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ABSTRACT 

Robotics in terms of Brain-Machine Interface is the union between a human mind and 

a robot or computer, which gives the human being a new technological evolution to 

make their lives easy, happy and overall better. This paper presents Karuna Robot, 

which is a 2 Degrees of freedom arm exoskeleton rehabilitation robot that picks and 

places an object following the commands of the EEG signals to study about the 

effectiveness and possibilities of recovery of motor movements by using a non-invasive 

motor imagery technique. The EEG headset is a 5 channel Emotiv Insight 2.0 headset 

that facilitates effective communication between the user and the robot to execute the 

task of pick-and-place using combinations of mental commands to move the two joints 

of Karuna Robot which performs grasping and releasing the object at desired positions. 

The Average Root Mean Square Error of the joints in both positive and negative 

directions is 14.86 degrees, whereas, the signal band power analysis renders 

prominence of Theta, Alpha and a very few spikes of low beta waves during the window 

of mental commands which illustrates presence of recall of memory, motor planning 

and active thinking, respectively. Moreover, the circular queue data structure and the 

use of linear interpolation has also rendered optimized and nuanced user-controlled 

movements. The average time for the pick-and-place task completion is about 2 

minutes, with time complexity of O (1) and a success rate of about 70%. 

Keywords: Brain Machine Interface, Exoskeleton arm Robot, Rehabilitation device, 

signal processing.   
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study  

In the modern era, robotics is not only implemented widely in an industrial setup because of its 

speed and accuracy of performing repetitive, dangerous and difficult tasks for an ordinary human 

but it is also used extensively in the medical sector; especially in the rehabilitation of patients who 

lack motor functions and are deprived of using their arms or legs, either for a short time or perhaps 

permanently due to some physical conditions like stroke which accounts for about 15 million 

patients every year and out of which 5 million are rendered permanently disabled (Benesová et al., 

2022) like paralysis and or impairment of vision and speech etc. 

Robots aid in the improvement or and recovery of motor functions in patients diagnosed with 

stroke (Zhu et al., 2020). Karuna Robot is a 2 degrees of freedom arm exoskeleton robot that uses 

Motor imagery as it leverages upon the imagination of the movements of hands and legs from the 

user without really making any actual physical movement (Arpaia et al., 2022) and uses the same 

signals from brain using Electroencephalography (EEG) based interface which further lets them 

interact with the karuna robot to pick and place an object. Thus, having potential to train the brain 

to produce neuroplasticity which helps to rewire motor function to render in the recovery and 

reinstate neurophysiological functions (Qu et al., 2022). However, this is possible as long as the 

patient still has a normal functioning brain which is still capable of making motor-based neural 

activities (McFarland & Wolpaw., 2011). 

Various techniques have been researched to collect neurophysiological signals from the brain and 

there are two ways to do this, namely, invasive, partially invasive and noninvasive BCI based on 

the level of how close the electrodes are from the brain tissues (Gupta et al., 2018) (Martini et al., 

2020). The Invasive BCI use a more directly implanted microelectrode in the cortex to record 

neurophysiological signals which has better performance than non-invasive method in terms of 

higher spatial resolution and better signal to noise ratio. However, Karuna robot uses non-invasive 

BCI, which is much safer, economical and easier to use. Thus, Electroencephalography (EEG) is 

the data that is taken using non-invasive BCI, which is used to capture brain activities and signals 

by putting the electrodes on the scalp of the subject (Abdulkader et al., 2015).  
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In the current scenario, BMI/BCI technology is being used to control many machines and robots 

like exoskeleton, quadcopters, wheelchairs, virtual cursors. Researches are being conducted to 

rehabilitate patients with neurological disorder to control robotic arm to conduct grabbing objects. 

However, robotics in the field of rehabilitation of stroke patients using Motor imagery and brain 

computer interface is a novel and advanced technique in its infancy (Chen et al., 2022) because as 

the Degree of Freedom (DOF) increases in robotic arms, the more complex it is to hold on to 

multiple objects in a 3D space, persistently and successfully (Xu et al., 2022). 

The details regarding Karuna robot’s design is given in chapter 3 which describes the mechanical 

and the pick and place rehabilitation design, data structure to optimize the time complexity of pick 

and place and all the signal processing for the raw EEG data is given sequentially. Moreover, the 

test results for control of degree of movement, calculations of band power and errors and overall 

success rate of pick and place is given in chapter 4.  

1.2 Statement of the Problem 

In the field of rehabilitation, the patients usually have either low or absolutely no motor movement. 

Thus, exoskeleton robots can provide some gait restoration. However, exoskeleton is depended on 

how the user interfaces with it too. It takes into consideration of the movement intention of the 

user. However, some user may have no control of their arm movement which can be facilitated 

with EEG command as a high-level control strategy to let the actuators and sensors perform a 

recorded movement with regard to the intentions on the patient. Decoding EEG signal to get the 

real time motor intention of the user is difficult. 

1.3 Objectives of the Research 

The objective of this paper is to create an exoskeleton arm robot, Karuna, to pick and place object 

with EEG Signals. 

1. A Brain machine interface system with an exoskeleton arm robot. 

2. Create a pick and place system. 

3. Manage, structure and organize the EEG signals to have desired control movements. 

4. Analyze Signal processing of raw EEG data (offline). 
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1.4 Contributions 

The contributions in the research are as follows: 

• Circular Queue Data Structure to manage and optimize the commands from EEG signals. 

• Design of a custom linear interpolation function to resonate EEG signal power with the 

degree of joint movements rather than binary movements or just have absolute positive or 

negative movements.  

1.5 Limitations and Scope 

1.5.1 Limitations  

The online raw EEG data could not be acquired due to student license limitations for the Emotiv 

Insight 2.0 headset. The raw EEG data is recorded, only then the signal is pre-processed and 

analyzed. Thus, Online and real time classification and modification of algorithms to classify 

patterns of EEG data is the only step the paper was not able to carry out. 

