

DESIGN AND IMPLEMENTATION OF AN EKF-BASED SLAM

IN A SYNCHRO-DRIVE MOBILE ROBOT USING A LASER

SCANNER

by

Maria Marinela Mariano Gutierrez

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechatronics

 Examination Committee: Prof. Manukid Parnichkun (Chairperson)

 Dr. Mongkol Ekpanyapong

 Dr. Pisut Koomsap

 Nationality: Filipino

 Previous Degree: Bachelor of Science in Physics

 University of the Philippines Baguio,

 Philippines

 Scholarship Donor: RG Battery & Parts Supply, Philippines

Asian Institute of Technology

School of Engineering and Technology

Thailand

July 2021

 ii

AUTHOR’S DECLARATION

I, Maria Marinela Mariano Gutierrez, declare that the research work carried out for this

thesis was in accordance with the regulations of the Asian Institute of Technology. The

work presented in it are my own and has been generated by me as the result of my own

original research, and if external sources were used, such sources have been cited. It is

original and has not been submitted to any other institution to obtain another degree or

qualification. This is a true copy of the thesis, including final revisions.

Date: 21/07/2021

Name (in printed letters): MARIA MARINELA GUTIERREZ

Signature:

 iii

ACKNOWLEDGMENTS

It is a genuine pleasure to express my gratitude to my research supervisor, Prof.

Manukid Parnichkun, for the opportunity he had given me for studying in the

Mechatronics course. His dedication and keen interest in helping students not only

develops the students’ knowledge in the field but also prepares them to the future ahead.

I really admire his scholarly advice and meticulous scrutiny that contributed to achieve

my task.

I would also like to take this opportunity to thank my research committees, Dr. Mongkol

Ekpanyapong and Dr. Pisut Koomsap, for their meaningful assistance and constructive

criticisms throughout this research. Their visions and suggestions have enabled me to

finish this research.

My research and Mechatronics journey would not be complete without the help from

the ISE faculty members, administrative officers – Ms. Chowaret Sudsawaeng and Ms.

Saowaluck Maneerat, and technical staffs – Mr. Hoang Hung Manh and Mr. Thanit

Pattana. Thank you for their meaningful assistance in making my robot come together.

I also thank my fellow labmates in the Advance Robotics Laboratory: Pornchanok

Vanich, Piyawat Apiwattanadej, Jirapod Jintasornrom, and Rattapan Pitaksongkram for

their support during my study in Thailand.

Another person to thank is my friend, John Isaiah Lejano, for his help and advices when

I have problems with my program. Also, I would like to thank, John Benedict Bernardo,

for supporting me, making an effort, and motivating me to finish my thesis. I won’t be

able to finish my research without your assistance and help.

Finally, I want to thank my family and relatives for their unending support both

financially and emotionally. Being apart from them is one of the main struggles for me

while doing my research. Without their help and support, I won’t be able to achieve this

far.

To all those people involved in my research and my study, Maraming Salamat po!

 iv

ABSTRACT

Indoor mobile robots are robotic systems that have a certain level of autonomy. These

vehicles have been studied thorough out the years for applications in the mapping and

localization. Simultaneous localization and mapping (SLAM) is one of the underlying

problems that concurrently estimates the map while identifying the pose estimate of the

robot. This study proposed to design a synchronous drive mobile robot with

independent steering and driving mechanisms guided by a chain/belt transmission

Furthermore, the implementation of EKF-SLAM is addressed in this study using the

information from the odometry and laser scanner. The EKF filter has two steps, the 1)

prediction step and the 2) correction step. The predicted measurement is used to initially

determine the state of the robot of the robot and the correction step uses the actual

measurement for comparison with the prediction. In detail, the landmarks are extracted

in the environment using point clustering. Clustered points less than 15 points reject

these clusters which aren’t included in the observed landmarks. Also, a middleware

called Robotic Operating System (ROS) is used to communicate the robot’s

microcontroller to the computer and employ packages related to SLAM. The EKF

SLAM method is evaluated through the calculation of the root mean square error

between the predicted measurement (calculated EKF-SLAM data) and the observed

measurement (actual measurement in the environment). It was found out that drifting

of the chains contributed to the increase in the root mean square error of 0.2981 m (x-

axis) and 0.1589 m (y-axis). Also, the mean square error from the overall theoretical

distance of 4.48 m gives the error of 2.70%.

 v

CONTENTS

Page

ACKNOWLEDGMENTS iii

ABSTRACT iv

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Background of the Study 1

1.2 Statement of the Problem 2

1.3 Objectives of the Study 3

1.4 Scope and Limitation 3

1.5 Organization of the Study 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Wheeled Mobile Robot 5

2.1.1 Drive Configuration 5

2.1.2 Synchronous-drive Mobile Robot and its Applications 6

2.2 Localization 9

2.2.1 Relative (Local), Absolute (Global), and Combined 10

 Localization

2.2.2 The Simultaenous Localization and Mapping Problem 10

2.3 Filtering-based Techniques in SLAM 11

2.3.1 Particle Filter, Graph-based, and Kalman Filter Approach 12

2.4 Kalman Filter 13

2.4.1 Mathematical Model of Kalman Filter 13

2.4.2 Extended Kalman Filter 14

2.5 Robotic Operating System (ROS) 17

2.5.1 Robotic Operating System and SLAM 19

CHAPTER 3 METHODOLOGY 21

3.1 Introduction 21

3.1.1 Overall System Structure 21

 vi

Page

3.2 Synchronous-drive Mobile Robot Design 22

3.2.1 Kinematic Model for a Synchronous-drive Robot 22

3.2.2 Mechanical Platform 23

3.2.3 Hardware Design 26

3.2.4 Driving Mechanism 27

3.2.5 Steering Mechanism 28

3.3 Mobile Robot Components and Sensors 29

3.3.1 DC Motor with Encoder and Calculations 29

 3.3.1.1 Wheel Rotation Calculation 32

 3.3.1.2 Wheel Distance Calculation 32

 3.3.1.3 Time Rate of Change Calculation 32

 3.3.1.4 Rotational Speed Calculation 32

3.3.2 Motor Driver and Microcontrolle 32

3.3.3 Sick S300 Laser Scanner Sensor 34

 3.3.3.1 Laser Scanner Data Processing 35

 3.3.3.2 Output Raw Data to Distance Calculation 36

3.4 Position Control Method 37

3.5 2D EKF-SLAM Operation 38

3.5.1 Extended Kalman Filter SLAM Equation 40

 3.5.1.1 Initialization 40

 3.5.1.2 Prediction Step 40

 3.5.1.3 Correction Step 40

3.5.2 Experimental Setup of the Real Environment 41

3.6 Implementation of EKF-SLAM in Robotic Operating 42

System (ROS)

3.6.1 Arduino Microcontroller and ROS 42

3.6.2 Coordinate Transformation 43

3.6.3 SICK Laser Scanner and ROS 44

3.6.4 EKF-SLAM and ROS 45

3.6.5 Obstacle Avoidance 47

CHAPTER 4 RESULTS AND DISCUSSION 49

4.1 EKF-SLAM Operation Results 49

4.1.1 Landmark Detection from Laser Scanner 49

 vii

Page

4.1.2 Comparison of Ground Truth and Robot Position in EKF- 51

 SLAM

4.1.3 Application of Obstacle Avoidance 53

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 56

5.1 Conclusions 56

5.2 Recommendations 56

REFERENCES 58

APPENDICES 63

APPENDIX A: ARDUINO PIN CONNECTIONS 64

APPENDIX B: LASER SCANNER PYTHON CODE 65

 viii

LIST OF TABLES

Tables

Table 2.1 Comparison Table for Different Filter-based Technique in

 SLAM

 Page

13

Table 2.2 Comparison Table for Different State Estimator Filters 15

Table 3.1 Physical Properties of the Synchronous-drive Mobile Robot 23

Table 3.2 Technical Data of a DC Motor with Optical Encoder 30

Table 3.3 Technical Data of SICK S300 Laser Scanner 35

Table 3.4 Proportional-Derivative (PD) Control Parameters 38

Table 3.5 Landmark Dimensions in terms of Length, Width, and

 Height

41

Table 3.6 Sick S300 Scanner Parameters 45

Table 4.1 RMSE Calculation for x and y Measurement Values 52

Table 4.2 RMSE Calculation for the Overall Travelled Distance 53

 ix

LIST OF FIGURES

Figures

Figure 2.1 Synchro-drive Design using Geared Transmission

 Page

7

Figure 2.2 Mechanical Design of an Autonomous Mobile Robot using

Belt Transmission

7

Figure 2.3 Three-wheeled (Left) and Four-wheeled Hexagonal

Modular Robot (Right)

8

Figure 2.4 Obstacle Representation of a Cylindrical and Square

 Robot Shape

9

Figure 2.5 Graphical Representation of Full SLAM and Online

 SLAM

11

Figure 2.6 EKF-SLAM Process from Laser Scanner and Mobile

 Robot Odometry

17

Figure 2.7 Concept Map of Node-to-node Communication 18

Figure 2.8 Example of Handheld Mapping System using

 Hector_Slam Package in ROS

19

Figure 2.9 Gmapping Application Using a Two-wheel Drive Rover

 and RPLidar A3 in ROS

20

Figure 3.1 Main System Structure 21

Figure 3.2 3-D Model of the Mobile Robot Platform in SolidWorks 24

Figure 3.3 Wheel Transmission Design of the Mobile Robot 25

Figure 3.4 Hardware Connection Diagram 26

Figure 3.5 Actual Mobile Robotic Platform 27

Figure 3.6 Mobile Robot Driving Chain Mechanism 28

Figure 3.7 Mobile Robot Steering Chain Mechanism 29

Figure 3.8 Illustration of the DC Motor and Attached Optical

 Encoder

30

Figure 3.9 Quadrature Encoder Output Pulses for Clockwise and

 Counterclockwise Rotation

31

Figure 3.10 L298N Motor Drive Board and Arduino Mega 2560

 Connection to DC Motor with Encoder

33

 x

Figure 3.11 Illustration of S300 Expert SICK Laser Scanner

and Its Scan Plane

Page

34

Figure 3.12 Sample Telegram Structure from a Continuous Data

 Output

35

Figure 3.13 Step-by-step Process of Laser Scanner Output Raw Data 36

Figure 3.14 General Operation Step for Implementation 2D SLAM 39

Figure 3.15 Image of the Real Environment with Landmark 41

Figure 3.16 Illustration of the Path of the Mobile Robot in the

 Environment

42

Figure 3.17 ROS Transformation Trees 43

Figure 3.18 ROS Coordinate Frame Transformation on Rviz 44

Figure 3.19 Laser Scanner Output on Rviz 45

Figure 3.20 Landmark Detection on Rviz 46

Figure 3.21 Dynamic Window Approach 47

Figure 3.22 Illustration of the Full Rosgraph 48

Figure 4.1 Laser Scanner Output of Real Environment on Rviz 49

Figure 4.2 Laser Scanner Output on Rviz without Landmark

 Consideration

50

Figure 4.3 Laser Scanner Output on Rviz with Landmark

 Consideration

50

Figure 4.4 Landmark One, Two, and Three on Rviz 51

Figure 4.5 Obstacle Avoidance Mobile Robot Application 54

Figure 4.6 Sample Screenshot of the Mobile Robot Performing

 Obstacle Avoidance

54

Figure 4.7 Screenshot Example of the Mobile Robot performing

 Obstacle Avoidance

55

 xi

LIST OF ABBREVIATIONS

DR = Dead Reckoning

EKF = Extended Kalman Filter

et = encoding type

GNSS = Global Navigation Satellite System

GPS = Global Positioning System

GR = Gear Ratio

IF = Information Filtering

IMU = Inertial Measurement Unit

KF = Kalman Filter

MLP = Multilayer Perceptron

MMSE = Minimum Mean-Square Error

OS = Operating System

PF = Particle Filter

ppr = pulse per revolution

pv = process variable

PWM = Pulse Width Modulation

RBF = Radial Basis Function

RBPF = Rao-Blackwellized Particle Filter

ROS = Robotic Operating System

SLAM = Simultaneous Localization and Mapping

SP = Setpoint

T = Teeth

UGV = Unmanned Grounded Vehicle

UKF = Unscented Kalman Filter

WMR = Wheeled Mobile Robots

1

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Wheeled Mobile Robots (WMR) are mobile systems have a certain level of autonomy.

It is one of the most expanded and invested research because of its numerous

applications in the field of surveillance, medical care, rescue operations, and so on

(Bruzzone et al., 2021; Takahashi et al., 2010). These versatile systems move in

different physical environment and operate more efficiently with the inclusion of

position sensors, tilt sensors, and laser scanners for applications such as localization,

mapping, and navigation (Chen et al., 2021).

