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ABSTRACT 

The navigation task is one of the most difficult tasks for an intelligent robot because of 

these three reasons: “Where am I?”, “Where am I going?” and “How do I get there.” 

For precision agriculture, high precision and accuracy equipments are required for path 

tracking but they are expensive. Thus, this research proposes to improve the localization 

method based on machine vision in order to obtain low cost and data richness. In this 

work, the direct seeding of rice tractor with a machine vision system is applied as the 

pivot study. During traveling along the paddy field, the nearby wheel track row is the 

reference for guidance and the control variables are the orientation and the lateral 

distance between a tractor and a nearby row. Three algorithms: Principal Components 

Analysis (PCA), Hough transform (HOUGH), and Random Sample Consensus 

(RANSAC) is used to estimate the trough and the performance comparison has been 

studied. The experimental results show that PCA and HOUGH methods are suitable to 

estimate the trough distance. A novel log-likelihood objective function is proposed to 

improve the accuracy of the trough estimate method. It provides the optimized trough 

position compared with the ground truth. Our optimization with the PCA method has 

the average errors between trough position and ground truth as 28.4 and 28.1 

millimeters in two experiments in the year 2019/2 and 2020/1 respectively. 

 

Keywords: Agricultural robot, Image processing, Rice weeding, Trough detection 
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INTRODUCTION 

 Background of the Study 

While Thailand has become one of the largest rice exporters in the world, most Thai 

agricultural activities still depend on human labor with limited technology enhancement 

resulting in low productivity. The importance of using autonomous systems has been 

raised by some recent studies to improve agricultural production. In autonomous 

agricultural systems, we needed to have two major subsystems: the autonomous vehicle 

that employs navigation guidance and control algorithms, and the autonomous add-on 

equipment that involve a set of applications to solve crop operation problems such as 

planting, weeding, fertilizing, and harvesting.  

Many researchers have also emphasized the importance of using multiple sensors fusion 

in autonomous vehicle systems to improve accuracy and reduce uncertainty by merging 

information from multiple sensors including real-time kinematic-global positioning 

systems (RTK-GPS), inertial measurement units (IMU), and machine vision. Sensor 

fusion algorithm has been widely adopted for an autonomous agricultural vehicle today 

to enhance guidance system, localization system, and control system (Astrand et al., 

Bakker et al., Gan-Mor et al., Nieuwenhuizen  et al. and . Perez-Ruiz et al.). However, 

the cost of those multiple sensors is expensive and they require sufficient accuracy for 

precision farming. Other researchers have emphasized the autonomous add-on 

equipment, such as inter-row and intra-row weeding, fertilizing, harvesting, and 

planting (Carballido et al., Peruzzi et al, Reiser et al, Vieri et al.). 

Our work is focused on autonomous tractor for rice planting. Although Puddled- 

transplanted rice (CT-TPR) has been a conventional method of rice planting in Asia 

(Rashid et al., 2009) for several decades, the drawback of CT-TPR is that it requires 

more water and labor than the Dry and Wet direct seeding of rice (DSR) process (Kumar 

and Ladha, 2011). DSR process is more likely to increase and DSR planting machines 

are widely available in the market today. Hence, this work adapts the DSR tractor as a 

baseline machine with add-on equipment to be used as one of the core parts of the 

proposed system and emphasizes on improving row-guidance system.  
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 Statement of the Problem 

The navigation task is one of the most difficult tasks for an intelligent robot because it 

needs to answer three questions, “Where am I?”, “Where am I going?” and “How do I 

get there?” (Leonard and Durrant-Whyte, 1991). It needs to perform localization, path 

planning, and control tracking to answer all these three questions. High precision and 

accuracy of travel distance are mandatory for the agriculture work thus many previous 

researchers have been using multiple sensors fusion such as RTK-GPS, LiDAR, 

compass and odometer, etc. with some filters. However, the high precision sensor cost 

is very high and not affordable for Thai farmers. The other problem is RTK-GPS will 

have information loss when satellites are occluded.  The solution is to use low price 

sensor such as a camera instead of RTK-GPS. Moreover, the guidance and localization 

system need to have a reliable algorithm in order to get potential applications of 

autonomous rice vehicles. 