1.5.2 Scopes 

1. Create 2 Degree of Freedom Robot 

2. Torque of servo is 3.4 Nm. 

3. Length and fitting suitable for average Asian arm. 

4. Pick and place. 
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CHAPTER 2 

LITERATURE REVIEW 

Controlling an exoskeleton robot arm with the signals from brain which intends to make motor 

movements for rehabilitation is the main purpose of this study. The brain machine interface based 

on motor imagery signals to control an exoskeleton arm is proposed. The literature discusses the 

following topics:  

2.1 Exoskeleton Robot 

An exoskeleton robot or wearable robot is defined as “powered devices that attach around and to 

a human or animal body and contain actuators that deliver mechanical power to aid movement. 

(Ferris et al., 2019). Recently, more wearable, portable, and lightweight exoskeletons are being 

developed, enabling broader healthcare applications as shown in Figure 2.1. 

Figure 2.1 

Rehabilitation Upper Limb Exoskeletons.  

 

There are namely two types of robots used as assistive robots for rehabilitation and Activities of 

Daily Living (ADL): end effector-based systems and wearable exoskeletons. End effector robots 

apply forces and guide the hand for therapy but doesn’t render information about joint angles of 

humans (βi) as shown in Figure 2.2. Wearable exoskeletons enhance mobility and control human 

joints, providing multiple degrees of freedom, but are complex to design.  
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Figure 2.2 

Dh Parameter of Upper Limb. 

 

According to the intended use, aspects like degrees of freedom (DOF), sensing and control 

techniques, actuators, power transfer, and the particular upper limb segment to be controlled must 

be taken into account while constructing upper-limb exoskeletons. Planned joint motions and 

motion trajectories are the main emphasis of rehabilitation robots. 

Exoskeletons for rehabilitation should deliver routine, task-focused care with customizable 

controller designs based on patient individualization and rehabilitation stages. Depending on the 

patient's muscle control status, control tactics might be either patient-passive or patient-

cooperative. In order to improve human-robot interaction for better care, motion intention estimate 

is essential. There are some bio signals that can be used, such as: 
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2.1.1 EEG Signals 

EEG is induced by the neurons that fire electrical signal in the brain. These are categorized as per 

the frequency they produce, such as the delta, alpha, beta and gamma. When a person does an 

activity like extension of arm, they create Event-related desynchronization signals that the 

electrodes in EEG caps can detect and use this very signal as an input to a computer or robot 

Esposito et al. (2021). There are two types of EEG, namely, invasive and non-invasive. While 

Invasive methods for a Brain machine Interface is being developed by Elon Musk, CEO of 

Neuralink Musk. (2019) which has been granted approval for the first human trial by The US FDA 

for the same. Paul & Singh. (2023). However, the most commonly used method for BMI is Non-

invasive.   

Figure 2.3 

Different Brain Frequencies and Their Associations 
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Figure 2.4 

5 Channels EMOTIV Insight 2.0 EEG Headset.  

  

 

The authors in Bhagat et al. (2016) presented MAHI Exo II, which used EEG signals to control an 

upper limb 4 DOF exoskeleton arm for a stroke patient. They asses the feasibility of an EEG-based 

brain-machine interface (BMI) for detecting motor intent in chronic stroke patients. MRCPs 

(movement related cortical potentials) measured by EEG electrodes drove an upper-limb 

exoskeleton for guided movement. BMI optimizations included adaptive time windows, pooling 

training data from consecutive days, and gating predictions with residual EMG to reduce false 

positives. The patient-specific BMI calibration accommodated diverse stroke patients. Testing 

showed consistent BMI performance across multiple days without recalibration, with a mean TPR 

(total positive rate) of 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The FPR varied across 

subjects but remained low for those with residual motor function. On average, motor intent was 

detected approximately 367 ± 328 ms before movement onset during closed-loop operation. These 

findings highlight the potential for a robust, closed-loop EEG-based BMI for stroke patients 

without frequent recalibration. Despite all this, the system had lots of signal noise which created 

some hindrance in using the MRCPs. 
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Figure 2.5 

A Brain Machine Interface Control 

 

Xiao. (2014) designed an exoskeleton arm with 4 DOF by using an Emotiv EEG headset with The 

Emotiv EEG headset that has 14 electrodes, which are located at AF3, F7, F3, FC5, T7, P7, O1, 

O2, P8, T8, FC6, F4, F8, and AF4 according to the International 10-20 system. The users were 

trained on the Emotiv’s application software to imagine moving cubes as shown in Figure 2.7 

Since the thoughts were not very consistent, they averaged the time for a movement to take place 

and only when the thought is consistent and waits 3 seconds to execute the mental commands. A 

good combination of timing for executing, thinking and resting were taken to fine tune movements 

imagined by the user. Guassian classifier as showin in Figure 2.6, was used in order to state the 

optimum decision boundary of thoughts. 

Figure 2.6 

Gaussian Model to Render the Intensity of Thoughts. 
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However, it only holds true for one volunteer. It is still not a generalized system which will work 

to seamlessly use EEG signals to move every movement accurately. Moreover, EEG and 

exoskeletons have been used for rehabilitation, but it is still in a very preliminary stage as the 

difficulty lies in decoding the neural activity correctly and also the signal processing classification. 

EEG signals might be a better solution to the already existing EMG based control with a high 

signal to noise ration along with almost no training required but as patients suffering from stroke 

might have muscle atrophy and may have lost muscle signals already. In such cases EEG signals 

from brain can be used to rewire (neuroplasticity) the patient’s brain to use the motor movements 

again, despite the noise and variability in the signal. 

Figure 2.7 

Emotiv EEG Headset and GUI 
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Figure 2.8 

Thought Intensity 

 

Figure 2.9 

Gaussian Model for Intensity of the Thoughts 
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2.1.2 Mixed Bio-signals 

The Figure 2.10 renders exoskeleton arm with mixed bio-signals and electronics sensors. 

Figure 2.10 

Upper Limb Exoskeleton Multi-Sensing and Feedback.  

