃′ (2.9) 

 

2.4.2 Extended Kalman Filter 

As Kalman Filters are defined and addressed for estimating linear system states, a non-

linear state estimator should be used to accommodate non-linear systems. Extended 

Kalman Filter is a filtering process that linearizes nonlinear models about the mean of 

the current estimate. The basic idea of EKF is that non-linear functions are linear 

approximated through the help of the first derivative from the Taylor Series Expansion 

(See Equation 2.10). 
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𝑓(𝑎) + 
𝑓′(𝑎)

1!
(𝑥 − 𝑎) + 

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯ (2.10) 

After the linearization process and a linear model is obtained, the Kalman Filter 

equations mentioned in Section 2.4.1 are applied (Haykin, 2004). 

 

Drawbacks also exist in the EKF filtering process which includes the computational 

complexity due to the calculation of Jacobian especially requiring numerical 

differentiation, differentiable model limitation, and highly non-linear systems non-

optimality. Other state estimators including Kalman Filter and Extended Kalman Filter 

are tabulated in Table 2.2.  

 

Given with its advantages and drawbacks, the Extended Kalman Filter is used as a state 

estimator for the SLAM problem introduced in this research. Current studies related to 

the EKF-SLAM is described and explained as follows. 

 

Table 2.2  

Comparison Table for Different State Estimator Filters 

State Estimator Model 
Assumed 

Distribution 

Computational  

Cost 

Kalman Filter (KF) Linear Gaussian Low 

Extended Kalman Filter (EKF) Locally Linear Gaussian 

Low (if Jacobians need to 

be computed analytically) 

 

Medium (if the Jacobians 

can be computed 

numerically) 

Unscented Kalman Filter (UKF) Nonlinear Gaussian Medium  

Particle Filter (PF) Nonlinear Non-Gaussian High 

Note. This information was retrieved from 

https://www.youtube.com/watch?v=Vefia3JMeHE&list=PLn8PRpmsu08pzi6EMiYnR-076Mh-

q3tWr&index=5 

 

 

The actual application of the SLAM involves the utilization of sensors to describe the 

robot’s environment (Chatterjee et al., 2011). Several procedures were implemented 

under the EKF method using laser beam to detect the object with respect to the reference 

point. Lasers were used because of its performance and accuracy in detecting the 

environment (Lei & Li, 2012; Lindholm & Palsson, 2015; Lv et al., 2015). In addition, 

it is robust in varying of lighting and temperature conditions (Lv et al., 2014). 

https://www.youtube.com/watch?v=Vefia3JMeHE&list=PLn8PRpmsu08pzi6EMiYnR-076Mh-q3tWr&index=5
https://www.youtube.com/watch?v=Vefia3JMeHE&list=PLn8PRpmsu08pzi6EMiYnR-076Mh-q3tWr&index=5
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Nguyen and his colleagues applied the orthogonality principle to define the indoor 

environment such office rooms or laboratories in the line feature approach in SLAM 

(V. Nguyen et al., 2006). The linear estimation problem was minimized by applying the 

Kalman filter and the Relative Map technique. The proposed technique focuses on 

developing an efficient and lightweight approach in real-time applications. It was 

verified that the accuracy of the map is comparable to the ground truth map. Another 

research investigated on a geometrically constrained EKF framework proposed by Choi 

to accurately estimate the line feature positions. The researchers emphasized that the 

general indoor setting is orthogonal or parallel to each other so that line features is used. 

However, laser scanners aren’t used in this research because of its objectives to develop 

a low-cost cleaning mobile robot application. More, the robot has attached seven IR 

sensors to the differential drive configuration (Choi et al., 2008).  

 

Lv and his associates used the concept of straight-line segments using two laser range 

finders to detect features in the environment. Moreover, line segments for feature 

association are more complicated compared to point feature because of the additional 

consideration of line segment endpoints. The researchers also used the EKF approach 

to correct the predicted state with the observation and former feature relationship (Lv 

et al., 2014).  

 

Genevois combined a laser scanner and an odometry system to perceive the 

environment and estimate the position and heading of the EKF based SLAM. A 

downfall for this technique is slower when general exploration takes place and limited 

landmarks are used because of the point estimation used in the landmarks  (Thomas 

Genevois & Zielinska, 2014).  

 

Saputra simulated the EKF-SLAM to determine the state of the system with the 

comparison of the dead reckoning operation and the GPS system and implemented the 

method into a real Unmanned Grounded Vehicle (UGV) platform. The author found 

out that landmark filtering methods are necessary to produce better results of the robot’s 

estimated state (Saputra, 2015).  
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The main concept of the EKF-SLAM utilizes and extracts the environment’s features, 

commonly termed as landmarks, to update its position of the robot in the environment. 

Extended Kalman Filter allows keeping track of the uncertainty estimate of the robot’s 

position and landmark uncertainty. An overview of the EKF-SLAM process is 

illustrated in Figure 2.6.  

 

Figure 2.6 

EKF-SLAM Process from Laser Scanner and Mobile Robot Odometry 

 

Note. This image was adapted from the documentation entitled (Riisgaard & Blas, 2003). 

 

The EKF-SLAM starts by gathering information from the environment and extracts the 

necessary data for landmark association. Then from laser scanner data, the observed 

landmarks are either new or re-observed. An equivalent signal is sent to the robot for 

state update.  

 

2.5 Robotic Operating System (ROS) 

The robotic operating system (ROS) serves as a framework consisting of tools, libraries, 

or packages essential in writing robot software. This open-source middleware provides 

flexibility to developers and potentially improve the system introduced by the 

community.  

 

The concept of ROS revolves around the exchange of data between a publisher node 

and subscriber node through a message containing a unique topic name and type. The 
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publisher node broadcasts the information into a topic while the subscriber receives that 

data from the publisher with the same topic. Many-to-many communication is 

employed between the subscriber and publisher for a given topic. Thus, the publishing 

node is allowed to send multiple messages at the same topic while the subscriber is 

authorized to receive multiple data from a topic. One unique characteristic for a 

message is that it can be published even without an active subscriber. An illustration of 

a publisher-to-subscriber communication is illustrated in Figure 2.7.    

 

 

Figure 2.7 

Concept Map of node-to-node communication 

 

Note. This image was adapted from https://www.mathworks.com/help/ros/ug/exchange-data-with-

ros-publishers-and-subscribers.html. 

 

ROS works on the operating systems (OS) of Ubuntu Linux and experimentally 

supports OS X, Gentoo Linux and Windows. However, it is recommended to use the 

Ubuntu Linux as the operating system since it well documented and developed 

compared to the other OS. The programming languages used in ROS is either C++ or 

Python and can be used interchangeably when running nodes. An important part to take 

note of while working with ROS is the type of message to deliver the information to 

the other node.   

 

 

 

 

https://www.mathworks.com/help/ros/ug/exchange-data-with-ros-publishers-and-subscribers.html
https://www.mathworks.com/help/ros/ug/exchange-data-with-ros-publishers-and-subscribers.html
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2.5.1 Robotic Operating System and SLAM 

The use of SLAM in robotics is well established in ROS since the ROS Electric Emys 

distribution release in August 30, 2011 including the packages hector_slam and 

gmapping. The hector_slam package uses an approach not requiring an odometry nor 

roll/pitch motion from the robotic system. It provides two-dimensional pose estimates 

using LIDAR systems such as Hokuyo UTM-30LX. However, the closed-loop ability 

was not provided in the method but provides sufficiently estimate for real-world 

applications (Kohlbrecher & Meyer, 2020).  A sample application using hector_slam 

by handholding the device is illustrated in Figure 2.8.  