The most common type of indoor WMR design is the differential drive wheeled robot

which composed of independent driven motors Being a configuration where its wheels

directly connected to the motor, synchronization and deviation from the motion of the

robot exists (Chung & Iagnemma, 2016). As a result, inaccuracies and inconsistencies

with the movement persists using the motor driven wheel approach. One overlooked

drive configuration is the synchronous-drive mobile robot which uses a chain/belt

transmission and two independent motors to move the system in a certain direction. The

introduction of separate steering and driving mechanism allows a simple and stable

linear control (Marin-Reyes & Tokhi, 2010). This design also guarantees straight-line

motion from dynamically controlling the separated motors.

As synchronous-drive robots are presently operated in indoor environments,

Simultaneous Localization and Mapping is one of the well-known problems to discuss.

Indoor mobile robots provided the foundation of the SLAM problem because of the

line-of-sight problem introduced by the Global Position Devices (GPS) (Chan et al.,

2021). Simultaneous localization and mapping is one of the underlying problems that

concurrently estimates the map while identifying the pose estimate of the robot. It is

like a chicken-or-egg problem that requires a map to be able to localize and a pose

estimate for generate the map. Among the approaches developed in SLAM, a state

estimator called Extended Kalman Filter (EKF) is introduced. EKF is discussed the

seminal paper of Smith and Cheeseman in 1986 focusing on the focuses on the

estimation pose and uncertainty associated among the objects (Smith & Cheeseman,

2

1986). One main advantage of EKF is its significance in solving non-linear models

which provides non-linear state update or measurement equations.

1.2 Statement of the Problem

With the emergence of different drive configurations in mobile robots common to

academic researches, education, and industry, less attention is given to the synchronous

drive design. The differential drive, having an uncomplex design and easily

programmable, faces problems in terms of the control due to inconsistencies and motor

asynchronization. Divergence to the resulting path is possible and yields to inaccurate

results (Chung & Iagnemma, 2016). The car-type (Ackermann Steering) configuration,

on the other hand, performs best for straight line motion. However, non-holonomic

planning is required and has a minimum turning radius (Agrawal et al., 2021).

Additionally, the car-type design has a complicated steering structure making the

parking control motion difficult. Alternative drive configuration system should be

considered that eliminates the problem of the mechanical control, the synchronous drive

mobile robot. The independent steering and driving make the synchro-drive robot

control easier and its straight-line motion is mechanically guaranteed.

Another problem to consider is the errors present in indoor localization. Global

positioning systems (GPS) doesn’t work well in obstructed places from walls without

a clear view to the satellite (Maliha Monsur, 2021). To deal with this dilemma, a

technique called SLAM must be considered. The information from the environment is

processed and utilized to determine the mobile robot’s location in the environment.

This research considers a drive system called synchronous mobile robot. A system

requires two motors, 1 for steering and 1 for driving. As a result, this guarantees a

straight-line motion of the system compared to the differential drive type. The

application of a synchronous-drive in mobile robot for SLAM has potential and will be

further investigated in this thesis.

3

1.3 Objectives of the Study

The primary focus of this thesis is to develop a synchronous drive mobile robot and

implement the Extended Kalman Filter-SLAM (EKF-SLAM) into the proposed system.

In order to achieve this goal, the following tasks are included.

1. To construct a three-wheeled synchronous drive mobile robot with a

hexagonal-shaped platform, and

2. To perform EKF-SLAM and determine the estimated state and map of the

proposed system using a laser scanner.

1.4 Scope and Limitation

This thesis mainly focuses on designing a three standard wheeled synchronous drive

mobile robot with special emphasis in an indoor planar environment and applying the

proposed mechanism to explore the problem space. It should be noted that the area is

not known and is limited to the presence of static obstacles. Additionally, the robot

chassis’ geometry will be a regular hexagon with 6 lines of symmetry instead of the

conventional three or four-sided design. The landmark detection is also included in the

EKF-SLAM operation using point clustering method. Other specifications of the

mobile robot are stated as follows.

1. The maximum driving speed of the mobile robot is 0.16 m/s.

2. The maximum elevation of the flat surface has an angle of 5.0 degrees

3. Three uniform standard wheels is incorporated in the robotic system

4. The synchro-drive design always rotates about the center of the robot and being

an omnidirectional system, the heading can’t be changed when the wheel legs

are being steered.

5. The total run time of the robot is 10 minutes.

6. The considered landmarks are limited to shapes such as rectangle, circle, and

square. Moreover, colored landmarks can’t be detected by the system.

7. The landmark detection rejects the cluster of points of less than 15 points.

An extension of this research is the addition of the obstacle avoidance to illustrate the

application of the proposed robot. The experiment uses two obstacles that are placed in

the robot environment and is tasked to arrive at the desired location.

4

It is emphasized that the main contribution of this research is the design of the synchro-

drive mobile robot together with the wheel structure design. The EKF-SLAM is then

applied to the system using the information from external sensors, laser scanner and

encoders, which uses a configured landmark detection.

1.5 Organization of the Study

This thesis is organized as follows:

• Chapter 2 provides an overview of the wheel mobile robot drive configurations,

its recent development and applications, the theoretical concepts of robot

localization and mapping, filtering techniques such as Kalman Filter and its

variants, and the integration of ROS and SLAM.

• Chapter 3 focuses on the hardware and software implementation on the

synchronous-drive robot and discusses the process of implementing Extended

Kalman Filter with ROS.

• Chapter 4 presents the results between the actual measurement and the

calculated measurement from the EKF-SLAM which includes the discussion of

the landmark extraction results.

• Chapter 5 summarizes and concludes the findings from the research. This

section also recommends any improvement discovered and observed from the

results.

5

CHAPTER 2

LITERATURE REVIEW

This chapter discusses several works related to the design of wheeled mobile robot

(WMR) and its applications such as the synchronous drive robot, the concurrent

localization and mapping, and filtering techniques like the Kalman filter (KF) and the

approximation of nonlinear functions, the Extended Kalman Filter.

2.1 Wheeled Mobile Robot

Before diverging into the navigational process, the mechanical design of the mobile

robot must be defined. The structure of the robotic system needs to be in agreement

with the unique constraints from a particular mobile robot application. For instance, the

delivery robots have a main objective of transferring products from position A to

position B. The design of the robotic system must include a mechanism that allows the

robot to climb certain elevation. If not, the goods will not arrive at the destination point.

Mobile robots have different configuration depending on the application. Stated below

are several drive configurations that are applicable for implementation.

2.1.1 Drive Configuration

Three fundamental issues are considered in designing the mobile robotic system;

mobility, control, and balance. Conventionally, three wheels are necessary for satability

stability and incorporating suspension design to the wheels resolve the problem on

uneven surfaces (Siegwart et al., 2011). In addition, a trade-off between

maneuverability and controllability exists. Advantages and disadvantages of several

drive configurations are described and stated as follows.

One of the well-known drive mechanisms is the differential drive. Motors are

independently driven to produce the robot’s trajectory. Additionally, this mechanism

can produce a zero turning radius (Chung & Iagnemma, 2016). The problem emerges

when the driving motors move at different speeds or not synchronized even with the

same applied voltage. As a result, the route of the robotic system will not achieve the

desired movement which also applies for an inconsistent terrain (Jones et al., 1998).

6

Another type is the Ackerman steering (car-type drive) which is usually a common

mechanism in automobiles. This configuration consists of two front steered wheels and

two driven rear wheels and has an advantage of straight driving motion. However, the

mechanism doesn’t have the capacity of turning on the spot which requires a certain

minimum radius. Moreover, the rear driving wheels experience slippage in curves

(Bräunl, 2008).

Last of the configuration types is the synchronous drive mechanism that controls the

two independent motors either simultaneously driving or steering the wheels. This gives

less control effort and favors the indoor environment. However, the arrangement suffers

from an orientation error when backlash or loose coupling takes place (Siegwart et al.,

2011).

2.1.2 Synchronous-drive Mobile Robot and its Applications

In the endeavor of minimizing the constraints in the design for a certain mobile robot

application, several drive configurations are available for implementation. Among

those configurations examined from the previous section, the synchro-drive principle

was used in this study for the mechanical design of the mobile robot. This new drive

system’s body maintains a constant orientation which allows the sensor facing towards

the direction of travel (Miller, 1986). Short discussions of several synchro-drive designs

are reported as follows.

A geared mechanism was introduced by Tatar et al. which uses a three-paired standard

wheel design with a hexagonal layered platform. Figure 2.1 illustrates the mechanical

design of the omni-directional robot. The upper platform’s gears allow the forward or

backward driving of the wheels while the lower part is intended for wheel steering

(Tătar et al., 2015).

An alternate design was proposed by Goris in his thesis about the mobile robot

mechanical design (Goris, 2005). He used the chain transmission mechanism to transfer

the motor’s rotary motion to the wheels and pointed out that using gears in the

mechanical platform takes a lot of space and is heavy. Moreover, the chain mechanism

was implemented because it solves the problem of slippage which was evident in belts.

7

Figure 2.1

Synchro-drive Design using Geared Transmission

Note. This image was adapted from (Tătar et al., 2015).

Figure 2.2 shows the platform design and the transmission mechanism of an

autonomous mobile robot. Similar to the design of Tatar et al (2015), the design uses

two DC motors that controls the driving and orientation of the wheels. The design is

composed of an upper belt transmission for wheel driving while the lower belt

transmission is intended for wheel steering.

Figure 2.2

Mechanical Design of an Autonomous Mobile Robot using Belt Transmission

Note. This image was adapted from (Goris, 2005).

8

Tatar and Cirebea developed a reconfigurable wheeled mobile robot using a

combination of multiple active and passive hexagonal modules together with the

parallelepipedic module (Tătar & Cirebea, 2018). These active and passive modules are

interconnected with the passive controller module at the center to reconfigure the

robotic system. In addition, both the active and passive module incorporates a reducer

and an encoder in the design. The model of the hexagonal module is illustrated in Figure

2.3.

Figure 2.3

Three-wheeled (Left) and Four-wheeled Hexagonal Modular Robot (Right)

Note. This image was adapted from (Tătar & Cirebea, 2018).

According to Goris (2005), the cylindrical-shaped robot has a learning edge over the

square-shaped platform because of the former’s structure when subjected in confined

spaces. The square platform will most likely be trapped in a narrow passage. Figure 2.4

further illustrates the concept between the cylindrical and square shape. Once trapped,

the square geometry will have to move backwards and rotate before entering the

confined space. The cylindrical shaped on the other hand doesn’t need to do this

process.

9

Figure 2.4

Obstacle Representation of a Cylindrical and Square Robot Shape

Note. This image was adapted from (Goris, 2005).

2.2 Localization

A mobile robot that estimates its current location with respect to a fixed reference frame

(also known as localization) can localize itself through the use of sensorial observation

from proprioceptive and exteroceptive sensors. While GPS is widely used in outdoor

environments, these radionavigation system show a limitation in indoor or with solid

structures. Examples of proprioceptive sensors include wheel encoder and inertial

measurement units (IMUs) that acquires motion information from the robot. On the

contrary, exteroceptive sensors consist of a laser range scanner or camera that obtains

measurement from the external environment. Incorporating only the proprioceptive

sensors produces errors from odometry uncertainties due to wheel slippage, drifting of

wheels, or uneven floor surface (Borenstein & Feng, 1996). With the inclusion of

sensors such as the laser scanners, the robot acquires additional and useful information

concerning its environment.

Researchers have provided techniques to adhere to the problem of mobile robot

localization which are organized into two main group, relative localization and absolute

localization. The discussion of each type is further illustrated in the following sections.

10

2.2.1 Relative (Local), Absolute (Global), and Combined Localization

In terms of its position information, relative localization uses environmental

information such as images or edges of landmarks to distinguish whether the robot has

traveled or not (Kim, 2019). Dead reckoning (DR) utilizes the wheel encoder data thru

wheel rotation count to estimate the position of the robot with respect to its starting

position. For longer distances, errors using this process will accumulate over time.

Absolute localization, on the contrary, utilizes the fixed frame of the Earth to provide

vehicle location from measurement sensors such as the Global Navigation Satellite

System (GNSS), wheel encoders, and IMU. Compared to the accumulative error from

dead reckoning, the error growth in the absolute localization is reduced. The reason

about the mitigated error came from the time and location independency of the robot’s

position. However, absolute localization has disadvantages over small distances when

tracking the robot using a GPS (Goel et al., n.d.).

2.2.2 The Simultaneous Localization and Mapping Problem

The introduction of SLAM dates back to the seminal paper of Smith and Cheeseman in

1986 which focuses on the estimation method (position and orientation) and uncertainty

associated among the objects (Smith & Cheeseman, 1986).

Well-known mapping algorithms have one thing in common in literature, it has a

probabilistic nature. This approach is prominent to robot mapping because it models

noise sources and analyze the influence to the measurements (Thrun, 2003). Being a

posterior probability problem, Simultaneous Localization and Mapping or SLAM is a

joint estimation method that determines the pose estimate of the mobile robot while

incrementally constructing the map of its environment (Durrant-Whyte & Bailey,

2006).