 

Paredes-Acuna et al. (2022) present a lightweight 3D printed exoskeleton built for elbow 

flexion/extension that uses a robot skin to detect motion intention via acceleration, proximity, and 

interface forces. The exoskeleton integrates physical therapy-inspired control modes such as 

passive mobility, active support, resistance training, and corrective treatment. To examine the 

functionality of the exoskeleton, the researchers conducted a study with four healthy volunteers, 

analyzing force readings and sEMG recordings of the biceps during exoskeleton use. Higher 

assistive levels in supportive therapy modes resulted in significant decreases in normalized sEMG 

(over 40% in passive exercises), whereas higher resistive levels resulted in increases in normalized 

sEMG (over 30% in resistive exercises). This shows that the exoskeleton can alter therapeutic 

regimens based on user intent via multi-sensory interfaces. However, the paper does not cover any 

experiments where the user with very less to no movement due to muscle atrophy even though the 

paper tries to use multiple bio and non-bio sensing. 
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Figure 2.11 

EMG and Force Sensors with Bowden Cables 

 

 

Missiroli et al. (2020) in their study investigated the impact of assistance magnitude on human 

performance using a myoelectric-driven exoskeleton suit. Findings revealed consistent advantages 

in terms of muscular activation magnitude and delayed onset of fatigue with increasing assistive 

levels. Importantly, the inclusion of muscular activity in the control loop did not compromise 

movement smoothness as assistive magnitude increased. The results indicate that the combination 

of the hardware and control frameworks is reliable for detecting movement intention and adapting 

real-time assistance. The research does not take into consideration about the noise and muscle 

fatigue. 

It is mostly the combination of using both EMG and EEG signals to render an interface between 

robots and humans. Lalitharatne and colleagues conducted a thorough analysis of how the 

combination of EMG and EEG signals could be utilized in bio-robotics, emphasizing the primary 

benefits of this method. While EMG-EEG is recognized as a potential interface for robotic 

manipulators and end-effectors, its use in wearable arm exoskeletons remains limited. Kawase and 

his team created a real-time exoskeleton tailored for paralysis patients using both EMG and EEG, 

with EMG determining joint angles. Another study introduced an artificial neural network model 

optimized for instinctive control of an arm exoskeleton, where EMG predicted grabbing actions 

and EEG predicted arm movements. 
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The dual use of EMG and EEG provides distinct advantages for exoskeleton control by tapping 

into both muscle and cerebral activities. This dual-input system can offer predictions of motor 

actions and user intentions and also serves as a valuable tool for evaluating rehab treatments. 

However, capturing and synchronizing both EMG and EEG data demands a more sophisticated 

design and control approach. 

2.2 Soft Exoskeleton Actuators 

In Figure 2.12, we can see various soft exoskeleton arm robots with various types of actuators. 

Figure 2.12 

Upper Limb soft Exoskeletons and Types of Actuations 

 

2.2.1 Cable Actuation 

This type of actuations usually uses a Bowden cable as shown in figure 2.2.3. These are usually 

made of steel or nylon to create tension or compression forces where on end is connected to the 

input where the force takes place and the second is the output where the actuation takes place over 

some distance. Saiful. (2023).  Wei et al. (2018) Introduced a design for a soft upper limb 

exoskeleton aimed at rehabilitation training, incorporating insights from human biomechanics. The 

innovative soft driving structure, utilizing Bowden cables, is devised to address potential joint 

damage and arm discomfort arising from man-machine interaction forces. Structural optimization 

is a key focus to minimize these interaction forces, and simulations in ADAMS involve adjusting 

the number and location of force-bearing points, particularly in the elbow movements. The study 

employs a human arm model for motion simulations and utilizes a mathematical model based on 

Bowden cable transmission to describe shoulder skeletal system movements. Experimental data 

analysis, aided by a man-machine contact force sensor, reveals that increasing the number of force-
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bearing points and moving them away from the elbow effectively reduces man-machine interaction 

forces. 

Figure 2.13 

A 3d Model of the Bowden Actuation 

 

Samper-Escudero et al. (2020) presented a textile-wearable soft exoskeleton designed to assist 

shoulder and elbow flexion. The cable-driven actuation is integrated into a jacket, utilizing various 

textiles and deformable components. Challenges associated with textile use, such as slipping, 

dampening, and pressure sores, are addressed through a combination of textile layers and force-

compliant sewing. The design incorporates specialized elements for cable guidance, anchoring, 

and support, employing diverse tailoring techniques for simplified fabrication, wearability, and 

cleaning. Motors and electronics, designed to be textile-compatible, are housed in a backpack, 

reducing forces from dynamic loads and alleviating arm weight. The emphasis is on enhancing 

autonomy and assistance through the optimization of cable routing and friction reduction.  

2.2.2 Pneumatic Actuators 

Pneumatic actuator is basically converting the compressed air into mechanical motion. It is 

beneficiary for position control in a system. Whereas, hydraulics actuators uses fluid pressure to 

mechanical motion. It is necessary where high force is required. Abe et al. (2019) introduced a 

new winding technique for a pneumatic artificial muscle. Using this approach, the inflation of 

silicone tubes is converted into muscle contraction, with the expansion occurring on only one side 

of the muscle. This means that the actuator's expansion does not impact nearby objects. 
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Consequently, this muscle design is well-suited for wearable robots, ensuring there is no 

compression on the user's skin. The paper presents simplified models for the contraction ratio and 

force, which are validated through experiments. The prototype discussed in this paper achieves a 

maximum contraction ratio of 35.8% and a maximum output force of 12.24 N, all within a slim 5 

mm thickness. Its high compatibility makes it an excellent alternative for wearable robots. 

Figure 2.14 

18 Weaves McKibben Muscle  

 

2.3  Control  

Control systems are a way that uses algorithms and rules to state the desirable behaviors of a 

system. It can be used to control the speed and precision of how the robot moves. Example, 

assembly robot, self-driving vehicles and even elevators. These control systems are backed by 

sensors that give feedback about the condition or states of the robot and then the actuators respond 

by the mathematical equation or rules set out by the engineer to behave in a certain desirable way.  