 

Figure 2.8 

Example of Handheld Mapping System using Hector_Slam Package in ROS 

 

Note. These imaged was acquired from YouTube  

https://www.youtube.com/watch?v=Cfq3s4-H2S4&t=43s  

 

The gmapping package, on the contrary, produces a two-dimensional occupancy grip 

map from the robot’s odometry data and laser range-finder data. Gmapping uses Rao-

Blackwellized particle filter for grid mapping on to the laser telemeter data. Each 

particle in this filter carries information of the environment (Gerkey, 2020). Sample 

image of a gmapping application is illustrated in Figure 2.9. 
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Figure 2.9 

Gmapping Application Using a Two-wheel Drive Rover and RPLiDAR A3 in ROS   

 

Note. These imaged was acquired from YouTube  

https://www.youtube.com/watch?v=Cfq3s4-H2S4&t=43s  
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

This chapter expounds the design of the wheeled mobile robot including the outline of 

the overall control system structure together with mapping and localization, the robot’s 

kinematic model and mechanical platform, hardware serial connections, calculations 

for the wheel distance and speed, laser scanner output raw data conversion, procedure 

of the EKF-SLAM, and ROS implementation with the mobile robot. 

 

3.1.1 Overall System Structure 

To implement the localization and mapping in the mobile robotic system, a middleware 

called ROS is installed and applied with its dependent packages. The computer then 

processes the raw output data from the laser scanner and feeds the processed data into 

the control system. Moreover, the computer sends a message to the microcontroller 

which delivers an equivalent control to the motors based from the data from the external 

sensors such as encoders and laser scanner. Figure 3.1 shows the flow diagram of the 

control system together with its external sensors.  

 

Figure 3.1 

Main System Structure  
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3.2 Synchronous-drive Mobile Robot Design 

The design of the synchro-drive robot is actuated using two independent motors, driving 

and steering motors, which are mechanically coupled by gears and chains. The 

distinction of the design compared to other drive configuration is its inability to change 

heading. Despite this impediment, the synchronous-drive has an advantage of minimal 

control effort with simultaneous turning or steering of the wheels. 

3.2.1 Kinematic Model for a Synchronous-drive Robot  

The kinematic model of a mobile robot is used to predict the motion of the robot based 

from the previous state and its control input without considering the forces affecting 

this motion. A synchro-drive configuration has similarities with the kinematic model of 

the unicycle model since the synchro-drive’s wheels are actuated in unison either 

driving or steering. The discrete version of the kinematic model where the robot state 

(𝑋(𝑘)) , consisting of the x-position, y-position, and robot heading, and control 

input (𝑢(𝑘)), containing the speed (𝑣(𝑘)) is given by Equation (3.1).   

𝑋(𝑘+1) = 𝑓(𝑋(𝑘), 𝑢(𝑘)) (3.1) 

where the index k represents the kth sample. The robot state and control input vectors 

are given by 

𝑋(𝑘) = [

𝑥(𝑘)

𝑦(𝑘)

𝜃(𝑘)

] (3.2) 

𝑢(𝑘) = [𝑣(𝑘)] (3.3) 

 

Based from the control input, the robot state is predicted using the discrete time 

kinematic model written in Equation (3.4) 

𝑋(𝑘+1) = [

𝑥(𝑘+1)

𝑦(𝑘+1)

𝜃(𝑘+1)

] = [

𝑥(𝑘)

𝑦(𝑘)

𝜃(𝑘)

] + [

∆𝑡𝑣𝑘cos (𝜃𝑘 + ∆𝑡𝜑𝑘/2)

∆𝑡𝑣𝑘 sin(𝜃𝑘 + ∆𝑡𝜑𝑘/2)
∆𝑡𝜑𝑘

] (3.4) 

where the first term represents the robot state at k interval and the second term 

represents the velocity based kinematic model. 

 

Solving for the Jacobian of the robot kinematic model with respect to the robot state 

and control input yields to 

𝐺 =
𝜕

𝜕(𝑥, 𝑦, 𝜃)𝑇
[[

𝑥𝑘

𝑦𝑘

𝜃𝑘

] + [

∆𝑡𝑣𝑘cos (𝜃𝑘 + ∆𝑡𝜑𝑘/2)
∆𝑡𝑣𝑘 sin(𝜃𝑘 + ∆𝑡𝜑𝑘/2)

∆𝑡𝜑𝑘

]] (3.5) 
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𝐺 = [
1 0 −∆𝑡𝑣𝑘 sin(𝜃𝑘 + ∆𝑡𝜑𝑘/2)
0 1 ∆𝑡𝑣𝑘cos (𝜃𝑘 + ∆𝑡𝜑𝑘/2)
0 0 1

] (3.6) 

 

3.2.2 Mechanical Platform 

From the literature, the circular shape of the chassis has similarities with the hexagonal 

form. A regular hexagonal-shaped platform was adopted for the design of the body with 

a diagonal length of 0.381 m. Additionally, the platform includes two layers; the lower 

layer and the upper layer. The former layer comprises of the driving and steering 

mechanism of the mobile robot while the latter layer functions as a location for the laser 

scanner, battery, and other hardware components. The physical properties of the mobile 

robot together with its gear and bevel gear transmission details are listed in Table 3.1. 

 

Table 3.1 

Physical Properties of the Synchronous-drive Mobile Robot 

No. Parameters Value (Unit) 

1 Dimension 

      Diameter length 0.381 (m) 

      Platform height  0.4064 (m) 

      Robot weight 3.0 (kg) 

      Robot platform material Aluminum 

2 Gear Transmission  

      Gear teeth (Big) 27 (T) 

      Gear teeth (Small)   9 (T) 

      Driving Mechanism GR 2/3 

      Steering Mechanism GR 1 

3 Bevel Gear Transmission 

      Bevel gear teeth (driven) 20 (T) 

      Bevel gear teeth (drive) 30 (T) 

      Bevel Gear Ratio 1:1.5 

 

 

The rotational motion from the driving motor and steering motor was delivered to the 

standard wheels through the chain-sprocket mechanism because of its efficiency in 

slippage compared to the belt type. These motions can be alternatively called as the 

driving and steering mechanisms and will be further discussed in Sections 3.2.4 and 

3.2.5. The upper chain layer in the drive system actuates the robot forward or backward 

while the lower chain layer turns the system at a specific angle. Figure 3.2 illustrates 

the 3-dimensional model of the robotic system in SolidWorks.  
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Figure 3.2 

3-D Model of the Mobile Robot Platform in SolidWorks 
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Additionally, the wheel transmission design is incorporated in this study to separately 

the movement of the steering and driving motors. Each main sprocket in the upper chain 

layer is connected to a shaft that is fastened to a straight bevel gear. The gear ratio of 

the driver and driven gears is 1:1.5. The driven gear is again connected to a shaft where 

a small sprocket is attached to the other end. The small sprocket is then mechanically 

couped by a chain to another small sprocket having a gear ratio of 1. The driven 

sprocket is then connected to a shaft where the standard wheels are fixed.  

 

For the lower chain layer, each sprocket is attached to the body of the wheel design 

with the support of a bearing. The bearings are affixed to the main foundation of the 

mobile robot which allows the wheels to turn at a defined angle. Figure 3.3 shows the 

design of the wheel structure in SolidWorks. 

 

Figure 3.3  

Wheel Transmission Design of the Mobile Robot 
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3.2.3 Hardware Design 

Based from the SolidWorks model, the components of the mobile robotic system are 

illustrated in Figure 3.4. Components such as the two DC motor with encoder, an 

L298N motor driver and 12 DC battery are connected to the pins of the Arduino Mega 

2560 microcontroller. The microcontroller is connected to the computer, the brain of 

the system, that executes the program and controls the motors using ROS. Connected 

to the computer is also the SICK S300 laser scanner which delivers the output raw data 

via the RS-422 to USB interface into the computer using the Python programing 

language. The raw data is processed and implemented in the localization and mapping 

package in ROS. The implementation of ROS to the actual hardware is further 

explained in Section 3.6. Figure 3.4 shows the connection diagram of the components 

in the mobile robot. 