 Objective of Thesis 

The main objectives of this thesis are to design algorithms for an autonomous guidance 

and localization system. They are described as below.  

1. To develop an automatic guidance system 

2. To get high inter-row precision by using machine vision to detect trough made   

from the tractor wheel’s trace 

3. To optimize the localization position 

 Scopes and Limitations 

The main scopes and limitations of this thesis are described below.  

1. Using square/rectangle wet field 

2. Controlling water level in the field  

3. Estimating trough parameters from offline 
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LITERATURE REVIEW  

In this chapter, the autonomous agriculture system researchers are reviewed. The 

topics are related to guidance system, localization system, tracking and control 

system, and add-on machine equipment in agriculture. 

 Autonomous Agriculture Systems 

An autonomous tractor in agriculture is an intelligent tractor, which emphasizes the 

enhancement of navigation or guidance and tracking control system. The purpose of 

using the autonomous tractor is to achieve high efficiency. The autonomous 

implementation in agriculture is the development of robot applications, such as 

planting, weeding, fertilizing, and harvesting to improve crop operation. Nagasaka et 

al. (2004) used autonomous guidance for rice transplanting. In this research, the 

guidance of a tractor is based on fiber-optic gyroscope (FOG) and real-time global 

position system (RT-GPS) fusion data. Morimoto et al. (2005) develop a prototype of 

an autonomous farm transport robot. Most of this research paper was used machine 

vision to detect intersection guidance markers (IGM) using Hough transform at 

intersection road. Rotary encoders were installed as guidance sensors and used dead 

reckoning for turning on the intersection. All guidance systems mentioned above are 

shown in Table 2.1. 

The tracking control system in tractor such as Backmanvet al. (2012), they were 

controlling lateral position of the tractor. Two algorithms were applied in the tracking 

part. The first algorithm is the Nonlinear Model Predictive Control (NMPC), and the 

second algorithm is the Target Point algorithm (TP). The algorithms' results were 

compared. The Extended Kalman Filter (EKF) was integrated into the algorithm. It was 

used to smooth the signal fusion between GPS, IMU, and 2D laser to recognize adjacent 

driveline. The best result was achieved by using the Nonlinear Model Predictive model. 

Moreover, Kraus et al. (2013) emphasized controlling the tractor in uncertain 

environments such as different soil conditions by implementing Moving Horizon 

Estimation (MHE) to estimate the wheel’s slip and orientation of the tractor. The result 

of estimation was fed to NMPC to provide a wheel velocity and a steering rate.  
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Table 2.1 

Comparison of Guidance Systems 

Researcher group Guidance systems Applications 

Nagasaka et al. 

(2004) 

FOG+RTGPS Transplanting 

 

Morimoto et al. 

(2005) 

Machine vision based 

IGM guidance 
Transportation tractor 

 
 

Han et al. (2015) introduced the path-tracking for a guidance tillage tractor in a paddy 

field based on a dynamic model of tractor, tire slip, and side force from the soil. The 

algorithm used a look-ahead in tracking and setting the offset distance for updating a 

new waypoint defined by limiting the boundary offset (LBO). It was tested in many 

different parameters of look-ahead distance, LBO, velocity, and Interval at the curved 

path for finding the optimal result. The error on a straight line was highest error when 

the tractor was following a curve and tried to come back to the straight line in the next 

row. Moreover, the soil’s moisture content parameter was another effect on the tracking 

error. Kayaca et al. (2015) introduced the kinematic controller for desiring velocity and 

yaw. After that, velocity was controlled based on the Proportional-Integral-Derivative 

(PID) controller. Model Predictive Control (MPC) was set up to control yaw dynamics 

which is calculated based on nonlinear least squares frequency domain system 
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identification. EKF was also used to estimate the position, velocity, and orientation of 

the tractor. The tracking and control systems mentioned above are illustrated in Table 

2.2. 