There is a wide domain to explore in control systems, but the project aims to use lower standard 

of control for the exoskeleton. As for closed loop control, we should only use those variables that 

we can control and measure. 
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2.3.1  Impedance and Admittance Control 

Impedance and admittance control techniques are inspired by biological systems and revolve 

around the interchange between position and torque. The impedance controller's objective is to 

produce an interaction force based on the position error, like ensuring the task trajectory remains 

undisturbed. On the other hand, admittance control seeks to enable movement based on 

force/torque feedback, enhancing the interface between humans and exoskeletons. Within the 

realm of rehabilitative exoskeleton designs, these controllers can operate in either the task space 

or the joint space. Controllers working in the task space, also known as Cartesian space, are 

generally favored because they directly pertain to the design of task trajectories and task-space 

movements are three-dimensional, unlike the multi-dimensional joint space. The choice and 

positioning of sensors should be consistent with the chosen control approach. In essence, for all 

design scenarios, the combination of sensors, control mechanisms, and additional equipment 

should be integrated based on the specific tasks at hand.  

Figure 2.15 

Impedance and admittance control (EduExo,2023) 

 

Da Silva et al. (2020) Presented a hybrid-controlled exoskeleton robot where impedance 

controllers are combined with biological signals to amplify human inputs and integrate adaptive 

mechanisms for flexible impedance control. One notable study presented a combined impedance-

admittance control approach that utilized EMG data in real time for a 2DOF robot arm, the average 

error from shoulder and elbow was rendered to be 2.452% with no payload. The system could be 

better by having control variables with regard to the posture variations of the subject or patient. 

Kim et al. (2014) presented presented force and impedance controller in their exoskeleton to 

compute the coupling torque to get the well-coordinated and natural movement of the shoulder, 

called SHR (Scapulohumeral Rythm The impedance controller then does this by obtaining the 
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reference angles of shoulder girdle with respect to the upper limb angle, using the reference angles 

of the shoulder girdle. Furthermore, they used Newton-Euler recursive algorithm to achieve it. The 

device performed well on the experiments conducted to render kinematics and dynamics to exhibit 

the task-space force and impedance control as desirable outcome.   

Figure 2.16 

2 DOF Exoskeleton with Impedance Control 

 

2.3.2 Adaptive Control  

Adaptive control systems can automatically adjust to changes in dynamic models with fluctuating 

parameters, ensuring that any inconsistencies in system dynamics are addressed. In contrast, SMC 

(Sliding mode control) control is dependent on time. By merging SMC and adaptive control, 

adaptive SMC has been realized. Kang et al. (2013) created a strategy to support the safety of a 

five-DOF upper limb exoskeleton. Their adaptive control design focused on precise trajectory 

following, enhanced resilience to faults, and safety. The refinement of exoskeleton design is 

pivotal for upper limb exoskeletons. Nasiri et al. (2021) introduced a novel adaptive control system 

for fine-tuning assistance levels in exoskeletons, leveraging a blend of adaptive feedforward and 

feedback controls. Brahmi et al. (2018) put forth an adaptive control method for tracking that 

utilized a backstepping procedure paired with time-delay estimation to ascertain unanticipated 

dynamics and offset any external disturbances within set limits. Alshahrani et al. (2021) showcased 

a four-DOF upper limb exoskeleton that employed both synchronous ipsilateral control and a 

mirror control system transitioning from ipsilateral to contralateral, granting intentional control 

over the exoskeleton for the upper limb. 
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Figure 2.17 

Control Techniques with Non-Bio Sensor Feedback 

 

2.3.3  Position Control 

The position controller is used for controlling a specific position like joint angles of a linked 

manipulator robot. Furthermore, it aids in moving the links in a desired output angle. The torque 

value varies until it reaches the desired outcome.  
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Figure 2.18 

Position Control Block Diagram 

 

Crea et al. (2017) presented an arm exoskeleton robot for the rehabilitation of elbow movement 

with position control and torque control. In the case for position control, the links or joints move 

in desired angle output trajectory in a closed loop. They used proportional Integrative regulator 

which determines the error for desired to measure joint. 
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CHAPTER 3 

 METHODOLOGY 

3.1  Overview of System 

From the Figure in 3.1, The exoskeleton arm robot receives commands from the EEG headset, 

Emotiv insight 2 via the main micro controller which filters the OSC messages of motor 

movements to execute the positive and negative movements of the two joints of the robot. A 

combination of these commands from the user of the EEG headset moves the joint to pick an object 

from the gripper as the end effector from one point and tries to control the degree of the joints to 

place the object to another point / box.  

Figure 3.1 

System Overview Block  

 

The Arm exoskeleton robot is placed in an initial position with the gripper ready to pick and object. 

The EEG headset, Emotiv Insight is connected to the host PC via Bluetooth. The Emotiv’s api then 
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requests for the user’s trained mental commands namely, netural, push, pull and lift. These mental 

commands are streamed through OSC(Open sound) protocol via ethernet cable from host computer 

to Arduino mega via Ethernet shield. The Arduino first maintains connection to receive the OSC 

messages, buffers the commands from 0 to 10 range for each mental commands like neutral, push, 

pull and lift. Then, the intensity of the OSC command for each command is mapped to match the 

servo’s movement to give a sense of control to user for controlling the degree of movement of the 

joints instead of the servo moving in absolute angles. 

Figure 3.2 

Flowchart of the Working of the System 
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3.1.1 System Controllers 

There are two types of controllers in the system. One is the EEG headset that plays the most 

important part in the system to send rapid OSC messages from the user’s imagination and the other 

is the Arduino that filters these extremely varying OSC messages and buffers them, so that a 

combination of joint movements can achieve pick and place. The user trains and saves data, so that 

the next time user uses the EEG head, it can match the movements imaginations they trained on. 