 

Figure 3.4 

Hardware Connection Diagram 

 
 

Given with the connections for each unit, the actual mobile robot used in this study was 

illustrated in Figure 3.5.  
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Figure 3.5  

Actual Mobile Robotic Platform 

 
 

3.2.4 Driving Mechanism 

A chain transmission of five sprockets contributing to the drive mechanism of the robot 

is shown in Figure 3.6. This design allows movement of the three wheels forward or 

backward in unison. Three of the sprockets (labeled as 1, 2, and 3 in Figure 3.6) are 

connected to the designed wheel structure mention in Section 3.2.2. The sprocket 

attached to the shaft of the driving motor is also specified in the figure with the letter 

“M”. An additional sprocket in the middle of the robot was included in the chain 

transmission to provide a larger surrounding chain area in the motor sprocket and to 

tighten the chain. Without including this sprocket, the chain may loosen and unable to 

transmit the mechanical power of the motor.  
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Figure 3.6  

Mobile Robot Driving Chain Mechanism 

 
 

3.2.5 Steering Mechanism 

The actual design of the steering mechanism is shown in Figure 3.7 which consisted of 

four large sprockets and two small sprockets. Numbered sprockets in the figure are 

connected to the body of the wheel structure for wheel rotation which was also 

discussed in Section 3.2.2. The sprocket connected to the steering motor shaft is labeled 

as “M” in the figure. Inclusion of small sprockets in the steer transmission secures the 

chain in place and don’t change the direction of rotation of the consequent larger 

sprocket. Moreover, the chain transmission arrangement synchronously rotates the 

wheel structure either in the clockwise or counterclockwise manner. 

 

Note that for each layer in the chain-transmission, the sprockets must be horizontally 

aligned for the chain not to be uncoupled with the sprocket. Unaligned sprockets will 

not move the mobile robot and potentially break the chain.  
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Figure 3.7 

Mobile Robot Steering Chain Mechanism 

 
 

3.3 Mobile Robot Components and Sensors 

Sensors are crucial for localization and mapping as it serves as eyes for perceiving the 

environment and provides information of the robot itself. As mentioned in Section 

3.2.3, these devices include DC motors and laser scanners. Furthermore, the 

information and communication of the external sensors is transmitted to the 

microcontroller which delivers an equivalent signal to the motors. Discussion of these 

components and sensors are in the following sections.  

3.3.1 DC Motor with Encoder and Calculations 

A quadrature encoder in the DC motor is used to determine the distance travelled by 

the mobile robot and provided feedback for the system. The rotation from each DC 

motor is transferred to the wheels through the chain-sprocket transmission. Figure 3.8 

shows the image of the DC motor with encoder used in this study. In addition, the 

specifications of the 12 ppr DC motor with encoder are listed in Table 3.2.  
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Figure 3.8  

Illustration of the DC Motor and Attached Optical Encoder 

 
 

 

Table 3.2  

Technical Data of a DC Motor with Optical Encoder 

Parameter Description 

Working Voltage 12 V (DC) 

No load speed 8100 RPM (no gear) 

Nominal output power  
18 W 

No load current: 75 mA 

Load current: 1400 mA  

Gearbox ratio  64:1 

Encoder phase  AB  

Encoder resolution  12 ppr  

 

 

The position and direction measurement in the encoders is achieved through optical 

means and generated square-wave pulses. Furthermore, the direction of the counting 

movement was determined depending on the offset between the Channel A and Channel 

B shown in Figure 3.9. 
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Figure 3.9  

Quadrature Encoder Output Pulses for Clockwise and Counterclockwise Rotation 

 

 
Note. This image was adapted from “Encoders” H. H. Manh, 2020, p. 5.  

 

If the signal output of Channel A leads the signal output of Channel B, the direction of 

the counting device is in the clockwise direction. Conversely, Channel A lagging the 

pulse of Channel B signifies a counterclockwise direction of the counting device. Thus, 

these behaviors identify the position and direction of the rotary motion.  

 

To receive the necessary measurements, the number of edges (high to low or low to 

high transitions) is be considered and then converted to a corresponding position. The 

resulting positions from the encoder depends on three encoding types; X1, X2, and X4. 

This study used X4 encoding which provides a more precise counter reading and higher 
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resolution compared to the former encoding types. Implementing a X4 encoding into 

the conversion means having a total of 48 pulses per revolution (PPR) (Manh, 2020). 

Calculations of the mobile robot’s wheel rotation, distance, speed and RPM are 

considered as follows. 

 Wheel Rotation Calculation. The wheel distance is calculated using the 

X4 encoding, number of generated pulses, and the gear ratio. The equation for the 

calculation of wheel revolution is shown in Equation (3.7).  

𝑊ℎ𝑒𝑒𝑙 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠 − 𝑙𝑎𝑠𝑡𝑃𝑜𝑠𝑡

𝑝𝑝𝑟 × 𝑒𝑡 × 𝐺𝑅
 (3.7) 

where ppr is the pulses per revolution, et is the encoding type (X4), and GR is the gear 

ratio of the transmission system. 

 Wheel Distance Calculation. Based from the number of wheel 

rotations, the wheel distance is calculated using Equation (3.8). 

𝑊ℎ𝑒𝑒𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 2π(𝑊ℎ𝑒𝑒𝑙 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) (3.8) 

 Time Rate of Change Calculation. To determine the time difference 

between the starting point to its endpoint, the rate of change in time (minute) is 

calculated in Equation (3.9).    

𝑑𝑡 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑖𝑛𝑔 − 𝑙𝑎𝑠𝑡𝑇𝑖𝑚𝑖𝑛𝑔

6000
 (3.9) 

 Rotational Speed Calculation. The speed of the shaft delivered to the 

coupled wheels is calculated using the rotation number calculation in Equation (3.7) 

and the time difference in Equation (3.9). Equation (3.10) shows the equation of the 

rotational speed. 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑝𝑒𝑒𝑑 =
𝑑(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑁𝑢𝑚𝑏𝑒𝑟)

6000
 (3.10) 

 

Equations (3.7) to (3.10) are incorporated in the Arduino and ROS code which are used 

for localizing the mobile robot.  

3.3.2 Motor Driver and Microcontroller 

The L298N Motor Driver, which consists of an L298 motor driver IC and a 78M05 5V 

regulator, allows controlling two (2) DC motors. Apart from this function, the double 

H-bridge design controls the rotational direction of the motors while the Pulse Width 

Modulation (PWM) allows to control the speed. 
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This module consists of pins for the motor power supply (Vs), ground and 5V logic 

power supply. Moreover, the output pins for the drive motor and steer motor with 

voltages between 5 to 35V DC are incorporated in the driver. The motor driver also 

includes direction control pins (Input 1, Input 2, Input 3, Input 4) which controls the 

forward or backward motion and the speed control pins (Enable A and Enable B) which 

control the speed for each motor. The positive terminal of the power supply (battery) 

was connected to the VS while the negative terminal is connected to GND.  

 

The main controller board used in this research is the Arduino Mega 2560 

microcontroller which is based on the Atmega2560. It has 54 digital input/output pins 

(14 pins provide PWM output), 16 analog input pins, 4 hardware UARTs that operates 

at 5V, and a 256 KB flash memory. The Arduino Mega board can be powered either 

through a USB connection or an external power supply of 6 to 20V. The connections 

between the microcontroller and motor driver are shown in Figure 3.10 (See Appendix 

A1 for pin connections). 

 

Figure 3.10  

L298N Motor Driver Board and Arduino Mega 2560 Connection to DC Motor with 

Encoder 
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3.3.3 Sick S300 Laser Scanner Sensor 

The SICK S300 safety laser scanner is used in this research to accurately determine the 

distance between the laser scanner’s position in the mobile robot and to the environment 

(with or without obstacles). The actual image of the laser scanner which has a field of 

view of 270° is illustrated in Figure 3.11.   