The SLAM technique favors indoor applications which solves the problem raised by

the inaccuracies of GPS in indoor environments (Cadena et al., 2016). Moreover, the

nature of the SLAM problem yields to an improved result as the number of observations

is increased and its correspondence to other attributes rises. However, the increase in

landmark count is quadratically scaled and results as a drawback. This restricts the real-

time application to small and medium scaled domain (Durrant-Whyte & Bailey, 2006).

11

The SLAM problem can be classified into two categories; online SLAM and full

SLAM. For the case of online SLAM, the posterior distribution is estimated with the

robot pose, 𝑥𝑡, and the model of the map, M, which yields to

𝑝(𝑥𝑡, 𝑀|𝑍𝑇 , 𝑈𝑇) (2.1)

where 𝑈𝑇 represents the odometry and 𝑍𝑇 represents the observations (Siegwart et al.,

2011). This approach estimates only the current pose.

The full SLAM problem, on the contrary, is approximated with the entire robot path,

𝑋𝑇, and M, results to

𝑝(𝑋𝑇 ,𝑀|𝑍𝑇 , 𝑈𝑇) (2.2)

The graphical model of the aforementioned SLAM problem is illustrated in Figure 2.5.

Figure 2.5

Graphical Representation of Full SLAM and Online SLAM

Online SLAM Full SLAM

(a) (b)
Note. These images are adapted from (Chung & Iagnemma, 2016) .

2.3 Filtering-based Techniques in SLAM

Three major classifications of the SLAM paradigm is introduced in this section which

consists of the Kalman Filter, Particle-based techniques, and the Graph-based

implementations. The discussion of the mentioned techniques is examined below.

12

2.3.1 Particle Filter, Graph-based, and Kalman Filter Approach

The particle filters (PFs) apply a sample set of particles that approximates the state’s

actual configuration. Particle-based SLAM or the sequential Monte-Carlo method is

not limited to linear models or Gaussian noise which is a great advantage for nonlinear

models compared to the Kalman Filter. However, the negative aspect of this technique

is the exponential growth of particles as the space dimension increases resulting to a

higher computational requirement (Chung & Iagnemma, 2016). Furthermore, this type

of filter displays an inaccurate result because of its inability to omit the past data. One

of the examples under this filter is the Rao-Blackwellized particle filter (RBPF) which

stems back to the paper by Murphy in 2000 (Doucet et al., 2013; Murphy, 1999).

In 1997, Lu and Milios formulated the graph-based technique in the SLAM problem

which involves the graph generation where nodes constitute the state (robot pose or

landmarks) and the edge in between two nodes encodes a sensor measurement (Grisetti

et al., 2010; Lu & Milios, 1997). One of the advantages of the graph-based SLAM is

its ability to constantly update time of the graph and the required memory linearity in

the feature. Although, the graph optimization can become computationally expensive

if the robot path is long.

A simulation was conducted by Nguyen to analyze the performance of the Bayesian

filtering techniques such as Extended Kalman Filter, Unscented Kalman Filter (UKF),

and FastSLAM over an identical set of parameters; 150 landmarks, 3° steering control

noise, 0.1 m range, and a bearing of 1°. Also, the velocity of the mobile robot was

assumed to 3 m/s and the maximum sensor range is 30 m. Results show that EKF

technique showed good performance amongst others (H. K. Nguyen, 2014).

Additionally, Table 2.1 further demonstrates the edge of one algorithm to the other.

A notable filtering approach in the SLAM problem is the Kalman Filter (KF) which

was presented by Rudolf E. Kalman in 1960 (Kalman, 1960). This filter utilizes linear

transition functions in a state described by a Gaussian distribution (Montella, 2014).

Well-known examples under KF are the Extended Kalman Filter, Unscented Kalman

Filter, Information Filtering (IF) or the Extended IF. Advantages of using KF and its

variants is the ideal minimum mean-square error (MMSE) approximation of the robot

13

Table 2.1

Comparison Table for Different Filter-based Techniques in SLAM

 EKFSLAM FastSLAM GraphSLAM

Complexity 𝑂(𝑛2) 𝑂(𝑘 ∗ 𝑙𝑜𝑔𝑛) 𝑂(𝑒)

Distribution Gaussian Any
Gaussian +

outlier rejection

Linearization

Flexibility

Once Not needed Re-linearize

0 + ++

Large Scale - + ++

Parallelizability - + ++

Pros
Easy to implement

well known

Can use negative

information

Scales well

Robust

Con
Can’t handle large

maps

Hard to recover, need

many particles to be

robust

Harder to implement

Note. This table illustrates the comparison of different SLAM techniques such as EKFSLAM,

FastSLAM, and GraphSLAM. Variables in the complexity row (n, k, and e) represent the number

of landmarks, number of particles, and number of edges, respectively. This table is adapted from

(Lindholm & Palsson, 2015).

state and landmark positions. Also, the covariance matrix has a strong convergence

(Aulinas et al., 2008).

One solution isn’t always guaranteed for solving the concurrent mapping and

localization problem because of certain dependencies between specific criteria or

variables such as feature count in the environment, computation time, and map

resolution. Hence, an optimal solution should be preferred when dealing with the

SLAM problem.

2.4 Kalman Filter

Kalman Filter (KF) is a filtering method that approximates the state of the system using

Gaussian distribution. This filter has been applied to numerous state estimation process

with the addition of noise. In autonomous vehicles, KF is used for predicting succeeding

states of the system without requiring any data history.

2.4.1 Mathematical Model of Kalman Filter

The process of Kalman Filter can be divided into two steps, the a) prediction and the b)

update step. In the prediction step, the next position of the system at time interval t+1

is based from the previous position and the system’s kinematic model. This step also

predicts the covariance error. On the contrary, the update step compares the predicted

state and the actual measurement from the sensors involved. It also includes a Kalman

14

gain that varies depending on where it will be biased to. The prediction step equation is

given as follows.

𝑥′ = 𝐹𝑥 + 𝐵𝜇 + 𝑣 (2.3)

𝑃′ = 𝐺𝑃′𝐺𝑇 + 𝑄 (2.4)

where 𝑥′ is the predicted value or the a priori estimate, 𝑃′ is the predicted error

covariance or uncertainty measure in the estimated state, F is the state transition matrix,

B is the control input matrix, v is the process noise present in the system, G is the

Jacobian matrix, and Q is the process noise/motion noise (Singh, 2018). The update

step of the KF process yields to the difference of the actual measurement and predicted

measurement value given by the Equation (2.5).

𝑦 = 𝑧 − 𝐻 𝑥′ (2.5)

where z is the actual measurement and H is the state transition matrix. Another step in

the KF process is the summation of error from the measurement error and prediction

error given by S which later yields to the Kalman gain, K.

𝑆 = 𝐻𝑃′𝐻𝑇 + 𝑅 (2.6)

𝐾 = 𝑃′𝐻𝑇𝑆−1 (2.7)

The Kalman gain serves as a bias and heavily decides whether the measurement or the

predicted value mainly contributes to the state vector. The behavior of the Kalman gain

is observed in Equations (2.6) – (2.8) from variables 𝑅 and 𝑃′. When the value of R

approaches 0, the gain yields to H-1 which shows that the measurement value mostly

influences the state vector. As 𝑃′ goes to a smaller value, Equations (2.6) and (2.7)

become 0 and the resulting value in Equation (2.8) is mainly influenced by the a priori

estimate. The update equation of KF is illustrated in Equations (2.8) and (2.9).

𝑥 = 𝑥′ + 𝐾𝑦 (2.8)

𝑃 = (𝐼 − 𝐾𝐻)𝑃′ (2.9)

2.4.2 Extended Kalman Filter

As Kalman Filters are defined and addressed for estimating linear system states, a non-

linear state estimator should be used to accommodate non-linear systems. Extended

Kalman Filter is a filtering process that linearizes nonlinear models about the mean of

the current estimate. The basic idea of EKF is that non-linear functions are linear

approximated through the help of the first derivative from the Taylor Series Expansion

(See Equation 2.10).

15

𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 +

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯ (2.10)

After the linearization process and a linear model is obtained, the Kalman Filter

equations mentioned in Section 2.4.1 are applied (Haykin, 2004).

Drawbacks also exist in the EKF filtering process which includes the computational

complexity due to the calculation of Jacobian especially requiring numerical

differentiation, differentiable model limitation, and highly non-linear systems non-

optimality. Other state estimators including Kalman Filter and Extended Kalman Filter

are tabulated in Table 2.2.

Given with its advantages and drawbacks, the Extended Kalman Filter is used as a state

estimator for the SLAM problem introduced in this research. Current studies related to

the EKF-SLAM is described and explained as follows.

Table 2.2

Comparison Table for Different State Estimator Filters

State Estimator Model
Assumed

Distribution

Computational

Cost

Kalman Filter (KF) Linear Gaussian Low

Extended Kalman Filter (EKF) Locally Linear Gaussian

Low (if Jacobians need to

be computed analytically)

Medium (if the Jacobians

can be computed

numerically)

Unscented Kalman Filter (UKF) Nonlinear Gaussian Medium

Particle Filter (PF) Nonlinear Non-Gaussian High

Note. This information was retrieved from

https://www.youtube.com/watch?v=Vefia3JMeHE&list=PLn8PRpmsu08pzi6EMiYnR-076Mh-

q3tWr&index=5

The actual application of the SLAM involves the utilization of sensors to describe the

robot’s environment (Chatterjee et al., 2011). Several procedures were implemented

under the EKF method using laser beam to detect the object with respect to the reference

point. Lasers were used because of its performance and accuracy in detecting the

environment (Lei & Li, 2012; Lindholm & Palsson, 2015; Lv et al., 2015). In addition,

it is robust in varying of lighting and temperature conditions (Lv et al., 2014).

https://www.youtube.com/watch?v=Vefia3JMeHE&list=PLn8PRpmsu08pzi6EMiYnR-076Mh-q3tWr&index=5
https://www.youtube.com/watch?v=Vefia3JMeHE&list=PLn8PRpmsu08pzi6EMiYnR-076Mh-q3tWr&index=5

16

Nguyen and his colleagues applied the orthogonality principle to define the indoor

environment such office rooms or laboratories in the line feature approach in SLAM

(V. Nguyen et al., 2006). The linear estimation problem was minimized by applying the

Kalman filter and the Relative Map technique. The proposed technique focuses on

developing an efficient and lightweight approach in real-time applications. It was

verified that the accuracy of the map is comparable to the ground truth map. Another

research investigated on a geometrically constrained EKF framework proposed by Choi

to accurately estimate the line feature positions. The researchers emphasized that the

general indoor setting is orthogonal or parallel to each other so that line features is used.

However, laser scanners aren’t used in this research because of its objectives to develop

a low-cost cleaning mobile robot application. More, the robot has attached seven IR

sensors to the differential drive configuration (Choi et al., 2008).

Lv and his associates used the concept of straight-line segments using two laser range

finders to detect features in the environment. Moreover, line segments for feature

association are more complicated compared to point feature because of the additional

consideration of line segment endpoints. The researchers also used the EKF approach

to correct the predicted state with the observation and former feature relationship (Lv

et al., 2014).

Genevois combined a laser scanner and an odometry system to perceive the

environment and estimate the position and heading of the EKF based SLAM. A

downfall for this technique is slower when general exploration takes place and limited

landmarks are used because of the point estimation used in the landmarks (Thomas

Genevois & Zielinska, 2014).

Saputra simulated the EKF-SLAM to determine the state of the system with the

comparison of the dead reckoning operation and the GPS system and implemented the

method into a real Unmanned Grounded Vehicle (UGV) platform. The author found

out that landmark filtering methods are necessary to produce better results of the robot’s

estimated state (Saputra, 2015).

17

The main concept of the EKF-SLAM utilizes and extracts the environment’s features,

commonly termed as landmarks, to update its position of the robot in the environment.

Extended Kalman Filter allows keeping track of the uncertainty estimate of the robot’s

position and landmark uncertainty. An overview of the EKF-SLAM process is

illustrated in Figure 2.6.

Figure 2.6

EKF-SLAM Process from Laser Scanner and Mobile Robot Odometry

Note. This image was adapted from the documentation entitled (Riisgaard & Blas, 2003).

The EKF-SLAM starts by gathering information from the environment and extracts the

necessary data for landmark association. Then from laser scanner data, the observed

landmarks are either new or re-observed. An equivalent signal is sent to the robot for

state update.

2.5 Robotic Operating System (ROS)

The robotic operating system (ROS) serves as a framework consisting of tools, libraries,

or packages essential in writing robot software. This open-source middleware provides

flexibility to developers and potentially improve the system introduced by the

community.

The concept of ROS revolves around the exchange of data between a publisher node

and subscriber node through a message containing a unique topic name and type. The

18

publisher node broadcasts the information into a topic while the subscriber receives that

data from the publisher with the same topic. Many-to-many communication is

employed between the subscriber and publisher for a given topic. Thus, the publishing

node is allowed to send multiple messages at the same topic while the subscriber is

authorized to receive multiple data from a topic. One unique characteristic for a

message is that it can be published even without an active subscriber. An illustration of

a publisher-to-subscriber communication is illustrated in Figure 2.7.