These commands are sent via OSC protocol in floating values. Hence, an ethernet is used to 

connect the pc and Arduino to have the OSC protocol sent locally which is useful when you want 

instant real time / delay less communication. 

The EEG headset is a device designed for research of brain waves and brain machine interface 

applications. It has five channels plus two reference sensors, capturing brain activity across key 

areas. The high-resolution data acquisition allows users to monitor brainwaves and translate them 

into meaningful metrics and use that to control robots or computer applications. The Insight 2 is 

wireless, making it both portable and versatile and testing and prototyping is much easier. 

Figure 3.3 

Emotiv Insight 2 Headset 
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Figure 3.4 

Arduino Mega Micro-Controller 

 

The Arduino Mega 2560 is built around the ATmega2560 microcontroller, featuring 54 digital 

input/output pins, including 15 pins for PWM outputs, and 16 analog inputs. It is equipped with 4 

UARTs for hardware serial communications, a 16 MHz crystal oscillator for timing, a USB port 

for programming and communication, a power jack for external power supply, an ICSP (In-Circuit 

Serial Programming) header for bootloader programming, and a reset button for restarting the 

board.  

As discussed in previous section, the Arduino microcontroller filters the osc messages and tries to 

allow the correct commands to make the pick and place work. Furthermore, it also maps the 

intensity of the OSC messages from the EEG headset to make the joints move accordingly to give 

a sense of control in the degree of movement. 
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3.2 Mechanical Design  

The design is made with 3d printed filaments, load sensor, amplifier and high torque servos. The 

design of the exoskeleton is inspired by an open source 3d model from EduExo (Volker Bartenbach, 

2017). 

Figure 3.5 

Design of Karuna Robot 

 

Figure 3.6 

Motor Housing 

 

  



25 

 

Figure 3.7 

Motor Interface 

 

 

Figure 3.8 

 Link  
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Figure 3.9 

Cuffs (2) 

 

Figure 3.10 

Motor Housing 
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Figure 3.11 

Gripper (Open-source Gripper on Grabcad website (Anand, 2023) 

 

3.3 Data Structure: Circular Queue and Linear Interpolation 

In order to have a sequenced and desirable result of performing joint movements, tracking them as 

well as performing pick and place, A circular Queue method is used to buffer and manage the OSC 

messages from the headset and API that could result in random and undesirable movements. We 

specifically want mental commands like neutral, push, pull and lift to be queued. 

It is a circular linear data structure and follows the first in and first out. Unlike linear circular data 

structure, where after the addition of last element, we cannot add another element even if there are 

empty spaces before the front element. To combat this, after the queue is full in the last position, 

new elements can be added again from the first position. Then, use dequeue to remove the elements 

and add new elements to save space and can run the neutral, push, pull and lift.  

Moreover, the use of Linear interpolation to map the OSC messages which range from 0 – 10 with 

servo movements to use floating values to resonate and mimic our desired degree of movement. 

The equation is as follows: 

y= y1+ (y2−y1) / (x2−x1)×(x−x1) 

Here, 

X and Y values are unknown and are the OSC messages from the EEG headsets that can be push, 

pull, lift or neutral mental commands. Then, Y1, Y2, X1 and X2 are the lower and upper ranges 
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or initial position and target position in the servo and the lower and upper range of OSC message, 

0-10. Thus, by using this logic, we map the intensity of the mental commands and use it to control 

the degree of movement of Karuna Robot. 

Figure 3.12 

Enqueue Method for Mental Commands. 

 

In figure 3.12, we have a circular queue where the front and rear node begin from 0 position from 

-1. Then, we set both front and rear in 0 position then perform enqueue on rear node to have Neutral 

at 0. Then, rear node is set to 1 after (Rear+1) % N. This way we can populate the arrays until we 

have enqueued our four commands Neutral, push, pull and lift. Then, we can begin dequeue by 

performing Front = (Front + 1) % N which will bring the position of front node to 1 from 0, then 

1, 2 and 3. In the meantime, enqueuing also takes place rapidly so we always have the sequence 

we want. The time complexity for enqueue is O (1) which makes it ideal for faster execution of 

tasks. 

  



29 

 

Figure 3.13 

Complete Mechanical Design of Karuna Robot 

 

The final design for Karuna robot involves a 2 DOF exoskeleton robot with a gripper as end 

effector and 3.4Nm servos. It is mounted on aluminum profiles to provide support and space to 

perform pick and place. 
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3.4 Brain Machine Interface System 

The 5 Channel EEG headset, Emotiv insight 2 renders the brain activities and signals. 

Figure 3.14 

5 Channel EEG Headset: Emotiv Insight 2 (Hendradi, 2018) 

 

The headset used is a 5 channel namely, AF3, Af4, T7, T8 and Pz headset Emotiv Insight 2.0, with 

0.5-43Hz and with digital notch filter from 50 to 60 Hz. Furthermore, it has sampling rate of 128 

SPS. (Emotiv, 2024). Each of these 5 electrodes correspond to specific parts in the brain and each 

has specific readings for the same. The three parts of the brain that these electrodes give readings 

are from the frontal lobes which are useful for motor moment planning and reasoning. Whereas, 

Temporal lobes are responsible for the recalling of the memories related to motor and auditory. As 

for Parietel, it is known for being able to distinguish between senses felt from all over the body 

regarding touch, temperature etc. (Lobes of the Brain, 2016). 
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Table 3.1 

EEG Electrodes and their Meaning 

Lobes                                   Electrodes                                      Function 

Frontal                                  AF4, AF3                                       Motor Planning 

Temporal                              T7, T8                                            Memory, Audio 

Parietal                                  Pz                                                  Sensations, attention  
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3.4.1 Experimental Setup  

The User is given enough time to train each specific mental commands by making simple and 

repeatable movement imagination in their head and train in the Emotiv’s Desktop Application. 

The user gets feedback on the accuracy of successfully performing the imagination of movement 

by interpreting the box movement corresponding to their imagination.  