 

Figure 3.11  

Illustration of S300 Expert SICK Laser Scanner and Its Scan Plane 

 

 

The SICK laser scanner has an angular resolution of 0.5° meaning that every planar 

range scan yields to an increment of 0.5° starting from 0 until angle 270. The measuring 

range of this scanner is 30 m and has a warning field range of 8 m. Also, an RS-422 

data interface is used to transmit the data into the computer with a transmission rate of 

500k baud. Additional details of the laser scanner are recorded in Table 3.3.  
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Table 3.3  

Technical Data of SICK S300 Laser Scanner 

Parameter Description 

Type S30B-3011GB (Expert) 

Protective Field Range 2 m 

Scanning Angle 270° 

Response Time 80 ms 

Angular Resolution 0.5°  

Data Interface RS-422 

Transmission Rate ≤ 500 kBaud 

Operating Voltage 24 V DC 

Power Consumption ≤ 0.33 A (without output load) 

≤ 1.7 A (with max. output load) 

Weight 1.2 kg  

Dimensions (W x H x D)  102 mm x 152 mm x 106 mm 

     

 

 Laser Scanner Data Processing. The laser scanner continuously sends 

the output raw data via RS-422 interface to the computer and is processed using the 

Python programming language. The structure of data output on every scan consist of a 

telegram header (4 bytes, green), an administration data (6 bytes, purple), a measured 

data (1,132 bytes, blue), and a CRC (2 bytes, yellow) that displays the scanner’s details 

and version. An example of the telegram structure from the laser scanner is presented 

in Figure 3.12 (SICK Sensor Intelligence, 2015; Yan, 2019). 

 

Figure 3.12  

Sample Telegram Structure from a Continuous Data Output 

 00 00 00 00  00 00 02 29 FF 07  03 01 01 00 00 00 … 

 

BB BB 11 11 E9 01 E8 23 C9 01 … C7 01  FB B9 
 

 

Three types of operation are available in the Sick S300 laser scanner: I/O Information, 

Measurement Data, and Reflective Data. These modes have starting characters of AA 

AA, BB BB, and CC CC, respectively, depending on the configuration. This research 

considered the measurement data to attain the estimated distance from the laser scanner 

and the considered environment at every 0.5 °  increment from angle -45 to 225. 
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Furthermore, output raw data following 11 11 are the necessary data to be extracted. 

Data blocks after 11 11 is shown in Figure 3.12. 

 Output Raw Data to Distance Calculation. Given with a continuous 

raw output data from the laser scanner, an appropriate method in organizing the laser 

scan data is implemented. Figure 3.13 shows the process on how the output raw data 

from the laser scanner is extracted and converted into the desired distance format.  

 

Figure 3.13  

Step-by-step Process of Laser Scanner Output Raw Data 

 
 

 

For every scan, a telegram header consisting “00 00 02 19 FF 07” is checked from the 

series of output raw data. The data length is then verified by counting the length after 

the administration data (see Figure 3.12). Data lengths with less than 2212 is rejected 

and looks for the next telegram header. Having a true condition continues to search for 

the measurement data of “BB BB 11 11”.  

 

After the measurement data, a data block pair consisting of 2 bytes is created. This data 

pair is then converted to bit notation and extracted only bits 0 to 12. The extracted bits 

are then converted to decimal notation to obtain the measured distance in centimeters. 

The code also checks whether the data block pair reached the 540th term. If false, the 
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code will move to create another data block pair. If true, the operation proceeds to the 

next laser scan. The process of finding the next scan is terminated once a stopping 

condition is initiated by the user.    

 

To further understand the raw output data conversion and acquisition, a sample 

calculation is illustrated as follows.  

 

(Data block no.1) E9 01 

Measured value at 0 degree is 0x01E9 

bit notation: 0000 0001 1110 1001 

Bit 13: 0: no reflector detected  

Bit 12 … 0: distance in cm: 0x01E9 = 0000 0001 1110 1001 

In cm: 256 cm + 128 cm + 64 cm + 32 cm + 8 cm + 1 cm = 489 cm 
 

(Data block no.2) E8 23 

Measured value at 0.5 degree is 0x23E8 

bit notation: 0010 0011 1110 1000 

Bit 13: 0: no reflector detected  

Bit 12 … 0: distance in cm: 0x23E8 = 0000 0011 1110 1000 

In cm: 512 cm + 256 cm + 128 cm + 64 cm + 32 cm + 8 cm = 1,000 cm 
 

(Data block no.3) C9 01 

Measured value at 1.0 degree is 0x01C9 

bit notation: 0010 0011 1110 1000 

Bit 13: 0: no reflector detected  

Bit 12 … 0: distance in cm: 0x01C9 = 0000 0001 1100 1001 

In cm: 256 cm + 128 cm + 64 cm + 8 cm + 1 cm = 457 cm 

⋮ 
(Data block no.540) DB 01 

Measured value at 270.0 degree is 0x01DB 

bit notation: 0000 0001 1101 1011 

Bit 13: 0: no reflector detected  

Bit 12 … 0: distance in cm: 0x01DB = 0000 0001 1101 1011 

In cm: 256 cm + 128 cm + 64 cm + 16 cm + 8 cm + 2 cm = 474 cm 

 

The following raw output data conversion is obtained from the Sick S300 Manual 

(SICK Sensor Intelligence, 2015).  

 

3.4 Position Control Method 

External sensors are insufficient in achieving the desired output and as a result, a 

feedback control system should be utilized to attain this output. The proportional-

integral-derivative controller or PID controller consists of three gains (P-gain, I-gain, 

and D-gain) that controls the input based from the error value calculated from the 

measured process variable and set point. Mathematically, the PID controller can be 

expressed together with the three gain constants (𝐾𝑃, 𝐾𝐼, 𝐾𝐷) given by the equation,  
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𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒′(𝑡)
𝑡

0

𝑑𝑡′ + 𝐾𝐷

𝑑𝑒(𝑡)

𝑑𝑡
 (3.11) 

Each of the component in the equation represents a basic control behavior which is 

briefly explained. The proportional controller or P-control applies a correction 

proportional to the error which is the difference between the setpoint value (SP) and 

process variable (PV). A faster response is one of the advantages of this controller, 

however, it doesn’t always reach the desired setpoint and may show an offset. The 

integral controller or I-control considers the sum of the error over time and serves as a 

solution to remove the steady-state error. The problem of this controller is showing a 

slower response time which can destabilize the controller. The third term and last term 

in the PID controller is the derivative control or D-control. This controller’s role is to 

minimize the change of error which depends on the rate of change in error. It gives a 

more stable response since it acts as a brake or dampener that resists the change of 

value. 

 

In this study, the PID library installable from the Arduino IDE Library Manager is 

applied and the controller parameters used in the position control for driving and 

steering are illustrated in Table 3.4.  

 

Table 3.4  

Proportional-Derivative (PD) Control Parameters 

Position Control (Driving) Position Control (Steering) 

𝑘𝑝,𝑑 4.0 𝑘𝑝,𝑠 3.0 

𝑘𝑑,𝑑 0.01 𝑘𝑑,𝑠 0.01 

 

3.5 2D EKF-SLAM Operation 

The overview of the EKF-SLAM implemented in ROS is shown in Figure 3.14.  

 

The EKF-SLAM process starts by initializing the position and orientation of the robot 

where in this case, (x, y,𝜃) is (0,0,0). The robot then starts moving at a certain direction. 

A predicted state and covariance are produced based from the odometry of the robot. 

The estimated state consisted of the estimated robot state (𝑋𝑣) and estimated landmark 

states (𝑋𝑙)  shown in Equation (3.12). The nth index represents the n number of 

registered landmarks. The laser scanner then measures the distance from the location 
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of the scanner attached to the robot and to the environment or obstacle. Point clustering 

is used for detecting the landmark with a minimum of 15 clustered points. Fewer 

clustered points result to a rejection of the point cluster that is not considered as a 

landmark. 