Figure 2.7

Concept Map of node-to-node communication

Note. This image was adapted from https://www.mathworks.com/help/ros/ug/exchange-data-with-

ros-publishers-and-subscribers.html.

ROS works on the operating systems (OS) of Ubuntu Linux and experimentally

supports OS X, Gentoo Linux and Windows. However, it is recommended to use the

Ubuntu Linux as the operating system since it well documented and developed

compared to the other OS. The programming languages used in ROS is either C++ or

Python and can be used interchangeably when running nodes. An important part to take

note of while working with ROS is the type of message to deliver the information to

the other node.

https://www.mathworks.com/help/ros/ug/exchange-data-with-ros-publishers-and-subscribers.html
https://www.mathworks.com/help/ros/ug/exchange-data-with-ros-publishers-and-subscribers.html

19

2.5.1 Robotic Operating System and SLAM

The use of SLAM in robotics is well established in ROS since the ROS Electric Emys

distribution release in August 30, 2011 including the packages hector_slam and

gmapping. The hector_slam package uses an approach not requiring an odometry nor

roll/pitch motion from the robotic system. It provides two-dimensional pose estimates

using LIDAR systems such as Hokuyo UTM-30LX. However, the closed-loop ability

was not provided in the method but provides sufficiently estimate for real-world

applications (Kohlbrecher & Meyer, 2020). A sample application using hector_slam

by handholding the device is illustrated in Figure 2.8.

Figure 2.8

Example of Handheld Mapping System using Hector_Slam Package in ROS

Note. These imaged was acquired from YouTube

https://www.youtube.com/watch?v=Cfq3s4-H2S4&t=43s

The gmapping package, on the contrary, produces a two-dimensional occupancy grip

map from the robot’s odometry data and laser range-finder data. Gmapping uses Rao-

Blackwellized particle filter for grid mapping on to the laser telemeter data. Each

particle in this filter carries information of the environment (Gerkey, 2020). Sample

image of a gmapping application is illustrated in Figure 2.9.

20

Figure 2.9

Gmapping Application Using a Two-wheel Drive Rover and RPLiDAR A3 in ROS

Note. These imaged was acquired from YouTube

https://www.youtube.com/watch?v=Cfq3s4-H2S4&t=43s

21

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter expounds the design of the wheeled mobile robot including the outline of

the overall control system structure together with mapping and localization, the robot’s

kinematic model and mechanical platform, hardware serial connections, calculations

for the wheel distance and speed, laser scanner output raw data conversion, procedure

of the EKF-SLAM, and ROS implementation with the mobile robot.

3.1.1 Overall System Structure

To implement the localization and mapping in the mobile robotic system, a middleware

called ROS is installed and applied with its dependent packages. The computer then

processes the raw output data from the laser scanner and feeds the processed data into

the control system. Moreover, the computer sends a message to the microcontroller

which delivers an equivalent control to the motors based from the data from the external

sensors such as encoders and laser scanner. Figure 3.1 shows the flow diagram of the

control system together with its external sensors.

Figure 3.1

Main System Structure

22

3.2 Synchronous-drive Mobile Robot Design

The design of the synchro-drive robot is actuated using two independent motors, driving

and steering motors, which are mechanically coupled by gears and chains. The

distinction of the design compared to other drive configuration is its inability to change

heading. Despite this impediment, the synchronous-drive has an advantage of minimal

control effort with simultaneous turning or steering of the wheels.

3.2.1 Kinematic Model for a Synchronous-drive Robot

The kinematic model of a mobile robot is used to predict the motion of the robot based

from the previous state and its control input without considering the forces affecting

this motion. A synchro-drive configuration has similarities with the kinematic model of

the unicycle model since the synchro-drive’s wheels are actuated in unison either

driving or steering. The discrete version of the kinematic model where the robot state

(𝑋(𝑘)) , consisting of the x-position, y-position, and robot heading, and control

input (𝑢(𝑘)), containing the speed (𝑣(𝑘)) is given by Equation (3.1).

𝑋(𝑘+1) = 𝑓(𝑋(𝑘), 𝑢(𝑘)) (3.1)

where the index k represents the kth sample. The robot state and control input vectors

are given by

𝑋(𝑘) = [

𝑥(𝑘)

𝑦(𝑘)

𝜃(𝑘)

] (3.2)

𝑢(𝑘) = [𝑣(𝑘)] (3.3)

Based from the control input, the robot state is predicted using the discrete time

kinematic model written in Equation (3.4)

𝑋(𝑘+1) = [

𝑥(𝑘+1)

𝑦(𝑘+1)

𝜃(𝑘+1)

] = [

𝑥(𝑘)

𝑦(𝑘)

𝜃(𝑘)

] + [

∆𝑡𝑣𝑘cos (𝜃𝑘 + ∆𝑡𝜑𝑘/2)

∆𝑡𝑣𝑘 sin(𝜃𝑘 + ∆𝑡𝜑𝑘/2)
∆𝑡𝜑𝑘

] (3.4)

where the first term represents the robot state at k interval and the second term

represents the velocity based kinematic model.

Solving for the Jacobian of the robot kinematic model with respect to the robot state

and control input yields to

𝐺 =
𝜕

𝜕(𝑥, 𝑦, 𝜃)𝑇
[[

𝑥𝑘

𝑦𝑘

𝜃𝑘

] + [

∆𝑡𝑣𝑘cos (𝜃𝑘 + ∆𝑡𝜑𝑘/2)
∆𝑡𝑣𝑘 sin(𝜃𝑘 + ∆𝑡𝜑𝑘/2)

∆𝑡𝜑𝑘

]] (3.5)

23

𝐺 = [
1 0 −∆𝑡𝑣𝑘 sin(𝜃𝑘 + ∆𝑡𝜑𝑘/2)
0 1 ∆𝑡𝑣𝑘cos (𝜃𝑘 + ∆𝑡𝜑𝑘/2)
0 0 1

] (3.6)

3.2.2 Mechanical Platform

From the literature, the circular shape of the chassis has similarities with the hexagonal

form. A regular hexagonal-shaped platform was adopted for the design of the body with

a diagonal length of 0.381 m. Additionally, the platform includes two layers; the lower

layer and the upper layer. The former layer comprises of the driving and steering

mechanism of the mobile robot while the latter layer functions as a location for the laser

scanner, battery, and other hardware components. The physical properties of the mobile

robot together with its gear and bevel gear transmission details are listed in Table 3.1.

Table 3.1

Physical Properties of the Synchronous-drive Mobile Robot

No. Parameters Value (Unit)

1 Dimension

 Diameter length 0.381 (m)

 Platform height 0.4064 (m)

 Robot weight 3.0 (kg)

 Robot platform material Aluminum

2 Gear Transmission

 Gear teeth (Big) 27 (T)

 Gear teeth (Small) 9 (T)

 Driving Mechanism GR 2/3

 Steering Mechanism GR 1

3 Bevel Gear Transmission

 Bevel gear teeth (driven) 20 (T)

 Bevel gear teeth (drive) 30 (T)

 Bevel Gear Ratio 1:1.5

The rotational motion from the driving motor and steering motor was delivered to the

standard wheels through the chain-sprocket mechanism because of its efficiency in

slippage compared to the belt type. These motions can be alternatively called as the

driving and steering mechanisms and will be further discussed in Sections 3.2.4 and

3.2.5. The upper chain layer in the drive system actuates the robot forward or backward

while the lower chain layer turns the system at a specific angle. Figure 3.2 illustrates

the 3-dimensional model of the robotic system in SolidWorks.

24

Figure 3.2

3-D Model of the Mobile Robot Platform in SolidWorks

25

Additionally, the wheel transmission design is incorporated in this study to separately

the movement of the steering and driving motors. Each main sprocket in the upper chain

layer is connected to a shaft that is fastened to a straight bevel gear. The gear ratio of

the driver and driven gears is 1:1.5. The driven gear is again connected to a shaft where

a small sprocket is attached to the other end. The small sprocket is then mechanically

couped by a chain to another small sprocket having a gear ratio of 1. The driven

sprocket is then connected to a shaft where the standard wheels are fixed.

For the lower chain layer, each sprocket is attached to the body of the wheel design

with the support of a bearing. The bearings are affixed to the main foundation of the

mobile robot which allows the wheels to turn at a defined angle. Figure 3.3 shows the

design of the wheel structure in SolidWorks.

Figure 3.3

Wheel Transmission Design of the Mobile Robot

26

3.2.3 Hardware Design

Based from the SolidWorks model, the components of the mobile robotic system are

illustrated in Figure 3.4. Components such as the two DC motor with encoder, an

L298N motor driver and 12 DC battery are connected to the pins of the Arduino Mega

2560 microcontroller. The microcontroller is connected to the computer, the brain of

the system, that executes the program and controls the motors using ROS. Connected

to the computer is also the SICK S300 laser scanner which delivers the output raw data

via the RS-422 to USB interface into the computer using the Python programing

language. The raw data is processed and implemented in the localization and mapping

package in ROS. The implementation of ROS to the actual hardware is further

explained in Section 3.6. Figure 3.4 shows the connection diagram of the components

in the mobile robot.

Figure 3.4

Hardware Connection Diagram

Given with the connections for each unit, the actual mobile robot used in this study was

illustrated in Figure 3.5.

27

Figure 3.5

Actual Mobile Robotic Platform

3.2.4 Driving Mechanism

A chain transmission of five sprockets contributing to the drive mechanism of the robot

is shown in Figure 3.6. This design allows movement of the three wheels forward or

backward in unison. Three of the sprockets (labeled as 1, 2, and 3 in Figure 3.6) are

connected to the designed wheel structure mention in Section 3.2.2. The sprocket

attached to the shaft of the driving motor is also specified in the figure with the letter

“M”. An additional sprocket in the middle of the robot was included in the chain

transmission to provide a larger surrounding chain area in the motor sprocket and to

tighten the chain. Without including this sprocket, the chain may loosen and unable to

transmit the mechanical power of the motor.

28

Figure 3.6

Mobile Robot Driving Chain Mechanism

3.2.5 Steering Mechanism

The actual design of the steering mechanism is shown in Figure 3.7 which consisted of

four large sprockets and two small sprockets. Numbered sprockets in the figure are

connected to the body of the wheel structure for wheel rotation which was also

discussed in Section 3.2.2. The sprocket connected to the steering motor shaft is labeled

as “M” in the figure. Inclusion of small sprockets in the steer transmission secures the

chain in place and don’t change the direction of rotation of the consequent larger

sprocket. Moreover, the chain transmission arrangement synchronously rotates the

wheel structure either in the clockwise or counterclockwise manner.

Note that for each layer in the chain-transmission, the sprockets must be horizontally

aligned for the chain not to be uncoupled with the sprocket. Unaligned sprockets will

not move the mobile robot and potentially break the chain.

29

Figure 3.7

Mobile Robot Steering Chain Mechanism

3.3 Mobile Robot Components and Sensors

Sensors are crucial for localization and mapping as it serves as eyes for perceiving the

environment and provides information of the robot itself. As mentioned in Section

3.2.3, these devices include DC motors and laser scanners. Furthermore, the

information and communication of the external sensors is transmitted to the

microcontroller which delivers an equivalent signal to the motors. Discussion of these

components and sensors are in the following sections.

3.3.1 DC Motor with Encoder and Calculations

A quadrature encoder in the DC motor is used to determine the distance travelled by

the mobile robot and provided feedback for the system. The rotation from each DC

motor is transferred to the wheels through the chain-sprocket transmission. Figure 3.8

shows the image of the DC motor with encoder used in this study. In addition, the

specifications of the 12 ppr DC motor with encoder are listed in Table 3.2.

30

Figure 3.8

Illustration of the DC Motor and Attached Optical Encoder

Table 3.2

Technical Data of a DC Motor with Optical Encoder

Parameter Description

Working Voltage 12 V (DC)

No load speed 8100 RPM (no gear)

Nominal output power
18 W

No load current: 75 mA

Load current: 1400 mA

Gearbox ratio 64:1

Encoder phase AB

Encoder resolution 12 ppr

The position and direction measurement in the encoders is achieved through optical

means and generated square-wave pulses. Furthermore, the direction of the counting

movement was determined depending on the offset between the Channel A and Channel

B shown in Figure 3.9.

31

Figure 3.9

Quadrature Encoder Output Pulses for Clockwise and Counterclockwise Rotation

Note. This image was adapted from “Encoders” H. H. Manh, 2020, p. 5.

If the signal output of Channel A leads the signal output of Channel B, the direction of

the counting device is in the clockwise direction. Conversely, Channel A lagging the

pulse of Channel B signifies a counterclockwise direction of the counting device. Thus,

these behaviors identify the position and direction of the rotary motion.