Table 2.2 

Comparison of Tracking and Control Systems 

Researcher group Tracking and control systems 

J. Backman (2012) 

NMPC 

 

Kraus et al. (2013) 

MHE+NMPC 

 

Han et al. (2015) 

Look-ahead 
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Researcher group Tracking and control systems 

Kayaca et al. (2015) 

PID, MPC 

 
 

 Machine Vision Systems in Agriculture 

Machine vision systems are becoming popularly used for agricultural related tasks to 

meet high precision demand and rich data with a low-cost sensor. Nowadays, the 

systems are used in many applications. Robots, tractors, or drones which autonomous 

platforms normally use machine vision. For example, the research area in green fruit 

detection of Chaivivatrakul and Dailey (2014) proposed a method for improving yield 

detection of bitter melon and pineapple fruits based on texture information acquired 

from the machine vision system. The method had main five steps: features and 

descriptors, feature classification, fruit point mapping, morphological closing, and 

region extraction. They used well-known methods of features and descriptors such as 

SIFT Harris, ORB, SIFT, SURF, Mesh, and IORB. The result shows that 

ORB+SURF128 and Harris+SURF128 are the best features and descriptors for 

pineapple and bitter melon respectively. The classification step uses a SVMs classifier. 

Fruit points are used to generate the location of the candidate as a binary image. Next, 

the regions of the candidate can be merged by using morphological closing with a disc- 

or ellipse shape and then extracting large positive fruit regions as fruit detection. In 

addition, Li et al. (2016) introduced an approach for the automatic prediction of green 

citrus based on a vision sensor that uses fast normalized cross correlation (FNCC) for 

counting immature green citrus fruit. First, FNCC is used to detect the location of fruit 

based on feature and texture. The result of using FNCC still has some false positives 

thus RBH color is used to filter out. Moreover, the results from the previous filter 

intersect with the results of fruit detection based on circular Hough transform (CHT) 
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and image background removal based RBH. The purpose of using CHT is to detect the 

shape of citrus which is a circle. Finally, they filter out again by using the feature of 

smooth and entropy. Relevant research, Qureshi et al. (2017) created two new 

approaches to detect green mangos fruit in mango tree canopies images; the first 

perform texture-based dense segmentation algorithm using machine learning, and 

another is elliptical shape-based model and color algorithm. The comparison of fruit 

detection is shown in Table 2.3. 

Table 2.3 

Comparison of Machine Vision Systems in Fruit Detection 

Researcher group Applications 

Chaivivatrakul and 

Dailey (2014) 

Pineapple and bitter melon detection  
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Researcher group Applications 

Li et al. (2016) 

Green citrus fruit yield detection 

 
 

* red color circuit is final result. 

   blue color circuit is intersection result. 

Qureshi et al. (2017) 

Mango detection 

 

 
*top and bottom images are color and smoothness filtering, 

  and texture-based dense segmentation respectively. 
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Many studies are developing machine vision systems algorithms to improve the 

guidance of autonomous robot. For instance, Astrand and Baerveldt (2005) proposed 

recognition of plant rows using a Hough transform and adapted the plants’ size in 

purpose to get data more than one row. The experiment was set in two detect on rape 

and sugar beets. The result shows that the model can be able guidance machine in the 

applications of cultivator and guidance following of mobile robot, Leemans and Destain 

(2006). They used a machine vision system for seed row localization in the sugar beet 

field. This research estimated guidance row distance from detecting furrow row which 

made from special disc, and seed row. The researchers found that seed row estimation 

based on the Hough transform is better than the estimation of furrow rows. After that 

Leemans and Destain (2007) applied their seed row localization algorithm on the sugar 

beet seed drill machine with connected to the tractor. Then, they controlled the lateral 

of the seed drill machine based on the information of their algorithm. Xue et al. (2012) 

applied variable field-of-view (FOV) machine vision on an automation mobile robot to 

navigate guidance between two corn crop rows and the controller of the mobile robot 

using a fuzzy logic controller to follow guidance crop row. In addition, Jiang et al. 

(2015) applied a new approach for multiple crop row detection for guidance an 

agricultural robot using machine vision systems. Their method had five main steps: 

grayscale image transformation, binary image using Otsu’s algorithm, candidate of 

center point prediction using multiple ROIs to divide the scene horizontally based on 

geometric constraints on the inter-row space, real center point confirmation, and crop 

row detection based on linear least square method (LSM). Another research group is 

Kanagasingham et al. (2020). The researchers improved an autonomous crop-weeding 

robot based on a machine vision system. The advantage of using machine vision was to 

estimate rice crop rows as line guidance for tracking. Then fusion with global data from 

compass, and GPS for path routing. The comparison of machine vision systems in 

guidance row detection shows in Table 2.4. 
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Table 2.4 

Comparison of Machine Vision Systems in Guidance Row Detection 

Researcher group Applications 

Astrand and 

Baerveldt (2005) 

Cultivator and guidance following 

 
*top and bottom images are rape detection for cultivator and   

sugar beet detection for following plant row respectively 
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Researcher group Applications 

Leemans and 

Destain, (2006, 

2007). 