 

Figure 3.14 

General Operation Step for Implementation 2D SLAM 

 
 

Two conditions exist for the landmark extraction, one for the re-observed landmark and 

the other is the new landmark. Once a registered landmark is detected, the state and 

covariance matrix are updated. For new observations, on the contrary, the landmark is 

first initialized then updated its state and covariance. With every new observed 

landmark, Equations (3.13) and (3.14) will expand in size. Equations (3.12) to (3.14) 

represent the correspondent estimated state error and covariance matrix, respectively.  

𝑋 = [
𝑋𝑣

𝑋𝑙
] =

[
 
 
 
 
 
 
 

𝑥
𝑦
𝜃

𝐿𝑥1

𝐿𝑦1

⋮
𝐿𝑥𝑛

𝐿𝑦𝑛]
 
 
 
 
 
 
 

 (3.12) 
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�̅� =  [
𝑋𝑣
̅̅ ̅

𝑋�̅�

] =

[
 
 
 
𝑋𝑣
̅̅ ̅

𝐿1
̅̅ ̅

⋮
𝐿1
̅̅ ̅]

 
 
 
 (3.13) 

𝑃 = [
𝑃𝑋𝑣,𝑋𝑣

𝑃𝑋𝑣,𝑋𝑙

𝑃𝑋𝑙,𝑋𝑣
𝑃𝑀,𝑋𝑙

] (3.14) 

 

3.5.1 Extended Kalman Filter SLAM Equation 

For every time step, the EKF SLAM takes odometry and sensor measurements to 

generate an estimate of the full state vector.  

 Initialization. For initialization, the robot state is set at (0,0,0) and 

covariance is also initialized to zero which indicates the initial state of the robot is 

known. Additionally, there are still no registered landmarks to the map at this moment 

so the mean and covariance at the initial time is zero.  

�̅� = �̂�𝑣 = [
𝑥
𝑦
𝜃
] = [

0
0
0
] 𝑃 = [

0 0 0
0 0 0
0 0 0

] (3.15) 

 

 Prediction Step. When the robot is in motion, the prediction step predicts 

the position of the robot based from motion commands. The updated estimated robot 

state is given in Equation (3.16) and the updated estimated landmark state is shown in 

Equation (3.17). 

𝑋(𝑘+1) =  [

𝑥(𝑘)

𝑦(𝑘)

𝜃(𝑘)

] +  [

∆𝑡𝑣𝑘𝑐𝑜𝑠 (𝜃𝑘 + ∆𝑡𝜑𝑘/2)
∆𝑡𝑣𝑘𝑠𝑖𝑛 (𝜃𝑘 + ∆𝑡𝜑𝑘/2)

∆𝑡𝜑𝑘

] (3.16) 

𝑋𝐿 ← 𝑋𝐿 (3.17) 

where 𝑋𝑘+1  represents its state at time interval k+1, the first term represents the 

previous robot state and the second term represents the robot motion model. 

Furthermore, the estimated landmarks are also updated. Also, the robot’s covariance, 

P, is calculated using Equation (3.18) where 𝐹𝑥  is the Jacobian matrix and 𝑃𝑛 

corresponds to the noise covariance 

𝑃 ← 𝐺𝑥𝑃𝐺𝑥
𝑇 + 𝑃𝑛 (3.18) 

 

 Correction Step. The purpose of the correction step is to compare the 

actual observation from the sensors with the predicted measurements to correct the 

robot state. Equations (3.19) to (3.23) represent the updating process consisting of three 
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stages: Calculation of the Kalman gain, correction of the estimated mean, and 

correction of the estimated covariance.  

𝑧̅ = 𝑦𝑖 − ℎ𝑖(𝑋, 𝐿𝑖) (3.19) 

𝑍 = 𝐻𝑥𝑃𝐻𝑥
𝑇 + 𝑅 (3.20) 

𝐾 =  𝑃𝐻𝑥
𝑇𝑍−1 (3.21) 

�̅� ← �̅� + 𝐾𝑧̅ (3.22) 

𝑃 ← 𝑃 + 𝐾𝑍𝐾𝑇 (3.23) 

where 𝑧̅ represents the measurement model, K represents the Kalman gain for the 

updating process, H represents the Jacobian (Saputra, 2015). 

3.5.2 Experimental Setup of the Real Environment 

Figure 3.15 shows the environment used in the experiment where the landmarks are 

labeled as Landmark 1, Landmark 2, and Landmark 3. Also, the dimensions of the 

landmarks are stated in Table 3.5. 

Table 3.5  

Landmark Dimensions in terms of Length, Width, and Height 

Box No. Length (m) Width (m) Height (m) 

Landmark 1 0.22 0.14 0.37 

Landmark 2 0.23 0.13 0.30 

Landmark 3 0.21 0.15 0.27 

 
Figure 3.15 

Image of the Real Environment with Landmark 
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Moreover, the path of the robot from the starting position “A” to the final point “B” is 

shown in Figure 3.16. In between the starting and final points are 10 arbitrary points 

used for the comparing the ground truth and calculated path using EKF-SLAM. The 

comparison is calculated using the Root Mean Square Error shown in Equation (3.24). 

𝑅𝑀𝑆𝐸 = √∑
(�̂�𝑖 − 𝑥𝑖)2

𝑛

𝑛

𝑖=1

 (3.24) 

where n is the number of measurements, i is the ith index term, �̂�𝑖 is the predicted value, 

and 𝑥𝑖 is the observed value.  

 

Figure 3.16  

Illustration of the Path of the Mobile Robot in the Environment 

 
 

3.6   Implementation of EKF-SLAM in Robotic Operating System (ROS) 

This research used the ROS Melodic Morenia version (released in May 23, 2018) using 

Linux Ubuntu 18.04 (Bionic). The laptop used has a dual booted Linux kernel to 

implement ROS. The Melodic version provides well documented packages necessary 

for mapping and localization and allows the communication between the Arduino 

microcontroller and ROS.  

3.6.1 Arduino Microcontroller and ROS  

The process of connecting the microcontroller to ROS is through the installation  of the 

rospackage named rosserial in the Ubuntu terminal. To move the robot at a specific 
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direction and speed, each wheel mechanism (drive or steer) velocity was published 

under the topic of “velocity_cmd” which ROS can subscribe. This topic delivers the 

velocity information from the motors. Additionally, the topic “cmd_vel” was published 

from the rospackage teleop_twist_keyboard which sends velocity commands to actuate 

the driving and steering motors when the microcontroller subscribes to it. In this 

research, the device port number used is /dev/ttyACM0. The crucial and the most 

important part of this study is the mapping and localization using EKF in ROS. The 

steps for implementing SLAM together with its requirements are as follows. 

 

3.6.2 Coordinate Transformations 

First part of the requirements in the SLAM implementation is the connection between 

coordinate frames that allows transformation between the active frames to a desired 

point in time. This is also known as tf or the transformation package in ROS. Frames 

such as /map, /odom, /base_link, and /base_laser are included in this study (See 

Figure 3.17). Moreover, the static_transform_publisher publishes static coordinate  

 

Figure 3.17  

ROS Transformation Trees  
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Figure 3.18  

ROS Coordinate Frame Transformation on Rviz 

 
 

transformation (x/y/z: meters, yaw/pitch/roll: radians) which is configured for the 

/base_link to /base_laser transformation. Tf, however, doesn’t provide any 

information about the velocity of the robot so to transform the frames from /map to 

/odom and frames from /odom to /base_link, a dynamic transformation through 

odometry information was used.  The odometry information, based from the 

odometry_publisher package, is incorporated into the slam_in_control.cpp file. The 

resulting transformation of the aforementioned frames are shown in rviz, 3d 

visualization tool for ROS, which was illustrated in Figure 3.18. 