Figure 3.15 

Training Mental Commands 

  

The Figure 3.15 depicts user’s personal training profile. The more the user trains the mental 

commands, the more accurate the prediction of mental command is. 
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Figure 3.16 

Feedbacks Box for Mental Commands 

 

3.4.2  Signal Collection and Pre-Processing 

The signal collection is done via Emotiv Insight 2 device in Figure 3.3 above. 5 electrodes are 

placed in the head to retrieve information from AF4, AF3, T7 and T8 at 128 Hz sampling frequency. 

The raw EEG data is recorded offline via the Emotiv pro application provided by the company. 

The raw EEG data was recorded and saved as a .csv file. The recording involved a baseline 

recording in the beginning with two activities of closing and opening eyes for 15 seconds each. 

Then, manual keystroke time marking was done to allow around 20 seconds each for the user to 

think of each mental commands.  
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Figure 3.17 

Raw EEG Data Recording  

 

In figure 3.17, we can see the raw EEG recordings across all the electrodes: AF3, T7, Pz, T8 and 

AF4. We can also see red vertical lines above which were keystroke generated in order to get the 

window to analyze each mental state for 20 seconds each.  
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Figure 3.18 

Raw EEG Data to .CSV Files in Time Series 

 

We acquire the csv file from the Raw EEG data in time series as show in Figure 3.18. This is an 

unprocessed EEG data and may not be able to provide meaningful data. Thus, we need to perform 

preprocessing and Fast Fourier transform to the above to get EEG data in frequency domain. A 

high band pass filter of second order is applied at 0.5Hz to reduce noise and the slew value is 

limited to 30mv. Then, Waves such as Theta (4-8Hz), Alpha (8-12Hz), Low beta. Moreover, The 

Fourier transform window length used was 256 and the sliding window step size was 64.   

Once the EEG is preprocessed and change to frequency domain, it renders another csv file like in 

Figure 3.19. 
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Figure 3.19 

Preprocessed EEG Data in Frequency Domain 

 

Then, by performing some manual tracking for band power during specific mental states like 

Neutral, push, pull and lift from the “stamp_i_desc” column and “stamp_f_desc” column in Figure 

3.19, which is the starting point and final points. We can evaluate the average band power of all 

waves across electrodes during a specific mental state based on csv file in figure where events are 

marked during the EEG recording. 
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Figure 3.20 

Mental Commands Trigger Time Stamps  

 

In Figure 3.20, we can see the Neutral, Push, Pull and Lift Timestamps which helps in tracking 

down data from EEG to filter and evaluate the EEG data during these periods of time. 
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CHAPTER 4 

RESULTS  

4.1 Control Degree of Movement 

A circular enqueue and dequeue method along with linear interpolation was used to match have 

sequential and nuance control of joints to move as per the intensity of the user’s brain signals 

instead of having absolute positive or negative. 

Moreover, in Table 4.1, we record all the final angles the joint 1 reaches with target angle being 

30 degrees from its initial, 90 degrees for 20 trials. Then, we take Mean Absolute error and Root 

mean Square Error to analyze the error. 

Mean absolute error is given by, 

Figure 4.1 

MAE and RMSE Formula (Acharya, 2021) 
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Table 4.1  

Joint 1: 30 Degrees Movement from 90 

Trials                      Final Angles                    Initial Position               Target Angles 

1                                     87                                    90                                  30 

2                                     82                                    90                                  30 

3                                     85                                    90                                  30 

4                                     77                                    90                                  30 

5                                     72                                    90                                  30 

6                                     50                                    90                                  30 

7                                     44                                    90                                  30 

8                                     41                                    90                                  30 

9                                     36                                    90                                  30 

10                                   32                                    90                                  30 

11                                   30                                    90                                  30 

12                                   30                                    90                                  30 

13                                   30                                    90                                  30 

14                                   30                                    90                                  30 

15                                   30                                    90                                  30 

16                                   31                                    90                                  30 

17                                   29                                    90                                  30 

18                                   30                                    90                                  30 

19                                   30                                    90                                  30 

20                                   30                                    90                                  30 

MAE                             15.4 Degrees 

RMSE                           26.18 Degrees 
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Figure 4.2 

Exoskeleton Robot Joint 1: 30 Degrees from 90 
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Figure 4.3 

Joint 1: 30 Degrees from 90 graph 

 

The servo maps the intensity of signal it receives from the EEG to mimic the movement of user’s 

intention to move joint 1 to 30 degrees. We can evaluate from the Mean Absolute Error, 15.4 

degrees and the Root Mean Square Error, 26.18 degrees, that there are some big deviations in the 

initial trials which is contributing in the significant average errors.  
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Table 4.2  

Joint 1:180 Degree Movement from 90 

Trials                      Final Angles                 Initial Position                    Target  

1                                      111                                 90                                    180 

2                                      127                                 90                                    180 

3                                      133                                 90                                    180 

4                                      164                                 90                                    180 

5                                      164                                 90                                    180 

6                                      164                                 90                                    180 

7                                      164                                 90                                    180 

8                                      164                                 90                                    180 

9                                      171                                 90                                    180 

10                                    171                                 90                                    180 

11                                    171                                 90                                    180 

12                                    171                                 90                                    180 

13                                    171                                 90                                    180 

14                                    172                                 90                                    180 

15                                    172                                 90                                    180 

16                                    172                                 90                                    180 

17                                    173                                 90                                    180 

18                                    173                                 90                                    180 

19                                    173                                 90                                    180 

20                                    173                                 90                                    180 

MAE                              17.3                        

RMSE                            24.34 
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Figure 4.4 

Joint 1 Attempt to Move to 180 Degrees 

 

In Figure 4.4, we can assess from MAE, 17.3 and RMSE, 24.34 that we have significant errors in 

joint 1 reaching 180 degrees. From the table 4.2, We can assess that the join is not able to fully 

reach 180 degrees, this is because of mechanical obstruction as joint one has to deal with more 

load against the gravity.  
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Figure 4.5 