To receive the necessary measurements, the number of edges (high to low or low to

high transitions) is be considered and then converted to a corresponding position. The

resulting positions from the encoder depends on three encoding types; X1, X2, and X4.

This study used X4 encoding which provides a more precise counter reading and higher

32

resolution compared to the former encoding types. Implementing a X4 encoding into

the conversion means having a total of 48 pulses per revolution (PPR) (Manh, 2020).

Calculations of the mobile robot’s wheel rotation, distance, speed and RPM are

considered as follows.

 Wheel Rotation Calculation. The wheel distance is calculated using the

X4 encoding, number of generated pulses, and the gear ratio. The equation for the

calculation of wheel revolution is shown in Equation (3.7).

𝑊ℎ𝑒𝑒𝑙 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑠 − 𝑙𝑎𝑠𝑡𝑃𝑜𝑠𝑡

𝑝𝑝𝑟 × 𝑒𝑡 × 𝐺𝑅
 (3.7)

where ppr is the pulses per revolution, et is the encoding type (X4), and GR is the gear

ratio of the transmission system.

 Wheel Distance Calculation. Based from the number of wheel

rotations, the wheel distance is calculated using Equation (3.8).

𝑊ℎ𝑒𝑒𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 2π(𝑊ℎ𝑒𝑒𝑙 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) (3.8)

 Time Rate of Change Calculation. To determine the time difference

between the starting point to its endpoint, the rate of change in time (minute) is

calculated in Equation (3.9).

𝑑𝑡 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑖𝑛𝑔 − 𝑙𝑎𝑠𝑡𝑇𝑖𝑚𝑖𝑛𝑔

6000
 (3.9)

 Rotational Speed Calculation. The speed of the shaft delivered to the

coupled wheels is calculated using the rotation number calculation in Equation (3.7)

and the time difference in Equation (3.9). Equation (3.10) shows the equation of the

rotational speed.

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑝𝑒𝑒𝑑 =
𝑑(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑁𝑢𝑚𝑏𝑒𝑟)

6000
 (3.10)

Equations (3.7) to (3.10) are incorporated in the Arduino and ROS code which are used

for localizing the mobile robot.

3.3.2 Motor Driver and Microcontroller

The L298N Motor Driver, which consists of an L298 motor driver IC and a 78M05 5V

regulator, allows controlling two (2) DC motors. Apart from this function, the double

H-bridge design controls the rotational direction of the motors while the Pulse Width

Modulation (PWM) allows to control the speed.

33

This module consists of pins for the motor power supply (Vs), ground and 5V logic

power supply. Moreover, the output pins for the drive motor and steer motor with

voltages between 5 to 35V DC are incorporated in the driver. The motor driver also

includes direction control pins (Input 1, Input 2, Input 3, Input 4) which controls the

forward or backward motion and the speed control pins (Enable A and Enable B) which

control the speed for each motor. The positive terminal of the power supply (battery)

was connected to the VS while the negative terminal is connected to GND.

The main controller board used in this research is the Arduino Mega 2560

microcontroller which is based on the Atmega2560. It has 54 digital input/output pins

(14 pins provide PWM output), 16 analog input pins, 4 hardware UARTs that operates

at 5V, and a 256 KB flash memory. The Arduino Mega board can be powered either

through a USB connection or an external power supply of 6 to 20V. The connections

between the microcontroller and motor driver are shown in Figure 3.10 (See Appendix

A1 for pin connections).

Figure 3.10

L298N Motor Driver Board and Arduino Mega 2560 Connection to DC Motor with

Encoder

34

3.3.3 Sick S300 Laser Scanner Sensor

The SICK S300 safety laser scanner is used in this research to accurately determine the

distance between the laser scanner’s position in the mobile robot and to the environment

(with or without obstacles). The actual image of the laser scanner which has a field of

view of 270° is illustrated in Figure 3.11.

Figure 3.11

Illustration of S300 Expert SICK Laser Scanner and Its Scan Plane

The SICK laser scanner has an angular resolution of 0.5° meaning that every planar

range scan yields to an increment of 0.5° starting from 0 until angle 270. The measuring

range of this scanner is 30 m and has a warning field range of 8 m. Also, an RS-422

data interface is used to transmit the data into the computer with a transmission rate of

500k baud. Additional details of the laser scanner are recorded in Table 3.3.

35

Table 3.3

Technical Data of SICK S300 Laser Scanner

Parameter Description

Type S30B-3011GB (Expert)

Protective Field Range 2 m

Scanning Angle 270°

Response Time 80 ms

Angular Resolution 0.5°

Data Interface RS-422

Transmission Rate ≤ 500 kBaud

Operating Voltage 24 V DC

Power Consumption ≤ 0.33 A (without output load)

≤ 1.7 A (with max. output load)

Weight 1.2 kg

Dimensions (W x H x D) 102 mm x 152 mm x 106 mm

 Laser Scanner Data Processing. The laser scanner continuously sends

the output raw data via RS-422 interface to the computer and is processed using the

Python programming language. The structure of data output on every scan consist of a

telegram header (4 bytes, green), an administration data (6 bytes, purple), a measured

data (1,132 bytes, blue), and a CRC (2 bytes, yellow) that displays the scanner’s details

and version. An example of the telegram structure from the laser scanner is presented

in Figure 3.12 (SICK Sensor Intelligence, 2015; Yan, 2019).

Figure 3.12

Sample Telegram Structure from a Continuous Data Output

 00 00 00 00 00 00 02 29 FF 07 03 01 01 00 00 00 …

BB BB 11 11 E9 01 E8 23 C9 01 … C7 01 FB B9

Three types of operation are available in the Sick S300 laser scanner: I/O Information,

Measurement Data, and Reflective Data. These modes have starting characters of AA

AA, BB BB, and CC CC, respectively, depending on the configuration. This research

considered the measurement data to attain the estimated distance from the laser scanner

and the considered environment at every 0.5 ° increment from angle -45 to 225.

36

Furthermore, output raw data following 11 11 are the necessary data to be extracted.

Data blocks after 11 11 is shown in Figure 3.12.

 Output Raw Data to Distance Calculation. Given with a continuous

raw output data from the laser scanner, an appropriate method in organizing the laser

scan data is implemented. Figure 3.13 shows the process on how the output raw data

from the laser scanner is extracted and converted into the desired distance format.

Figure 3.13

Step-by-step Process of Laser Scanner Output Raw Data

For every scan, a telegram header consisting “00 00 02 19 FF 07” is checked from the

series of output raw data. The data length is then verified by counting the length after

the administration data (see Figure 3.12). Data lengths with less than 2212 is rejected

and looks for the next telegram header. Having a true condition continues to search for

the measurement data of “BB BB 11 11”.

After the measurement data, a data block pair consisting of 2 bytes is created. This data

pair is then converted to bit notation and extracted only bits 0 to 12. The extracted bits

are then converted to decimal notation to obtain the measured distance in centimeters.

The code also checks whether the data block pair reached the 540th term. If false, the

37

code will move to create another data block pair. If true, the operation proceeds to the

next laser scan. The process of finding the next scan is terminated once a stopping

condition is initiated by the user.

To further understand the raw output data conversion and acquisition, a sample

calculation is illustrated as follows.

(Data block no.1) E9 01

Measured value at 0 degree is 0x01E9

bit notation: 0000 0001 1110 1001

Bit 13: 0: no reflector detected

Bit 12 … 0: distance in cm: 0x01E9 = 0000 0001 1110 1001

In cm: 256 cm + 128 cm + 64 cm + 32 cm + 8 cm + 1 cm = 489 cm

(Data block no.2) E8 23

Measured value at 0.5 degree is 0x23E8

bit notation: 0010 0011 1110 1000

Bit 13: 0: no reflector detected

Bit 12 … 0: distance in cm: 0x23E8 = 0000 0011 1110 1000

In cm: 512 cm + 256 cm + 128 cm + 64 cm + 32 cm + 8 cm = 1,000 cm

(Data block no.3) C9 01

Measured value at 1.0 degree is 0x01C9

bit notation: 0010 0011 1110 1000

Bit 13: 0: no reflector detected

Bit 12 … 0: distance in cm: 0x01C9 = 0000 0001 1100 1001

In cm: 256 cm + 128 cm + 64 cm + 8 cm + 1 cm = 457 cm

⋮
(Data block no.540) DB 01

Measured value at 270.0 degree is 0x01DB

bit notation: 0000 0001 1101 1011

Bit 13: 0: no reflector detected

Bit 12 … 0: distance in cm: 0x01DB = 0000 0001 1101 1011

In cm: 256 cm + 128 cm + 64 cm + 16 cm + 8 cm + 2 cm = 474 cm

The following raw output data conversion is obtained from the Sick S300 Manual

(SICK Sensor Intelligence, 2015).

3.4 Position Control Method

External sensors are insufficient in achieving the desired output and as a result, a

feedback control system should be utilized to attain this output. The proportional-

integral-derivative controller or PID controller consists of three gains (P-gain, I-gain,

and D-gain) that controls the input based from the error value calculated from the

measured process variable and set point. Mathematically, the PID controller can be

expressed together with the three gain constants (𝐾𝑃, 𝐾𝐼, 𝐾𝐷) given by the equation,

38

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒′(𝑡)
𝑡

0

𝑑𝑡′ + 𝐾𝐷

𝑑𝑒(𝑡)

𝑑𝑡
 (3.11)

Each of the component in the equation represents a basic control behavior which is

briefly explained. The proportional controller or P-control applies a correction

proportional to the error which is the difference between the setpoint value (SP) and

process variable (PV). A faster response is one of the advantages of this controller,

however, it doesn’t always reach the desired setpoint and may show an offset. The

integral controller or I-control considers the sum of the error over time and serves as a

solution to remove the steady-state error. The problem of this controller is showing a

slower response time which can destabilize the controller. The third term and last term

in the PID controller is the derivative control or D-control. This controller’s role is to

minimize the change of error which depends on the rate of change in error. It gives a

more stable response since it acts as a brake or dampener that resists the change of

value.

In this study, the PID library installable from the Arduino IDE Library Manager is

applied and the controller parameters used in the position control for driving and

steering are illustrated in Table 3.4.

Table 3.4

Proportional-Derivative (PD) Control Parameters

Position Control (Driving) Position Control (Steering)

𝑘𝑝,𝑑 4.0 𝑘𝑝,𝑠 3.0

𝑘𝑑,𝑑 0.01 𝑘𝑑,𝑠 0.01

3.5 2D EKF-SLAM Operation

The overview of the EKF-SLAM implemented in ROS is shown in Figure 3.14.

The EKF-SLAM process starts by initializing the position and orientation of the robot

where in this case, (x, y,𝜃) is (0,0,0). The robot then starts moving at a certain direction.

A predicted state and covariance are produced based from the odometry of the robot.

The estimated state consisted of the estimated robot state (𝑋𝑣) and estimated landmark

states (𝑋𝑙) shown in Equation (3.12). The nth index represents the n number of

registered landmarks. The laser scanner then measures the distance from the location

39

of the scanner attached to the robot and to the environment or obstacle. Point clustering

is used for detecting the landmark with a minimum of 15 clustered points. Fewer

clustered points result to a rejection of the point cluster that is not considered as a

landmark.

Figure 3.14

General Operation Step for Implementation 2D SLAM

Two conditions exist for the landmark extraction, one for the re-observed landmark and

the other is the new landmark. Once a registered landmark is detected, the state and

covariance matrix are updated. For new observations, on the contrary, the landmark is

first initialized then updated its state and covariance. With every new observed

landmark, Equations (3.13) and (3.14) will expand in size. Equations (3.12) to (3.14)

represent the correspondent estimated state error and covariance matrix, respectively.

𝑋 = [
𝑋𝑣

𝑋𝑙
] =

[

𝑥
𝑦
𝜃

𝐿𝑥1

𝐿𝑦1

⋮
𝐿𝑥𝑛

𝐿𝑦𝑛]

 (3.12)

40

�̅� = [
𝑋𝑣
̅̅ ̅

𝑋�̅�

] =

[

𝑋𝑣
̅̅ ̅

𝐿1
̅̅ ̅

⋮
𝐿1
̅̅ ̅]

 (3.13)

𝑃 = [
𝑃𝑋𝑣,𝑋𝑣

𝑃𝑋𝑣,𝑋𝑙

𝑃𝑋𝑙,𝑋𝑣
𝑃𝑀,𝑋𝑙

] (3.14)

3.5.1 Extended Kalman Filter SLAM Equation

For every time step, the EKF SLAM takes odometry and sensor measurements to

generate an estimate of the full state vector.

 Initialization. For initialization, the robot state is set at (0,0,0) and

covariance is also initialized to zero which indicates the initial state of the robot is

known. Additionally, there are still no registered landmarks to the map at this moment

so the mean and covariance at the initial time is zero.