 

3.6.3 SICK Laser Scanner and ROS 

ROS Melodic has an available package for the SICK S300 laser scanner for publishing 

the laser scan message which is the cob_sick_s300 package. However, the said package 

showed error and didn’t provide the desired output. To aid this dilemma, a code based 

in Python language is created to obtain the laser scanner data under the filename of 

SickS300Scanner.py (See Appendix B1 for more details).  By following the telegram 

listing provided by the manufacturer of the laser scanner, the python file publishes the 

processed laser data based from the discussed procedure in Section 3.3.3 (SICK Sensor 

Intelligence, 2015). Details of the configuration between the laser scanner and ROS are 

shown in Table 3.6.  
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Table 3.6 

Sick S300 Scanner Parameters 

Parameter Description 

Node Name base_laser 

Port /dev/ttyUSB0 

Baud Rate 500000 

Parity Bit None 

Stop Bit 1 bit 

Byte Size 8 bits 

Scan Header ID base_laser 

Scan Angle (rad) 

       - Maximum 

       - Minimum 

 

 3.926990 

-0.7853983 

Scan Range (m) 

       - Maximum 

       - Minimum 

 

 29.00 

   0.03 

 

A sample laser scan in a room including the laser coordinate frame is visualized in rviz 

and is shown in Figure 3.19.    

 

Figure 3.19 

Laser Scanner Output on Rviz 

 
 

3.6.4 EKF-SLAM and ROS 

The process of running EKF-SLAM and ROS starts with the terminal having each tab 

addressed to a specific IP Address with the command  

export ROS_MASTER_URL=http://10.90.4.127:11311 

export ROS_IP=10.90.4.127 
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Including this command in the terminal connects the active terminals together. 

Afterwards, a set of instructions to open the simulator and data acquisition for each 

terminal tab is stated below. 

1 roscore 

2 rosrun rosserial_python serial_node.py port:=/dev/ttyACM0 

3 roslaunch main main.launch 

4 rostopic echo slam_path 

 

Command 1 represents the master and is a requirement to run and allow communication 

between nodes. The second command initializes and connects the Arduino to the ROS 

middleware through the assigned port (/dev/ttyACM0 is used in this research). 

Command 3 represents the main node for the EKF-Slam which includes the landmark 

detection and mapping the estimated landmark. This node also includes the 

transformation frames between the mobile robot parts, information from the wheel 

velocities from Arduino, and simulation of the actual environment. Lastly, Command 

4 shows the numerical information of the where the robot travels to. Figure 3.20 shows 

the sample image of the landmark detection in rviz having landmarks shown in green.  

 

Figure 3.20  

Landmark Dectection on Rviz 

 
 

 

 

 

 

 

http://serial_node.py/
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3.6.5 Obstacle Avoidance 

The obstacle avoidance is included in this research through the navigation stack 

implemented in ROS using the Dynamic Window Approach (DWA) set as a local 

planner. The idea behind the DWA is that the system samples multiple sets of velocities 

which then simulates the valid and invalid trajectories of the robot. These trajectories 

are evaluated and the optimal trajectory resulting from the speed is chosen to be able to 

drive the robot. The dynamic window approach also limits the speed sampling space 

and calculates the lowest possible cost function. Figure 3.20 shows the illustration of 

possible trajectories for the mobile robot under investigation. 

 

Figure 3.21  

Dynamic Window Approach 

 
Note. This image is acquired from the website of dwa_local_planner in ROS. 

http://wiki.ros.org/dwa_local_planner 
 
 

Figure 3.21 shows the nodes involved in the implementation of EKF-SLAM. Packages 

involved in the EKF-SLAM operation consists of the laser scanner node, the navigation 

stack, serial communication node to the microcontroller, EKF-SLAM node, landmark 

detection node, and the gmapping.  
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Figure 3.22  

Illustration of the Full Rosgraph  
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CHAPTER 4 

 RESULTS AND DISCUSSION 

4.1 EKF-SLAM Operation Results 

The performance of the EKF-SLAM is evaluated through the comparison of the ground 

truth and the actual measurement by calculating the root mean square. Before this 

comparison, the results from the landmark extraction are discussed.  

 

4.1.1 Landmark Detection from Laser Scanner  

Figure 4.1 illustrates the scanner output data on the real environment. The orange point 

clouds represent each scan angle from the laser scanner.  

 

Figure 4.1   

Laser Scanner Output on Real Environment on Rviz 

 
 

It was also observed that point clusters merge with the side of the wall if the position 

of the landmark is near to the wall. Based from the trial shown in Figure 4.2, the feature 

detection fails to distinguish a landmark having the landmark’s coordinates (X:1.16 m 

and Y:0.55 m). The green point cloud shows that the landmark is also considered as a 

wall.  
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Figure 4.2  

Laser Scanner Output on Rviz without Landmark Consideration 

 
 

By moving the landmark away from the wall, the landmark, having it’s coordinates at 

(X:1.04 m and Y:0.30 m), is considered. Figure 4.3 shows the considered landmark on 

Rviz. 

 

Figure 4.3  

Laser Scanner Output on Rviz with Landmark Consideration 
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The landmarks are shown in the visualization tool while the laser scanner is roaming 

through the environment. It is observed that failures of landmark detection exist at a 

certain angle which may due to the number of point clusters. Moreover, the landmarks 

being considered is not projected in the simulator all the time.   

 

Figure 4.4  

Landmark One, Two, and Three on Rviz 

 
(a) (b) 

 
(c) 

Note. These images show the three landmarks labeled as (a), (b), and (c) for landmarks 1, 2, and 3 

respectively.   
  

4.1.2 Comparison of Ground Truth and Robot Position in EKF 

The distance data from the ground truth and the calculated robot position are obtained 

from the actual measurement in the environment using a tape measure and from the ros 

command rostopic echo /slam_path. In detail, the ground truth represents the actual 

measurement from the environment. Each specified location numbered from Point 1 to 

10 in Table 4.1 is noted and these points are compared to the predicted measurement 

coming from the calculated state using the EKF. The information or data coming from 

the sensors are fed to the system which will compute for the estimated state of the robot. 

 

There are 10 arbitrary points between the starting position and ending position. The 

calculation of the RMSE in this research considered two conditions.  
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The first calculation uses the x and y coordinates between the actual and predicted 

measurement of the robot under consideration. By using Equation (3.24), the RMSE in 

the x and y direction yields to 0.2981 m and 0.1589 m, respectively (See Table 4.1). An 

observation is made with the RMSE results since the error in the x-axis is close to the 

error in the y-axis. Every time the driving motor moves the chains, a drag is affecting 

the steering chain mechanism. Moreover, it is also the case when the steering motor 

move. Thus, this results to a deviation of the actual movement of the robot and yields 

to a different value. Another thing to consider is the cumulative error presented in the 

values of the RSME of 0.2981 m and 0.1589 m. For longer paths, the errors will increase 

over time.  

 

 

Table 4.1  

RMSE Calculation for x and y Measurement Values 

Point 

No. 

Ground 

Truth 

(m) 

Predicted 

Measurement 

(m) 

Residuals 

(x-axis) 

(m) 

Residuals 

(y-axis) 

(m) 

Square 

(x-axis) 

(m2) 

Square 

(y-axis) 

(m2) 

A (0.00, 0.00) (0.00, 0.00) 0 0 0 0 

1 (0.00, 0.58) (0.02, 0.73) 0.02 0.15 0.0004 0.0225 

2 (0.00, 1.03) (-0.05, 0.98) -0.05 -0.05 0.0025 0.0025 

3 (0.00, 1.58) (-0.20, 1.64) -0.2 0.06 0.04 0.0036 

4 (0.00, 2.02) (-0.29, 2.04) -0.29 0.02 0.0841 0.0004 

5 (0.00, 2.59) (-0.37, 2.73) -0.37 0.14 0.1369 0.0196 

6 (0.00, 3.00) (-0.33, 3.18) -0.33 0.18 0.1089 0.0324 

7 (0.00, 3.59) (-0.18, 3.74) -0.18 0.15 0.0324 0.0225 

8 (0.00, 4.00) (-0.10, 4.17) -0.1 0.17 0.01 0.0289 

9 (1.10, 4.00) (0.57, .4.20) -0.53 0.2 0.2809 0.04 

10 (1.52, 4.00) (1.07, 4.24) -0.45 0.24 0.2025 0.0576 

B (2.01, 4.00) (1.60, 4.27) -0.41 0.27 0.1681 0.0729 

 
Sum Square Error 

[SSE] (m2) 
1.0667 0.3029 

 Mean of Sum Square 

Error (m2) 
0.0889 0.0252 

 Root Mean Square 

Error [RMSE] (m) 
0.2981 0.1589 

*A – starting point 

  B – final position 
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Table 4.2  

RMSE Calculation for the Overall Travelled Distance 

Poin

t No. 