Joint 1 180 Degrees Graph 
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Table 4.3  

Joint 2: 45 Degree Movement from 90  

Trials                      Final Angles                 Initial Position                  Target Angle 

1                                     43                                  90                                   45 

2                                     45                                  90                                   45 

3                                     46                                  90                                   45 

4                                     47                                  90                                   45 

5                                     44                                  90                                   45 

6                                     41                                  90                                   45 

7                                     44                                  90                                   45 

8                                     45                                  90                                   45 

9                                     46                                  90                                   45 

10                                   43                                  90                                   45 

11                                   44                                  90                                   45 

12                                   43                                  90                                   45 

13                                   44                                  90                                   45 

14                                   43                                  90                                   45 

15                                   45                                  90                                   45 

16                                   44                                  90                                   45 

17                                   43                                  90                                   45 

18                                   44                                  90                                   45 

19                                   43                                  90                                   45 

20                                   45                                  90                                   45 

MAE                             1.3 

RMSE                           1.61 
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Figure 4.6 

Joint 2 45 Degrees Movement 
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Figure 4.7 

Joint 2 45 Degrees Movement Graph 

 

In the Figure 4.7, we can evaluate that the MAE is 1.3 and RMSE is 1.61. This shows not a lot of 

errors when it comes to joint 2 which also has the end effector, gripper.  
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Figure 4.8 

Joint 2 45 Degrees Movement 
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Table 4.4 

 Joint 2: 180 Degree Movement from 90 

Trials                       Final Angles                  Initial Position                   Target Angle 

1                                     160                                 90                                   180 

2                                     169                                 90                                   180 

3                                     172                                 90                                   180 

4                                     170                                 90                                   180 

5                                     171                                 90                                   180 

6                                     173                                 90                                   180 

7                                     172                                 90                                   180 

8                                     170                                 90                                   180 

9                                     173                                 90                                   180 

10                                   180                                 90                                   180 

11                                   181                                 90                                   180 

12                                   179                                 90                                   180 

13                                   176                                 90                                   180 

14                                   178                                 90                                   180 

15                                   179                                 90                                   180 

16                                   177                                 90                                   180 

17                                   179                                 90                                   180 

18                                   178                                 90                                   180 

19                                   180                                 90                                   180 

20                                   179                                 90                                   180 

MAE                              5.3 

RMSE                            7.3 
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Figure 4.9 

Joint 2 180 Degree from 90 

 

In the figure 4.9, we can see that the joint 2 of Karuna Robot reaches 180 degrees effectively at 

first but has difficulty in maintaining it because of perhaps lack of concentration or lesser intensity 

of focus. However, by the end it is able to maintain the position persistently. 
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We can evaluate the total Average of MAE in both the positive and negative directions in both 

joints of Karuna robot. In Figure 4.10, we can see the average of total MAE is about 9.82. 

Figure 4.10 

Average MAE in Both Joints. 
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The Average RMSE across both the joints and their direction is illustrated in Figure 4.11. It is 

approximately 14.86 which is significantly higher as RMSE gives the errors more weight than 

MAE. The higher MAE and RMSE in joint 1’s both direction is prominent and it is mostly likely 

due to mechanical obstruction as joint 1 has more load that it needs to hold or it could also be 

because of lack of concentration and focus on recalling motor movement imaginations. 

Figure 4.11 

Average RMSE Across All Joints and Directions 
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4.2  Pick and Place 

Karuna Robot attached in aluminum profile, with a pick and place platform in Figure 4.12. 

Figure 4.12 

Pick and Place Set Up  

 

The Pick place was arranged where the gripper of the robot grabs a payload (up to 75 grams without 

mechanical obstructions) from the plain and places it in box which is at an arm’s length distance 

with adjustable height adjustment and the user gives mental commands which is processed using 

circular queue data structure and map. So even in the sequential movements, the precise placement 

of the end effector to depends purely on users’ intensity of mental commands. The movements in 

the buffer of the program expects to make the pick and place will be rapidly deleted and enqueued 

again unless it is not receiving enough intensity of user’s mental commands. Moreover, the 

movements also happen with the same intensity the user desires, so the success and unsuccess of 

pick and place will highly depend on user. 
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Figure 4.13 

Place Operation from One point to Another 

   

The place operation can successfully handle place once the user is able to match all the expected 

positive and negative movements from both joints for the robot to reach to the place phase. 
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Table 4.5  

Ten Trials of Pick and Place  

Trial                                                                                              Outcome 

1                                                                                                       Success 

2                                                                                                       Success 

3                                                                                                       Unsuccess 

4                                                                                                       Success 

5                                                                                                       Success 

6                                                                                                       Unsuccess 

7                                                                                                       Success 

8                                                                                                       Success 

9                                                                                                       Success 

10                                                                                                     Unsuccess 

Average Success rate                                                                      70% 
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Figure 4.14 

Pick and Place Success Rate 

 

In the above trials each took average 2 and a half minutes to achieve but it can either be very long 

but can be really difficult to achieve the task in less time because it relies in the user how they are 

able to use mental commands. 
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4.3 Signals Average Band Power 

The average band power of all the waves across all the electrodes were done and time stamped to 

derive the band power of all waves across all 5 electrodes during neutral, push, pull and lift states. 

The table 4.6 illustrates the band power observed in each neutral (eye blinking), push, pull, and lift 

mental states. 

Table 4.6  

Average Signal Band Power 

Action                      Theta                  Alpha                   Low Beta                  High Beta 

Neutral                    12.0338                  7.9336                    1.1893                      -1.2982 

Push                        4.6200                    4.5513                    -0.3526                     -1.8969 

Pull                          6.3022                    6.5420                    0.7366                      -0.5828 

Lift                          3.8988                    4.4386                    0.2039                      -1.4720 

The above recording is during a session of EEG recording during pick and place task where 

keystrokes q, w, e, r was pressed during the 20 seconds for each mental command were expected 

to be executed.  