�̅� = �̂�𝑣 = [
𝑥
𝑦
𝜃
] = [

0
0
0
] 𝑃 = [

0 0 0
0 0 0
0 0 0

] (3.15)

 Prediction Step. When the robot is in motion, the prediction step predicts

the position of the robot based from motion commands. The updated estimated robot

state is given in Equation (3.16) and the updated estimated landmark state is shown in

Equation (3.17).

𝑋(𝑘+1) = [

𝑥(𝑘)

𝑦(𝑘)

𝜃(𝑘)

] + [

∆𝑡𝑣𝑘𝑐𝑜𝑠 (𝜃𝑘 + ∆𝑡𝜑𝑘/2)
∆𝑡𝑣𝑘𝑠𝑖𝑛 (𝜃𝑘 + ∆𝑡𝜑𝑘/2)

∆𝑡𝜑𝑘

] (3.16)

𝑋𝐿 ← 𝑋𝐿 (3.17)

where 𝑋𝑘+1 represents its state at time interval k+1, the first term represents the

previous robot state and the second term represents the robot motion model.

Furthermore, the estimated landmarks are also updated. Also, the robot’s covariance,

P, is calculated using Equation (3.18) where 𝐹𝑥 is the Jacobian matrix and 𝑃𝑛

corresponds to the noise covariance

𝑃 ← 𝐺𝑥𝑃𝐺𝑥
𝑇 + 𝑃𝑛 (3.18)

 Correction Step. The purpose of the correction step is to compare the

actual observation from the sensors with the predicted measurements to correct the

robot state. Equations (3.19) to (3.23) represent the updating process consisting of three

41

stages: Calculation of the Kalman gain, correction of the estimated mean, and

correction of the estimated covariance.

𝑧̅ = 𝑦𝑖 − ℎ𝑖(𝑋, 𝐿𝑖) (3.19)

𝑍 = 𝐻𝑥𝑃𝐻𝑥
𝑇 + 𝑅 (3.20)

𝐾 = 𝑃𝐻𝑥
𝑇𝑍−1 (3.21)

�̅� ← �̅� + 𝐾𝑧̅ (3.22)

𝑃 ← 𝑃 + 𝐾𝑍𝐾𝑇 (3.23)

where 𝑧̅ represents the measurement model, K represents the Kalman gain for the

updating process, H represents the Jacobian (Saputra, 2015).

3.5.2 Experimental Setup of the Real Environment

Figure 3.15 shows the environment used in the experiment where the landmarks are

labeled as Landmark 1, Landmark 2, and Landmark 3. Also, the dimensions of the

landmarks are stated in Table 3.5.

Table 3.5

Landmark Dimensions in terms of Length, Width, and Height

Box No. Length (m) Width (m) Height (m)

Landmark 1 0.22 0.14 0.37

Landmark 2 0.23 0.13 0.30

Landmark 3 0.21 0.15 0.27

Figure 3.15

Image of the Real Environment with Landmark

42

Moreover, the path of the robot from the starting position “A” to the final point “B” is

shown in Figure 3.16. In between the starting and final points are 10 arbitrary points

used for the comparing the ground truth and calculated path using EKF-SLAM. The

comparison is calculated using the Root Mean Square Error shown in Equation (3.24).

𝑅𝑀𝑆𝐸 = √∑
(�̂�𝑖 − 𝑥𝑖)2

𝑛

𝑛

𝑖=1

 (3.24)

where n is the number of measurements, i is the ith index term, �̂�𝑖 is the predicted value,

and 𝑥𝑖 is the observed value.

Figure 3.16

Illustration of the Path of the Mobile Robot in the Environment

3.6 Implementation of EKF-SLAM in Robotic Operating System (ROS)

This research used the ROS Melodic Morenia version (released in May 23, 2018) using

Linux Ubuntu 18.04 (Bionic). The laptop used has a dual booted Linux kernel to

implement ROS. The Melodic version provides well documented packages necessary

for mapping and localization and allows the communication between the Arduino

microcontroller and ROS.

3.6.1 Arduino Microcontroller and ROS

The process of connecting the microcontroller to ROS is through the installation of the

rospackage named rosserial in the Ubuntu terminal. To move the robot at a specific

43

direction and speed, each wheel mechanism (drive or steer) velocity was published

under the topic of “velocity_cmd” which ROS can subscribe. This topic delivers the

velocity information from the motors. Additionally, the topic “cmd_vel” was published

from the rospackage teleop_twist_keyboard which sends velocity commands to actuate

the driving and steering motors when the microcontroller subscribes to it. In this

research, the device port number used is /dev/ttyACM0. The crucial and the most

important part of this study is the mapping and localization using EKF in ROS. The

steps for implementing SLAM together with its requirements are as follows.

3.6.2 Coordinate Transformations

First part of the requirements in the SLAM implementation is the connection between

coordinate frames that allows transformation between the active frames to a desired

point in time. This is also known as tf or the transformation package in ROS. Frames

such as /map, /odom, /base_link, and /base_laser are included in this study (See

Figure 3.17). Moreover, the static_transform_publisher publishes static coordinate

Figure 3.17

ROS Transformation Trees

44

Figure 3.18

ROS Coordinate Frame Transformation on Rviz

transformation (x/y/z: meters, yaw/pitch/roll: radians) which is configured for the

/base_link to /base_laser transformation. Tf, however, doesn’t provide any

information about the velocity of the robot so to transform the frames from /map to

/odom and frames from /odom to /base_link, a dynamic transformation through

odometry information was used. The odometry information, based from the

odometry_publisher package, is incorporated into the slam_in_control.cpp file. The

resulting transformation of the aforementioned frames are shown in rviz, 3d

visualization tool for ROS, which was illustrated in Figure 3.18.

3.6.3 SICK Laser Scanner and ROS

ROS Melodic has an available package for the SICK S300 laser scanner for publishing

the laser scan message which is the cob_sick_s300 package. However, the said package

showed error and didn’t provide the desired output. To aid this dilemma, a code based

in Python language is created to obtain the laser scanner data under the filename of

SickS300Scanner.py (See Appendix B1 for more details). By following the telegram

listing provided by the manufacturer of the laser scanner, the python file publishes the

processed laser data based from the discussed procedure in Section 3.3.3 (SICK Sensor

Intelligence, 2015). Details of the configuration between the laser scanner and ROS are

shown in Table 3.6.

45

Table 3.6

Sick S300 Scanner Parameters

Parameter Description

Node Name base_laser

Port /dev/ttyUSB0

Baud Rate 500000

Parity Bit None

Stop Bit 1 bit

Byte Size 8 bits

Scan Header ID base_laser

Scan Angle (rad)

 - Maximum

 - Minimum

 3.926990

-0.7853983

Scan Range (m)

 - Maximum

 - Minimum

 29.00

 0.03

A sample laser scan in a room including the laser coordinate frame is visualized in rviz

and is shown in Figure 3.19.

Figure 3.19

Laser Scanner Output on Rviz

3.6.4 EKF-SLAM and ROS

The process of running EKF-SLAM and ROS starts with the terminal having each tab

addressed to a specific IP Address with the command

export ROS_MASTER_URL=http://10.90.4.127:11311

export ROS_IP=10.90.4.127

46

Including this command in the terminal connects the active terminals together.

Afterwards, a set of instructions to open the simulator and data acquisition for each

terminal tab is stated below.

1 roscore

2 rosrun rosserial_python serial_node.py port:=/dev/ttyACM0

3 roslaunch main main.launch

4 rostopic echo slam_path

Command 1 represents the master and is a requirement to run and allow communication

between nodes. The second command initializes and connects the Arduino to the ROS

middleware through the assigned port (/dev/ttyACM0 is used in this research).

Command 3 represents the main node for the EKF-Slam which includes the landmark

detection and mapping the estimated landmark. This node also includes the

transformation frames between the mobile robot parts, information from the wheel

velocities from Arduino, and simulation of the actual environment. Lastly, Command

4 shows the numerical information of the where the robot travels to. Figure 3.20 shows

the sample image of the landmark detection in rviz having landmarks shown in green.

Figure 3.20

Landmark Dectection on Rviz

http://serial_node.py/

47

3.6.5 Obstacle Avoidance

The obstacle avoidance is included in this research through the navigation stack

implemented in ROS using the Dynamic Window Approach (DWA) set as a local

planner. The idea behind the DWA is that the system samples multiple sets of velocities

which then simulates the valid and invalid trajectories of the robot. These trajectories

are evaluated and the optimal trajectory resulting from the speed is chosen to be able to

drive the robot. The dynamic window approach also limits the speed sampling space

and calculates the lowest possible cost function. Figure 3.20 shows the illustration of

possible trajectories for the mobile robot under investigation.

Figure 3.21

Dynamic Window Approach

Note. This image is acquired from the website of dwa_local_planner in ROS.

http://wiki.ros.org/dwa_local_planner

Figure 3.21 shows the nodes involved in the implementation of EKF-SLAM. Packages

involved in the EKF-SLAM operation consists of the laser scanner node, the navigation

stack, serial communication node to the microcontroller, EKF-SLAM node, landmark

detection node, and the gmapping.

48

Figure 3.22

Illustration of the Full Rosgraph

49

CHAPTER 4

 RESULTS AND DISCUSSION

4.1 EKF-SLAM Operation Results

The performance of the EKF-SLAM is evaluated through the comparison of the ground

truth and the actual measurement by calculating the root mean square. Before this

comparison, the results from the landmark extraction are discussed.

4.1.1 Landmark Detection from Laser Scanner

Figure 4.1 illustrates the scanner output data on the real environment. The orange point

clouds represent each scan angle from the laser scanner.

Figure 4.1

Laser Scanner Output on Real Environment on Rviz

It was also observed that point clusters merge with the side of the wall if the position

of the landmark is near to the wall. Based from the trial shown in Figure 4.2, the feature

detection fails to distinguish a landmark having the landmark’s coordinates (X:1.16 m

and Y:0.55 m). The green point cloud shows that the landmark is also considered as a

wall.

50

Figure 4.2

Laser Scanner Output on Rviz without Landmark Consideration

By moving the landmark away from the wall, the landmark, having it’s coordinates at

(X:1.04 m and Y:0.30 m), is considered. Figure 4.3 shows the considered landmark on

Rviz.

Figure 4.3

Laser Scanner Output on Rviz with Landmark Consideration

51

The landmarks are shown in the visualization tool while the laser scanner is roaming

through the environment. It is observed that failures of landmark detection exist at a

certain angle which may due to the number of point clusters. Moreover, the landmarks

being considered is not projected in the simulator all the time.

Figure 4.4

Landmark One, Two, and Three on Rviz

(a) (b)

(c)

Note. These images show the three landmarks labeled as (a), (b), and (c) for landmarks 1, 2, and 3

respectively.

4.1.2 Comparison of Ground Truth and Robot Position in EKF

The distance data from the ground truth and the calculated robot position are obtained

from the actual measurement in the environment using a tape measure and from the ros

command rostopic echo /slam_path. In detail, the ground truth represents the actual

measurement from the environment. Each specified location numbered from Point 1 to

10 in Table 4.1 is noted and these points are compared to the predicted measurement

coming from the calculated state using the EKF. The information or data coming from

the sensors are fed to the system which will compute for the estimated state of the robot.

There are 10 arbitrary points between the starting position and ending position. The

calculation of the RMSE in this research considered two conditions.

52

The first calculation uses the x and y coordinates between the actual and predicted

measurement of the robot under consideration. By using Equation (3.24), the RMSE in

the x and y direction yields to 0.2981 m and 0.1589 m, respectively (See Table 4.1). An

observation is made with the RMSE results since the error in the x-axis is close to the

error in the y-axis. Every time the driving motor moves the chains, a drag is affecting

the steering chain mechanism. Moreover, it is also the case when the steering motor

move. Thus, this results to a deviation of the actual movement of the robot and yields

to a different value. Another thing to consider is the cumulative error presented in the

values of the RSME of 0.2981 m and 0.1589 m. For longer paths, the errors will increase

over time.

Table 4.1

RMSE Calculation for x and y Measurement Values

Point

No.

Ground

Truth

(m)

Predicted

Measurement

(m)

Residuals

(x-axis)

(m)

Residuals

(y-axis)

(m)

Square

(x-axis)

(m2)

Square

(y-axis)

(m2)

A (0.00, 0.00) (0.00, 0.00) 0 0 0 0

1 (0.00, 0.58) (0.02, 0.73) 0.02 0.15 0.0004 0.0225

2 (0.00, 1.03) (-0.05, 0.98) -0.05 -0.05 0.0025 0.0025

3 (0.00, 1.58) (-0.20, 1.64) -0.2 0.06 0.04 0.0036

4 (0.00, 2.02) (-0.29, 2.04) -0.29 0.02 0.0841 0.0004

5 (0.00, 2.59) (-0.37, 2.73) -0.37 0.14 0.1369 0.0196

6 (0.00, 3.00) (-0.33, 3.18) -0.33 0.18 0.1089 0.0324

7 (0.00, 3.59) (-0.18, 3.74) -0.18 0.15 0.0324 0.0225

8 (0.00, 4.00) (-0.10, 4.17) -0.1 0.17 0.01 0.0289

9 (1.10, 4.00) (0.57, .4.20) -0.53 0.2 0.2809 0.04

10 (1.52, 4.00) (1.07, 4.24) -0.45 0.24 0.2025 0.0576

B (2.01, 4.00) (1.60, 4.27) -0.41 0.27 0.1681 0.0729

Sum Square Error

[SSE] (m2)
1.0667 0.3029

 Mean of Sum Square

Error (m2)
0.0889 0.0252

 Root Mean Square

Error [RMSE] (m)
0.2981 0.1589

*A – starting point

 B – final position

53

Table 4.2

RMSE Calculation for the Overall Travelled Distance

Poin

t No.