Groun

d 

Truth  

x-axis 

(m)  

Predicted 

Measureme

nt 

x-axis 

(m) 

Groun

d 

Truth 

y-axis 

(m)  

Predicted 

Measureme

nt 

y-axis 

(m)  

Ground 

Truth  

Distance 

Travelle

d 

(m)  

Predicte

d 

Distance 

Travelle

d 

(m) 

Residual

s 

(m)  

Squar

e 

(m2) 

A 0 0 0 0 0 0 0 0 

1 0 0.02 0.58 0.73 0.58 0.7302 0.1502 0.0225 

2 0 -0.05 1.03 0.98 1.03 0.9812 -0.0487 0.0023 

3 0 -0.2 1.58 1.64 1.58 1.6521 0.0721 0.0052 

4 0 -0.29 2.02 2.04 2.02 2.0605 0.0405 0.0016 

5 0 -0.37 2.59 2.73 2.59 2.7549 0.1649 0.0272 

6 0 -0.33 3 3.18 3 3.1970 0.1970 0.0388 

7 0 -0.18 3.59 3.74 3.59 3.7443 0.1543 0.0238 

8 0 -0.1 4 4.17 4 4.1711 0.1711 0.0293 

9 1.1 0.57 4 4.2 4.1484 4.2385 0.0900 0.0081 

10 1.52 1.07 4 4.24 4.2790 4.3729 0.0938 0.0088 

B 2.01 1.6 4 4.27 4.4766 4.5599 0.0833 0.0069 

 Sum Square Error [SSE] (m2) 0.1748 

 
Mean of Sum Square Error 

(m2) 
0.0145 

 
Root Mean Square Error 

[RMSE] (m) 
0.1207 

*A – starting point 

  B – final position 

 

 

Another condition for the RMSE calculation is the total distance. Solving the RMSE 

shows that the root mean square error yields to 0.1207 m (See Table 4.2). Looking into 

the theoretical distance traveled by the robot of 4.48 m, the error is 2.70%. 

 

4.1.3 Application of Obstacle Avoidance 

To show the application, a mobile robot navigation is implemented in the proposed 

system. Figure 4.1.3.1 show the calculated path of the robot with the two obstacles in 

the visualization tool.   
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Figure 4.5  

Obstacle Avoidance Mobile Robot Application 

 
 

The pink arrow represents the location and orientation of the mobile robot in the 

environment where the green line shows the path of the robot to the goal. Figure 4.5 

shows the travel of the robot to the final destination given with two obstacles. 

Additionally, the screenshot of the robot travelling to the destination is shown in 

Figures 4.6 and 4.7. 

 

Figure 4.6 

Sample Screenshot of the Mobile Robot performing Obstacle Avoidance 
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Figure 4.7 

Screenshot Example of the Mobile Robot performing Obstacle Avoidance 
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CHAPTER 5 

 CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

This research proposed a synchronous-drive design mobile robot using odometry and 

laser scanner to implement the EKF-SLAM. An addition of obstacle avoidance is 

covered in this study to show a potential application of the mobile robot. To summarize, 

three tasks were accomplished in this research. First is the design of the synchronous 

drive robot where its steering and driving mechanisms are independently moving. This 

results to an easier control compare to other drive configuration. Another point to 

consider in this task is that the mobile robot design is mechanically complex. Slightest 

misalignment from the sprockets results to loosen chains. Second task is 

implementation of EKF-SLAM including the detection from the observed landmarks. 

Problems exist in the landmark detection due to its distance from the assumed wall or 

the angle how the laser scanner sensed that object. Lastly is the incorporation of the 

obstacle avoidance in the proposed robot. This shows that potential applications of the 

proposed robot are possible. 

 

Based from the experiment, the mean square error between the actual and calculated 

measurement yields to 0.2981 m and 0.1589 m for the x and y axis error, respectively. 

When considering the total distance travelled by the robot, a mean square error of 

0.1207 m is evident. Moreover, the drag factor from the other chain mechanism initiates 

a slight change in the other mechanism resulting to an error. Error also exists due to the 

cumulative error using odometry. This shows that the drive configuration is 

mechanically complex. Also, the theoretical distance travelled by the robot is 4.48 m 

which yielded to an error of 2.70%. 

 
5.2 Recommendation 

This research recommends to explore the possibility of 3-dimensional implementation 

which includes the visual approach of SLAM. Incorporating cameras or kinetic sensor 

provides a depth information from the environment.   Another recommendation is the 

introduction of hybrid filters such as Radial Basis Function (RBF) or Multilayer 
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Perception (MLP) with EKF for investigating the learning properties of neural 

networks. 
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APPENDIX A 

ARDUINO PIN CONNECTIONS 

Table A1 shows the pin connection between the motor encoder, motor driver, and 

microcontroller.  

Table A1 

Pin Connection of Motor Encoders and Motor Driver to Arduino Mega 

2560  

Parts Arduino Pin 

Motor Driver 

        Input 1 (M1) Digital   6 

        Input 2 (M1) Digital 12 

        Input 3 (M2) Digital 11 

        Input 4 (M2) Digital 10 

        Enable A (M1) Digital   7 

        Enable B (M2) Digital 11 

Encoder 

        Pin A (D) Digital 18 

        Pin B (D) Digital 19 

        Pin C (S) Digital   2 

        Pin D (S) Digital   3 
*Abbreviation in the parenthesis above are defined as follows. M1 – driving motor,  

M2 – steering motor, D – encoder for driving motor, and S – encoder for steering motor. 
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APPENDIX B 

LASER SCANNER PYTHON CODE 

Table B1  

Python Code for Sick S300 Laser Scanner 

 

# File Name:  SickS300Scanner.py 

# Description: Publishes laser scanner messages using the Python language through ROS 

 

#!/usr/bin/env python 

from __future__ import division 

 

import rospy 

import serial 

import os  

import binascii 

import time 

import re 

import math 

from serial import Serial 

from sensor_msgs.msg import LaserScan 

import sensor_msgs.msg 

 

 

rospy.init_node('laser_scan_publisher') 

 

scan_pub = rospy.Publisher('scan', LaserScan, queue_size = 50) 

 

serialPort = serial.Serial(port='/dev/ttyUSB0', 

        baudrate = 500000, 

        parity=serial.PARITY_NONE, 

        stopbits=serial.STOPBITS_ONE, 

        bytesize=serial.EIGHTBITS, 

        timeout=None) 

 

def __function_SPLIT(stringToSplit, countPerSplit): 

    return [stringToSplit[i:i+countPerSplit] for i in range(0, len(stringToSplit), countPerSplit)] 

 

__GLOBAL_DataBlocksToFind = "00000229ff07" 

__GLOBAL_RequiredDataLength = 2212 

__GLOBAL_RequiredDataLengthAfter = 2200 

__GLOBAL_MeasurementDataBlockLength = 2160 

__GLOBAL_MeasurementHeader = "bbbb1111" 

__PRINT_FinalScanPrint = [] 

 

__DEBUG_ScanID = 0 

__DEBUG_IndexErrorCount = 0 

 

while not rospy.is_shutdown(): 

    current_time = rospy.Time.now() 

     

    scan = LaserScan() 

 