Sugar seed drill 

 

Xue et al. (2012) 

Corn crop row guidance 
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Researcher group Applications 

Jiang et al. (2015)  

Crop row detection for guidance 

 

Kanagasingham  

et al. (2020) 

 

Machine vision based rice crop row for weeding robot 

 
 

 Trend of Robotic in Agriculture 

Agricultural tractors are useful for multiple purposes including planting, weeding, 

spraying, sprouting, fertilization, and harvesting. With the rapid advances in 

technology, autonomous tractors are becoming increasingly important for increasing 

labor efficiency and labor shortage problems. The important factors that affect the 

design of an autonomous agricultural tractor are primarily cost and efficiency. An 

autonomous agricultural tractor requires precise sensors and actuators, but many 

sensors used nowadays, such as real-time kinematic-global positioning system (RTK-

GPS) sensors, are precise and accurate enough but quite expensive and inconvenient to 

use. Moreover, there has an issue in some applications in which GPS information is not 

close enough to the trajectory point. A new challenge of researchers nowadays is to 

develop a sensor to be accurate information to control system at low cost. At the same 
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time, machine vision is emerging to obtain besides low cost and data richness, vision 

sensors give precise local or relative information, which complements global sensors 

such as GPS. 

In addition, full automation in farming is the goal of researchers. For example, Noguchi 

and Barawid (2011) were set up on electronic robots and standard tractors which were 

used in the plant system until the harvest system. They tried to reduce cost by using 

low-cost sensors and using LAN network to communicate between operator and robot 

in purpose to manage farm system. The result of this system was shown that robots 

could follow the navigation map accurately and it can operate via LAN network 

communication in real-time. 

Figure 2.1 

Robot Farming System (Reprinted from Noboru Noguchi, 2011)

 

From all previous mentioned, the researchers found that a low-cost automatic guidance 

system needs to be developed. The aim of this paper is the development of a low-cost 

automatic guidance system for direct rice seeding. To control an autonomous vehicle, 

at least two parameters, steering, and velocity must be controlled. To control these 

parameters precisely, the guidance or feedback needs to be precise. This study deals 

with the problem of obtaining the tractor’s guidance signal based on machine vision. 
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The idea is to use the previous line made by the tractor’s wheel during the direct seeding 

of rice to generate the guidance signal for the next row. Machine vision is used to 

measure the distance and angular deviation of the tractor with respect to the guidance 

row.  

There are several key differences between our approach and the previous state-of-the-

art research. Leemans and colleagues find the best filter for use in the Hough transform 

to track a furrow row or seed row in a dry field. Our aim is to find a method to detect 

guidance rows in a wet and muddy field. The guidance line made by the tractor in the 

mud during direct rice seeding is very noisy, with large clumps of displaced soil.  
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METHODOLOGY 

This chapter describes the overall systems of the developed autonomous tractor for 

direct seeding of rice. The hardware design and methodologies are mentioned in this 

section. There are three parts: guidance and localization algorithms, path planning, and 

path tracking control. Figure 3.1 shows the system diagram of the autonomous tractor 

for direct seeding of rice that modified from the commercial tractor.  

 Overall System 

Figure 3.1 

Overall System of Autonomous Tractor for Direct Seeding of Rice 

 

There are three operation modes of the autonomous tractor: manual operation, 

autonomous guidance based on GPS, and autonomous guidance based on vision. In 

manual operation, the user can maneuver the steering wheel, acceleration, and braking 

pedal by driving or using a remote control (RC). In autonomous self-guidance mode, 

camera 

steering and velocity control 

RC 

ultrasonic 

RC  

mode 

Vision 

mode 

GPS 

mode 

 
laptop 
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GPS and compass are used for localization and orientation. Then the tractor can steer 

the heading for the path tracking. The last operation mode is autonomous guidance 

based on the vision which is the main topic of this research. The steering and velocity 

control of the tractor is handled by the STM32F4 Discovery board where the tractor 

command from either laptop or RC signal. A DC motor is installed and coupled with 

the steering wheel. The steering angle is measured by using the incremental encoder. 