The highest Theta band is 12.0338 in neutral state indicated a relaxed or idle time, which makes 

sense, since we are blinking our eyes as neutral command for gripper grab command. The theta 

band is highest in pull command where the user recall the motor movement imagination which is 

more prominent in pull, other than push state with band power of 4.6200 and lift state with band 

power 3.8988 which is the lowest among the pure motor imaginary tasks. 

It is observed that Alpha band is highest in neutral state as this is expected to occur since blinking 

of the eyes triggers the alpha bands the most and commonly used in other brain machine interface 

research. The switch from 7.9336 in neutral state to much lower 4.5513, 6.5420 and 4.4386 band 

power in push, pull and lift mental state shows an increase in the cognitive load and distinguishes 

from normal idle and relaxed state in neutral state.  
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The observation in low beta which is responsible for active thinking is significantly low but exists 

during mental commands. It is significantly low during push state with -0.3526 band power, 

whereas it is slightly evident in both pull and lift state with 0.7366 and 0.2039 respectively. 

Although, it was expected to be a little more prominent than this, it still signifies some active 

thinking taking place during the execution of mental commands.  

Figure 4.15 

Neutral State 

 

Theta (4–7 Hz): A drop in theta band strength may indicate a change in mental state from one that 

is more contemplative or at ease to one that calls for more focused attention or interaction. 

Alpha (8–13 Hz): A peaceful wakeful state is linked to alpha waves. This decrease may suggest 

that the brain is actively involved in cognitive or motor tasks rather than being "at rest." 

Low Beta (13–16 Hz): Low beta is frequently associated with focused, active thought and busy, 

nervous thinking. A drop could indicate a reduction in anxiety or active involvement, even though 

an increase is usually expected during intense attention. 
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High Beta (17–30 Hz): A high degree of arousal, anxiety, or attentiveness is correlated with high 

beta activity. 

Figure 4.16 

Push State Compared with Baseline 

 

Theta (4–7 Hz): A drop in theta band strength may indicate a change in mental state from one that 

is more contemplative or at ease to one that calls for more focused attention or interaction. 

Alpha (8–13 Hz): A peaceful wakeful state is linked to alpha waves. This decrease may suggest 

that the brain is actively involved in cognitive or motor tasks rather than being "at rest." 

Low Beta (13–16 Hz): Low beta is frequently associated with focused, active thought and busy, 

nervous thinking. A drop could indicate a reduction in anxiety or active involvement, even though 

an increase is usually expected during intense attention. 

High Beta (17–30 Hz): High beta activity is linked to elevated arousal, anxiety, or awareness 

levels. 
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Figure 4.17 

Pull State Compared with Baseline 

 

Theta: An increase in relation to the baseline may indicate a shift towards a more relaxed state or 

greater sleepiness during the pull state. 

Alpha: often lowers during physical movement, an increase here typically reflects a more relaxed 

state, which may appear contradictory if the pull condition contains motor activity. 

Low Beta: An increase is consistent with the expectation during motor activity and may indicate 

increased attentiveness or involvement relative to the baseline. 

High Beta: A drop could mean that, in the pull state—which would be uncommon during an active 

motor task—stress or arousal levels were lowered. 
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Figure 4.18 

Lift State Compared with Baseline 

 

Theta: An increase in relation to the baseline may indicate a shift towards a more relaxed state or 

greater sleepiness during the pull state. 

Alpha often lowers during physical movement, an increase here typically reflects a more relaxed 

state, which may appear contradictory if the pull condition contains motor activity. 

Low Beta: An increase is consistent with the expectation during motor activity and may indicate 

increased attentiveness or involvement relative to the baseline. 

High Beta: A drop could mean that, in the pull state—which would be uncommon during an active 

motor task—stress or arousal levels were lowered. 
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CHAPTER 5 

CONCLUSION 

5.1 Summary  

Karuna robot with 2 DOF arm exoskeleton robot for pick and place was presented which can be 

moved with some degree of control based on the user's EEG signal power. It is a rehabilitation 

robot that tries to help people with lack of motor movements in their arm to reinstate their motor 

movements. There are many papers that use other techniques to use EEG signals to give commands 

to computer or robot but this paper tried to use motor imagery which is still in its infancy. moreover, 

many papers focus on improving the classification and use their algorithms to classify commands 

but there aren't much paper that are trying to consider the time complexity and buffering the highly 

variable signals from brain.  

Our Data structure to handle and buffer the brain signals to filter and only use the desirable 

commands has made the time taken to complete pick and place task done within 2 minutes on an 

average. with best time complexity being 0(1) which means the time of execution of task is usually 

constant and fast. Moreover, our use of linear interpolation tries to address tasks not being just 

absolute positive or negative but tries to mimic the way we naturally use our hand to have only 

certain degree of movement as per our wish. This paper addressed the success of how our brain 

can recall a movement with combination of concentration and active thinking as we able to find 

that during mental commands, we were getting theta bands which can be understood to be recall 

of memory, the spike on low beta was not much but we were getting some frequency readings 

during the mental commands execution window which showed on active thinking or imagination 

which we might be able to better understand and derive in later studies.  

Moreover, the presence of alpha bound from frontal lobes electrode renders planning of motor 

imagery. The MAE and RMSE which were higher than joint 2 indicate a possible indication that 

our mental command lift which was used to control the joint 1 was not much successful or needed 

a more replicable memory or imagination of motor movements. 
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5.2  Future Works 

The system can be enhanced by using EEG headset with more electrodes that has Central midline 

or Cz, C1, C2, C3 electrodes that are responsible for better motor movements recording and 

analyzing. Moreover, using and creating our own classification algorithm to better recognize the 

patterns of mental commands can be highly useful and of scientific research purposes. Moreover, 

combining other Brain machine interface techniques like SSVEP and P300 might also be useful 

and fast when classifying tasks as they are known to be fast and easy to train as they do not depend 

entirely on pure motor imagination. 
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