    #print("Scan Number %i" %  __DEBUG_ScanID) 
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    __SERIAL_BaseHex = serialPort.readline() 

    __SERIAL_BaseString = binascii.hexlify(__SERIAL_BaseHex) 

 

    #print(__SERIAL_BaseString) 

    #break 

 

    __SERIAL_StartingDataBlockIndeces = [] 

     

    __THIS_ArraySearchIndeces = [] 

    for __THIS_SearchIndex in re.finditer(__GLOBAL_DataBlocksToFind, __SERIAL_BaseString): 

        __THIS_ArraySearchIndeces.append((__THIS_SearchIndex.start(), __THIS_SearchIndex.end())); 

     

    __DEBUG_NextFirstIndex = "" 

    __DEBUG_status = "" 

    for __THIS_ArrayCounter in range(len(__THIS_ArraySearchIndeces)): 

        __DEBUG_CurrentArray = __THIS_ArraySearchIndeces[__THIS_ArrayCounter] 

        __DEBUG_CurrentStartIndex = __THIS_ArraySearchIndeces[__THIS_ArrayCounter][0] 

        __DEBUG_CurrentLastIndex = __THIS_ArraySearchIndeces[__THIS_ArrayCounter][1] 

            

        # DEBUG PRINTS 

        #print("Scan Lenght", len(__SERIAL_BaseString)) 

        #print("Current Array", __DEBUG_CurrentArray) 

        #print("Current Start Index", __DEBUG_CurrentStartIndex) 

        #print("Current Last Index", __DEBUG_CurrentLastIndex) 

        #print(__SERIAL_BaseString[(__DEBUG_CurrentLastIndex-4):__DEBUG_CurrentLastIndex]) 

 

        try: 

            __DEBUG_NextFirstIndex = __THIS_ArraySearchIndeces[__THIS_ArrayCounter+1][0] 

            #print("Next First Index", __DEBUG_NextFirstIndex) 

        except IndexError: 

            __DEBUG_NextFirstIndex = len(__SERIAL_BaseString) 

            #print("Last Index", __DEBUG_NextFirstIndex) 

            #print("::> This is the last") 

             

        __SERIAL_CalculateDataBlockStart = __DEBUG_CurrentLastIndex 

        __SERIAL_CalculateDataBlockEnd = __DEBUG_NextFirstIndex 

         

        #print("Data Block Start", __SERIAL_CalculateDataBlockStart) 

        #print("Data Block End", __SERIAL_CalculateDataBlockEnd) 

        #print("Difference Amount", (__SERIAL_CalculateDataBlockEnd-

__SERIAL_CalculateDataBlockStart)) 

        #print(len(__SERIAL_BaseString[__DEBUG_CurrentLastIndex:__DEBUG_NextFirstIndex])) 

 

        if (__SERIAL_CalculateDataBlockEnd-__SERIAL_CalculateDataBlockStart) >= 

__GLOBAL_RequiredDataLengthAfter: 

            #print("::> There is enough data for us to use.") 

            #print("Accepted Difference Amount", (__SERIAL_CalculateDataBlockEnd-

__SERIAL_CalculateDataBlockStart)) 

            __SERIAL_StartingDataBlockIndeces.append(__SERIAL_CalculateDataBlockStart) 

        #else:  

        #    print("::> Not enought data, skipped") 

 

    #print("Array Search Results Count: %i" % len(__THIS_ArraySearchIndeces)) 

 

    __DEBUG_ForceStopper = False 

    try: 

        __SERIAL_FirstStartDataBlockIndex = __SERIAL_StartingDataBlockIndeces[0] 

        __SERIAL_BaseDataBlocks = __SERIAL_BaseString[__SERIAL_FirstStartDataBlockIndex:] 
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        __SERIAL_PreparedDataBlockIndex_START = 

__SERIAL_BaseDataBlocks.find(__GLOBAL_MeasurementHeader) 

        __SERIAL_PreparedDataBlock = 

__SERIAL_BaseDataBlocks[__SERIAL_PreparedDataBlockIndex_START:__SERIAL_PreparedData

BlockIndex_START+(__GLOBAL_MeasurementDataBlockLength+8)] 

        #print(len(__SERIAL_PreparedDataBlock)) 

        __SERIAL_PreparedDataBlock = __function_SPLIT(__SERIAL_PreparedDataBlock, 4) 

        __SERIAL_PreparedDataBlock.remove("bbbb") 

        __SERIAL_PreparedDataBlock.remove("1111") 

         

        __DEBUG_SplitBaseDataBlocks = __function_SPLIT(__SERIAL_BaseDataBlocks, 4) 

        __DEBUG_SplitBaseString = __function_SPLIT(__SERIAL_BaseString, 4) 

        #print(len(__DEBUG_SplitBaseString)) 

        #print(__DEBUG_SplitBaseString) 

        #print(len(__DEBUG_SplitBaseDataBlocks)) 

        #print(__DEBUG_SplitBaseDataBlocks) 

         

        __SERIAL_PreparedDataBlock_BasePOST = [] 

        __SERIAL_PreparedDataBlock_BinaryPOST = [] 

        __SERIAL_PreparedDataBlock_DecimalPOST = [] 

 

        for dataBlock in __SERIAL_PreparedDataBlock: 

            __TEMP_datablock = __function_SPLIT(dataBlock, 2) 

            #print("Before: %s" % ", ".join(__TEMP_datablock)) 

            __TEMP_datablock[0], __TEMP_datablock[1] = __TEMP_datablock[1], 

__TEMP_datablock[0] 

            #print("After: %s" % ", ".join(__TEMP_datablock)) 

            __TEMP_datablock = "".join(__TEMP_datablock) 

            __TEMP_dataBlock_binary = bin(int(__TEMP_datablock, 16))[2:].zfill(16) 

            __TEMP_dataBlock_binary = __TEMP_dataBlock_binary[4:] 

            __TEMP_dataBlock_decimal = int(__TEMP_dataBlock_binary, 2) 

            __TEMP_dataBlock_decimal = __TEMP_dataBlock_decimal / 100.0 

            #print("Datablock: %s" % __TEMP_datablock) 

            #print("Binary: %s" % __TEMP_dataBlock_binary) 

            #print("Decimal: %i" % __TEMP_dataBlock_decimal) 

             

            __SERIAL_PreparedDataBlock_BasePOST.append(__TEMP_datablock) 

            __SERIAL_PreparedDataBlock_BinaryPOST.append(__TEMP_dataBlock_binary) 

            __SERIAL_PreparedDataBlock_DecimalPOST.append(__TEMP_dataBlock_decimal) 

           

             

        scan.header.stamp = current_time 

        scan.header.frame_id = 'base_laser' 

        scan.angle_min = -0.785398 

        scan.angle_max = 3.92699 

        scan.angle_increment = 0.0087222222 

        scan.time_increment = (1 / 40) / (541) 

        scan.range_min = 0.0 

        scan.range_max = 100.0 

 

     

        scan.ranges = __SERIAL_PreparedDataBlock_DecimalPOST 

 

        scan_pub.publish(scan) 

        #print("Before: %s" % ", ".join(__SERIAL_PreparedDataBlock)) 

        #print("After : %s" % ", ".join(__SERIAL_PreparedDataBlock_POST)) 

        #print("Data Block Length: %i" % len(__SERIAL_PreparedDataBlock)) 

        #print(__SERIAL_PreparedDataBlock) 

        #print(__SERIAL_PreparedDataBlock_BasePOST) 

        #print(__SERIAL_PreparedDataBlock_BinaryPOST) 
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        #print(__SERIAL_PreparedDataBlock_DecimalPOST) 

        __DEBUG_ForceStopper = True 

    except IndexError: 

        __DEBUG_IndexErrorCount = __DEBUG_IndexErrorCount + 1 

 

    __DEBUG_ScanID = __DEBUG_ScanID + 1 

 

    #if __DEBUG_ForceStopper: 

    #    break 

     
     
     
     
 