Groun

d

Truth

x-axis

(m)

Predicted

Measureme

nt

x-axis

(m)

Groun

d

Truth

y-axis

(m)

Predicted

Measureme

nt

y-axis

(m)

Ground

Truth

Distance

Travelle

d

(m)

Predicte

d

Distance

Travelle

d

(m)

Residual

s

(m)

Squar

e

(m2)

A 0 0 0 0 0 0 0 0

1 0 0.02 0.58 0.73 0.58 0.7302 0.1502 0.0225

2 0 -0.05 1.03 0.98 1.03 0.9812 -0.0487 0.0023

3 0 -0.2 1.58 1.64 1.58 1.6521 0.0721 0.0052

4 0 -0.29 2.02 2.04 2.02 2.0605 0.0405 0.0016

5 0 -0.37 2.59 2.73 2.59 2.7549 0.1649 0.0272

6 0 -0.33 3 3.18 3 3.1970 0.1970 0.0388

7 0 -0.18 3.59 3.74 3.59 3.7443 0.1543 0.0238

8 0 -0.1 4 4.17 4 4.1711 0.1711 0.0293

9 1.1 0.57 4 4.2 4.1484 4.2385 0.0900 0.0081

10 1.52 1.07 4 4.24 4.2790 4.3729 0.0938 0.0088

B 2.01 1.6 4 4.27 4.4766 4.5599 0.0833 0.0069

 Sum Square Error [SSE] (m2) 0.1748

Mean of Sum Square Error

(m2)
0.0145

Root Mean Square Error

[RMSE] (m)
0.1207

*A – starting point

 B – final position

Another condition for the RMSE calculation is the total distance. Solving the RMSE

shows that the root mean square error yields to 0.1207 m (See Table 4.2). Looking into

the theoretical distance traveled by the robot of 4.48 m, the error is 2.70%.

4.1.3 Application of Obstacle Avoidance

To show the application, a mobile robot navigation is implemented in the proposed

system. Figure 4.1.3.1 show the calculated path of the robot with the two obstacles in

the visualization tool.

54

Figure 4.5

Obstacle Avoidance Mobile Robot Application

The pink arrow represents the location and orientation of the mobile robot in the

environment where the green line shows the path of the robot to the goal. Figure 4.5

shows the travel of the robot to the final destination given with two obstacles.

Additionally, the screenshot of the robot travelling to the destination is shown in

Figures 4.6 and 4.7.

Figure 4.6

Sample Screenshot of the Mobile Robot performing Obstacle Avoidance

55

Figure 4.7

Screenshot Example of the Mobile Robot performing Obstacle Avoidance

56

CHAPTER 5

 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

This research proposed a synchronous-drive design mobile robot using odometry and

laser scanner to implement the EKF-SLAM. An addition of obstacle avoidance is

covered in this study to show a potential application of the mobile robot. To summarize,

three tasks were accomplished in this research. First is the design of the synchronous

drive robot where its steering and driving mechanisms are independently moving. This

results to an easier control compare to other drive configuration. Another point to

consider in this task is that the mobile robot design is mechanically complex. Slightest

misalignment from the sprockets results to loosen chains. Second task is

implementation of EKF-SLAM including the detection from the observed landmarks.

Problems exist in the landmark detection due to its distance from the assumed wall or

the angle how the laser scanner sensed that object. Lastly is the incorporation of the

obstacle avoidance in the proposed robot. This shows that potential applications of the

proposed robot are possible.

Based from the experiment, the mean square error between the actual and calculated

measurement yields to 0.2981 m and 0.1589 m for the x and y axis error, respectively.

When considering the total distance travelled by the robot, a mean square error of

0.1207 m is evident. Moreover, the drag factor from the other chain mechanism initiates

a slight change in the other mechanism resulting to an error. Error also exists due to the

cumulative error using odometry. This shows that the drive configuration is

mechanically complex. Also, the theoretical distance travelled by the robot is 4.48 m

which yielded to an error of 2.70%.

5.2 Recommendation

This research recommends to explore the possibility of 3-dimensional implementation

which includes the visual approach of SLAM. Incorporating cameras or kinetic sensor

provides a depth information from the environment. Another recommendation is the

introduction of hybrid filters such as Radial Basis Function (RBF) or Multilayer

57

Perception (MLP) with EKF for investigating the learning properties of neural

networks.

58

REFERENCES

Agrawal, P., Sahai, S., Gautam, P., Kelkar, S. S., & D, M. R. (2021). Designing

Variable Ackerman Steering Geometry for Formula Student Race Car.

International Journal of Analytical, Experimental and Finite Element Analysis,

8(1), 1–11. http://ischolar.info/index.php/ijaefea/article/view/209004

Aulinas, J., Petillot, Y., Salvi, J., & Lladó, X. (2008). The SLAM problem: A survey.

Artificial Intelligence Research and Development, 363–371.

https://doi.org/10.3233/978-1-58603-925-7-363

Borenstein, J., & Feng, L. (1996). Measurement and correction of systematic

odometry errors in mobile robots. 12(6), 869–880.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=544770

Bräunl, T. (2008). Embedded robotics: Mobile robot design and applications with

embedded systems. In Springer Science & Business Media (2nd Editio). Springer-

Verlag Berlin6 Heidelberg. https://doi.org/10.1007/978-3-662-05099-6

Bruzzone, L., Baggetta, M., Nodehi, S. E., Bilancia, P., & Fanghella, P. (2021).

Functional design of a hybrid leg-wheel-track ground mobile robot. Machines,

9(1), 1–11. https://doi.org/10.3390/machines9010010

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., &

Leonard, J. J. (2016). Past, present, and future of simultaneous localization and

mapping: Toward the robust-perception age. IEEE Transactions on Robotics,

32(6), 1309–1332. https://doi.org/10.1109/TRO.2016.2624754

Chan, T. H., Hesse, H., & Ho, S. G. (2021). LiDAR-Based 3D SLAM for Indoor

Mapping. 2021 7th International Conference on Control, Automation and

Robotics (ICCAR), 285–289. https://doi.org/10.1109/ICCAR52225.2021.9463503

Chatterjee, A., Ray, O., Chatterjee, A., & Rakshit, A. (2011). Development of a real-

life EKF based SLAM system for mobile robots employing vision sensing.

Expert Systems with Applications, 38(7), 8266–8274.

https://doi.org/10.1016/j.eswa.2011.01.007

Chen, C. H., Lin, C. J., Jeng, S. Y., Lin, H. Y., & Yu, C. Y. (2021). Using ultrasonic

sensors and a knowledge-based neural fuzzy controller for mobile robot

navigation control. Electronics (Switzerland), 10(4), 1–22.

https://doi.org/10.3390/electronics10040466

59

Choi, Y.-H., Lee, T.-K., & Oh, S.-Y. (2008). A line feature based SLAM with low grade

range sensors using geometric constraints and active exploration for mobile robot.

Autonomous Robots, 24(1), 13–27. https://doi.org/10.1007/s10514-007-9050-y

Chung, W., & Iagnemma, K. (2016). Wheeled robots. In B. Siciliano & O. Khatib

(Eds.), Springer Handbook of Robotics (pp. 575–593). Springer-Verlag Berlin

Heidelberg. https://doi.org/10.1007/978-3-319-32552-1

Doucet, A., Freitas, N. De, Murphy, K. P., & Russell, S. (2013). Rao-Blackwellised

particle filtering for dynamic bayesian networks. Proceedings of the Sixteenth

Conference on Uncertainty in Artificial Intelligence, 176–183.

https://arxiv.org/ftp/arxiv/papers/1301/1301.3853.pdf

Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping

(SLAM): Part II. IEEE Robotics & Automation Magazine, 13(3), 108–117.

https://doi.org/10.1109/MRA.2006.1678144

Gerkey, B. (2020). gmapping - ROS Wiki. http://wiki.ros.org/gmapping

Goel, P., Roumeliotis, S. I., & Sukhatme, G. S. (n.d.). Robot localization using relative

and absolute position estimates. Proc. 1999 IEEE. In RSJ International

Conference on Intelligent Robots and Systems, 17–21.

Goris, K. (2005). Autonomous mobile robot mechanical design [Vrije Universiteit

Brussel]. http://mech.vub.ac.be/multibody/final_works/ThesisKristofGoris.pdf

Grisetti, G., Rainer, K., Stachniss, C., & Burgard, W. (2010). A tutorial on graph-based

SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4), 31–43.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5681215

Haykin, S. (Ed.). (2004). Kalman filtering and neural networks (Vol. 47). John Wiley

& Sons, Inc. https://doi.org/10.1530/jrf.0.0320129

Jones, J., Seiger, B., & Flynn, A. (1998). Mobile robots: Inspiration to implementation.

In Leonardo (2nd Editio). CRC Press. https://doi.org/10.2307/1576020

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

ASME. J. Basic Eng., 82(1), 35–45. https://doi.org/10.1115/1.3662552

Kim, D. (2019). Commercializing Localization for Automated Driving: Absolute vs.

Relative.

https://static1.squarespace.com/static/5869dbb6ff7c505afd38a083/t/5d3f574d292

8800001c7b4b1/1564432206257/Commercializing+Localization+for+Automate

d+Driving+-+Absolute+vs.+Relative.pdf

Kohlbrecher, S., & Meyer, J. (2020). hector_slam - ROS Wiki.

60

http://wiki.ros.org/hector_slam

Lei, S., & Li, Z. (2012). SLAM and navigation of a mobile robot for indoor

environments. In F. Sun, T. Li, & H. Li (Eds.), Proceedings of the Seventh

International Conference on Intelligent Systems and Knowledge Engineering

(Vol. 213, pp. 151–162). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-37829-4

Lindholm, R., & Palsson, C.-J. (2015). Simultaneous localization and mapping for

vehicle localization using LIDAR sensors [Chalmers University of Technology].

https://odr.chalmers.se/bitstream/20.500.12380/219126/1/219126.pdf

Lu, F., & Milios, E. (1997). Globally consistent range scan alignment for environment

mapping. Autonomous Robots, 4(4), 333–349.

 https://doi.org/10.1023/A:1008854305733

Lv, J., Kobayashi, Y., Emaru, T., & Ravankar, A. A. (2015). Indoor slope and edge

detection by using two-dimensional EKF-SLAM with orthogonal assumption.

International Journal of Advanced Robotic Systems, 12(4), 1–7.

 https://doi.org/10.5772/60407

Lv, J., Kobayashi, Y., Ravankar, A. A., & Emaru, T. (2014). Straight line segments

extraction and EKF-SLAM in indoor environment. Journal of Automation and

Control Engineering, 2(3), 270–276. https://doi.org/10.12720/joace.2.3.270-276

Maliha Monsur. (2021). GPS/WI-FI Integration for Challenging Environments using

Raw GNSS Data.

 http://dspace.ucuenca.edu.ec/bitstream/123456789/35612/1/Trabajo de

Titulacion.pdf%0Ahttps://educacion.gob.ec/wp-

content/uploads/downloads/2019/01/GUIA-METODOLOGICA-EF.pdf

Manh, H. H. (2020). Encoders.

Marin-Reyes, H., & Tokhi, M. O. (2010). Control system adaptation of a synchro drive

mobile robot for target approximation. Mobile Robotics: Solutions and Challenges

- Proceedings of the 12th International Conference on Climbing and Walking

Robots and the Support Technologies for Mobile Machines, CLAWAR 2009,

1063–1070. https://doi.org/10.1142/9789814291279_0130

Miller, D. P. (1986). Low error path planning for a synchro-drive mobile robot.

https://vtechworks.lib.vt.edu/bitstream/handle/10919/19768/TR-86-

28.pdf?sequence=3

Montella, C. (2014). The kalman filter and related algorithms: A literature review.

61

Research Gate, 1–17.

Murphy, K. P. (1999). Bayesian map learning in dynamic environments. Advances in

Neural Information Processing Systems, 1015–1021. https://neuro.bstu.by/ai/To-

dom/My_research/Papers-1/Spiking-N/Murphy.pdf

Nguyen, H. K. (2014). Integrated approach to simultaneous localization and mapping

with path planning algorithms for indoor mobile robots [Chulalongkorn

University]. https://www.car.chula.ac.th/display7.php?bib=b2139968

Nguyen, V., Harati, A., Martinelli, A., Siegwart, R., & Tomatis, N. (2006). Orthogonal

SLAM: A step toward lightweight indoor autonomous navigation. 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 5007–5012.

https://doi.org/10.1109/IROS.2006.282527

Riisgaard, S., & Blas, M. R. (2003). SLAM for dummies: A tutorial approach to

simultaneous localization and Mmapping. Small Flying Drones: Applications for

Geographic Observation, 22, 1–127. https://doi.org/10.1007/978-3-319-66577-1

Saputra, R. P. (2015). Implementation 2D EKF-SLAM for wheeled mobile robot

[University of New South Wales, Australia].

https://arxiv.org/ftp/arxiv/papers/1905/1905.06529.pdf

SICK Sensor Intelligence. (2015). Telegram listing CMS: S3000 Expert/Anti

Collision, S300 Expert.

https://cdn.sick.com/media/docs/1/91/891/telegram_listing_s3000_expert_anti_c

ollision_s300_expert_de_en_im0022891.pdf

Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to

autonomous mobile robots (2nd Editio). The MIT Press.

https://doi.org/10.1109/ROBOT.2010.5509725

Singh, A. (2018). An intro to Kalman Filters for Autonomous Vehicles.

https://towardsdatascience.com/an-intro-to-kalman-filters-for-autonomous-

vehicles-f43dd2e2004b

Smith, R. C., & Cheeseman, P. (1986). On the representation and estimation of spatial

uncertainty. The International Journal of Robotics Research, 5(4), 56–68.

https://doi.org/10.1177/027836498600500404

Takahashi, M., Suzuki, T., Shitamoto, H., Moriguchi, T., & Yoshida, K. (2010).

Developing a mobile robot for transport applications in the hospital domain.

Robotics and Autonomous Systems, 58(7), 889–899.

https://doi.org/10.1016/j.robot.2010.03.010

62

Tătar, M. O., & Cirebea, C. (2018). Modular reconfigurable robot. In I. Doroftei, C.

Oprisan, D. Pisla, & E. C. Lovasz (Eds.), Proceedings of The 12th IFToMM

International Symposium on Science of Mechanisms and Machines (Vol. 57, pp.

291–299). Springer International Publishing. https://doi.org/10.1007/978-3-030-

20131-9

Tătar, M. O., Haiduc, F., & Mândru, D. (2015). Design of a synchro-drive

omnidirectional mini-robot. Solid State Phenomena, 220, 161–167.

https://doi.org/10.4028/www.scientific.net/SSP.220-221.161

Thomas Genevois, & Zielinska, T. (2014). A simple and efficient implementation of

EKF-based SLAM relying on laser scanner in complex indoor environment.

Journal of Automation Mobile Robotics and Intelligent Systems, 8, 58–67.

https://doi.org/10.14313/JAMRIS

Thrun, S. (2003). Robotic mapping: A survey. 1–35.

https://doi.org/10.1126/science.298.5594.699f

Yan, H. W. (2019). Sensor fusion based speed and heading control of an intelligent

vehicle. Asian Institute of Technology.

63

APPENDICES

64

APPENDIX A

ARDUINO PIN CONNECTIONS

Table A1 shows the pin connection between the motor encoder, motor driver, and

microcontroller.

Table A1

Pin Connection of Motor Encoders and Motor Driver to Arduino Mega

2560

Parts Arduino Pin

Motor Driver

 Input 1 (M1) Digital 6

 Input 2 (M1) Digital 12

 Input 3 (M2) Digital 11

 Input 4 (M2) Digital 10

 Enable A (M1) Digital 7

 Enable B (M2) Digital 11

Encoder

 Pin A (D) Digital 18

 Pin B (D) Digital 19

 Pin C (S) Digital 2

 Pin D (S) Digital 3
*Abbreviation in the parenthesis above are defined as follows. M1 – driving motor,

M2 – steering motor, D – encoder for driving motor, and S – encoder for steering motor.

65

APPENDIX B

LASER SCANNER PYTHON CODE

Table B1

Python Code for Sick S300 Laser Scanner

File Name: SickS300Scanner.py

Description: Publishes laser scanner messages using the Python language through ROS

#!/usr/bin/env python

from __future__ import division

import rospy

import serial

import os

import binascii

import time

import re

import math

from serial import Serial

from sensor_msgs.msg import LaserScan

import sensor_msgs.msg

rospy.init_node('laser_scan_publisher')

scan_pub = rospy.Publisher('scan', LaserScan, queue_size = 50)

serialPort = serial.Serial(port='/dev/ttyUSB0',

 baudrate = 500000,

 parity=serial.PARITY_NONE,

 stopbits=serial.STOPBITS_ONE,

 bytesize=serial.EIGHTBITS,

 timeout=None)

def __function_SPLIT(stringToSplit, countPerSplit):

 return [stringToSplit[i:i+countPerSplit] for i in range(0, len(stringToSplit), countPerSplit)]

__GLOBAL_DataBlocksToFind = "00000229ff07"

__GLOBAL_RequiredDataLength = 2212

__GLOBAL_RequiredDataLengthAfter = 2200

__GLOBAL_MeasurementDataBlockLength = 2160

__GLOBAL_MeasurementHeader = "bbbb1111"

__PRINT_FinalScanPrint = []

__DEBUG_ScanID = 0

__DEBUG_IndexErrorCount = 0

while not rospy.is_shutdown():

 current_time = rospy.Time.now()

 scan = LaserScan()

 #print("Scan Number %i" % __DEBUG_ScanID)

66

 __SERIAL_BaseHex = serialPort.readline()

 __SERIAL_BaseString = binascii.hexlify(__SERIAL_BaseHex)

 #print(__SERIAL_BaseString)

 #break

 __SERIAL_StartingDataBlockIndeces = []

 __THIS_ArraySearchIndeces = []

 for __THIS_SearchIndex in re.finditer(__GLOBAL_DataBlocksToFind, __SERIAL_BaseString):

 __THIS_ArraySearchIndeces.append((__THIS_SearchIndex.start(), __THIS_SearchIndex.end()));

 __DEBUG_NextFirstIndex = ""

 __DEBUG_status = ""

 for __THIS_ArrayCounter in range(len(__THIS_ArraySearchIndeces)):

 __DEBUG_CurrentArray = __THIS_ArraySearchIndeces[__THIS_ArrayCounter]

 __DEBUG_CurrentStartIndex = __THIS_ArraySearchIndeces[__THIS_ArrayCounter][0]

 __DEBUG_CurrentLastIndex = __THIS_ArraySearchIndeces[__THIS_ArrayCounter][1]

 # DEBUG PRINTS

 #print("Scan Lenght", len(__SERIAL_BaseString))

 #print("Current Array", __DEBUG_CurrentArray)

 #print("Current Start Index", __DEBUG_CurrentStartIndex)

 #print("Current Last Index", __DEBUG_CurrentLastIndex)

 #print(__SERIAL_BaseString[(__DEBUG_CurrentLastIndex-4):__DEBUG_CurrentLastIndex])

 try:

 __DEBUG_NextFirstIndex = __THIS_ArraySearchIndeces[__THIS_ArrayCounter+1][0]

 #print("Next First Index", __DEBUG_NextFirstIndex)

 except IndexError:

 __DEBUG_NextFirstIndex = len(__SERIAL_BaseString)

 #print("Last Index", __DEBUG_NextFirstIndex)

 #print("::> This is the last")

 __SERIAL_CalculateDataBlockStart = __DEBUG_CurrentLastIndex

 __SERIAL_CalculateDataBlockEnd = __DEBUG_NextFirstIndex

 #print("Data Block Start", __SERIAL_CalculateDataBlockStart)

 #print("Data Block End", __SERIAL_CalculateDataBlockEnd)

 #print("Difference Amount", (__SERIAL_CalculateDataBlockEnd-

__SERIAL_CalculateDataBlockStart))

 #print(len(__SERIAL_BaseString[__DEBUG_CurrentLastIndex:__DEBUG_NextFirstIndex]))

 if (__SERIAL_CalculateDataBlockEnd-__SERIAL_CalculateDataBlockStart) >=

__GLOBAL_RequiredDataLengthAfter:

 #print("::> There is enough data for us to use.")

 #print("Accepted Difference Amount", (__SERIAL_CalculateDataBlockEnd-

__SERIAL_CalculateDataBlockStart))

 __SERIAL_StartingDataBlockIndeces.append(__SERIAL_CalculateDataBlockStart)

 #else:

 # print("::> Not enought data, skipped")

 #print("Array Search Results Count: %i" % len(__THIS_ArraySearchIndeces))

 __DEBUG_ForceStopper = False

 try:

 __SERIAL_FirstStartDataBlockIndex = __SERIAL_StartingDataBlockIndeces[0]

 __SERIAL_BaseDataBlocks = __SERIAL_BaseString[__SERIAL_FirstStartDataBlockIndex:]

67

 __SERIAL_PreparedDataBlockIndex_START =

__SERIAL_BaseDataBlocks.find(__GLOBAL_MeasurementHeader)

 __SERIAL_PreparedDataBlock =

__SERIAL_BaseDataBlocks[__SERIAL_PreparedDataBlockIndex_START:__SERIAL_PreparedData

BlockIndex_START+(__GLOBAL_MeasurementDataBlockLength+8)]

 #print(len(__SERIAL_PreparedDataBlock))

 __SERIAL_PreparedDataBlock = __function_SPLIT(__SERIAL_PreparedDataBlock, 4)

 __SERIAL_PreparedDataBlock.remove("bbbb")

 __SERIAL_PreparedDataBlock.remove("1111")

 __DEBUG_SplitBaseDataBlocks = __function_SPLIT(__SERIAL_BaseDataBlocks, 4)

 __DEBUG_SplitBaseString = __function_SPLIT(__SERIAL_BaseString, 4)

 #print(len(__DEBUG_SplitBaseString))

 #print(__DEBUG_SplitBaseString)

 #print(len(__DEBUG_SplitBaseDataBlocks))

 #print(__DEBUG_SplitBaseDataBlocks)

 __SERIAL_PreparedDataBlock_BasePOST = []

 __SERIAL_PreparedDataBlock_BinaryPOST = []

 __SERIAL_PreparedDataBlock_DecimalPOST = []

 for dataBlock in __SERIAL_PreparedDataBlock:

 __TEMP_datablock = __function_SPLIT(dataBlock, 2)

 #print("Before: %s" % ", ".join(__TEMP_datablock))

 __TEMP_datablock[0], __TEMP_datablock[1] = __TEMP_datablock[1],

__TEMP_datablock[0]

 #print("After: %s" % ", ".join(__TEMP_datablock))

 __TEMP_datablock = "".join(__TEMP_datablock)

 __TEMP_dataBlock_binary = bin(int(__TEMP_datablock, 16))[2:].zfill(16)

 __TEMP_dataBlock_binary = __TEMP_dataBlock_binary[4:]

 __TEMP_dataBlock_decimal = int(__TEMP_dataBlock_binary, 2)

 __TEMP_dataBlock_decimal = __TEMP_dataBlock_decimal / 100.0

 #print("Datablock: %s" % __TEMP_datablock)

 #print("Binary: %s" % __TEMP_dataBlock_binary)

 #print("Decimal: %i" % __TEMP_dataBlock_decimal)

 __SERIAL_PreparedDataBlock_BasePOST.append(__TEMP_datablock)

 __SERIAL_PreparedDataBlock_BinaryPOST.append(__TEMP_dataBlock_binary)

 __SERIAL_PreparedDataBlock_DecimalPOST.append(__TEMP_dataBlock_decimal)

 scan.header.stamp = current_time

 scan.header.frame_id = 'base_laser'

 scan.angle_min = -0.785398

 scan.angle_max = 3.92699

 scan.angle_increment = 0.0087222222

 scan.time_increment = (1 / 40) / (541)

 scan.range_min = 0.0

 scan.range_max = 100.0

 scan.ranges = __SERIAL_PreparedDataBlock_DecimalPOST

 scan_pub.publish(scan)

 #print("Before: %s" % ", ".join(__SERIAL_PreparedDataBlock))

 #print("After : %s" % ", ".join(__SERIAL_PreparedDataBlock_POST))

 #print("Data Block Length: %i" % len(__SERIAL_PreparedDataBlock))

 #print(__SERIAL_PreparedDataBlock)

 #print(__SERIAL_PreparedDataBlock_BasePOST)

 #print(__SERIAL_PreparedDataBlock_BinaryPOST)

68

 #print(__SERIAL_PreparedDataBlock_DecimalPOST)

 __DEBUG_ForceStopper = True

 except IndexError:

 __DEBUG_IndexErrorCount = __DEBUG_IndexErrorCount + 1

 __DEBUG_ScanID = __DEBUG_ScanID + 1

 #if __DEBUG_ForceStopper:

 # break