The pedal for acceleration and braking is attached to a stepper motor. The wheels’ 

velocity is sensed by using proximity sensors installed at both left and right driven 

wheels. Information feed to the feedback control loop in order to provide precise control 

of the tractor. 

 Hardware Design 

The tractor used in this project is modified from a 17 horsepower commercial tractor 

integrating the rice planting system shown in Figure 3.2. The tractor origin coordinate 

system is set at the origin position (0, 0, 0), which is the center of the tractor’s projection 

onto the ground. The actuators and sensors are attached to the tractor.  

Figure 3.2 

Commercial Tractor Integrating with a Rear Rice Planting System  

 

3.2.1 Actuator 

In this work, a 250W 24 VDC motor is attached to control steering through the gear 

transmission as shown in Figure 3.3. The incremental encoder is used to measure the 



 

 17 

steering angle. Two limit switches are also attached to detect the most left and right 

steer, including the initialization. The user can detach the transmission from the steering 

wheel when it operates in manual driving mode. To control the velocity of the tractor, 

a stepper motor is attached to press the accelerator similar to what a human does, as 

shown in Figure 3.4. One limit switch is used as the home position, then the tractor does 

not move.  

Figure 3.3 

DC Motor for Steering Control  

 

Figure 3.4 

Stepping Motor for Velocity Control  

 

3.2.2 Sensors 

NovAtel-OEM628 GPS is used in purpose to get a position of the tractor in latitude and 

longitude. The information of the orientation tractor comes from an HMR3000 compass 
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bearing respect to the north. KOYO rotary encoder is attached at steering to obtain the 

current steering angle. Another sensor is ifm-IF5646 proximities which are attached at 

each rear wheel. It sends the data to calculate the distance traveling and velocity of the 

tractor which counts the round per minute by using a special disc. The Sony action 

camera model hdr-as200vr attached to the gimbal aims to use for detecting guidance 

lines, which were made from the previous tractor’s track. The position of the camera is 

in front of the tractor at a height of 85 cm and a pitch of 0.26 radians referenced to the 

ground. The gimbal helps to stabilize the pitch and row of the camera because those 

parameters change significantly as the tractor moves through the paddy field. Thus, 

HC-SR04 ultrasonic is attached to the tractor to measure height between camera and 

ground. All hardware is shown in Figure 3.5. 

Figure 3.5 

Sensors 

 

Ultrasonic (HC-SR04) 

Camera with gimbal 

Rotary Encoder (TRD-N1000-RZ) 
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3.2.3 Embedded Electronic Device 

The stm32 microcontroller is used as the main controller for path planning, receiving 

sensor data for localization, and trajectory tracking control via close loop feedback. The 

desire of this controller is shown in Figure 3.6. The stepping and DC drivers are shown 

in Figure 3.7. Moreover, MATLAB Simulink toolboxes with the Waijung block set 

library are used to write the code. A laptop is used as a second controller. It uses for 

interfacing with a user and estimating local trough. The C++ language with OpenCV 

library is used for processing images. 

Figure 3.6 

Microcontroller

 

 

 

 

 

front behind 

inside 
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Figure 3.7 

Motor Drivers 

 

 Algorithms 

This research has three main parts; the first part is guidance and localization where the 

current tractor position. The second part is path planning which is the waypoints for 

tractor traveling. The third part is path tracking and controlling the tractor closed to the 

waypoints.  

3.3.1 Guidance and Localization 

In this research, two approaches are applied: global localization based on GPS, and 

local localization, which emphasize a topic of this research, using image processing to 

find trough localization based on the previous wheel’s track. Moreover, local trough 

localization has adopted an optimization method to help reduce estimation error. 

 GPS and Compass System. The application uses GPS for locating 

latitude and longitude of tractor and uses with digital compass for estimating the current 

orientation of tractor. First, received data from GPS with ten iterations then average 

latitude and longitude. After that, the position information is converted to the initial 

world coordinate as position (0, 0). In addition, the initial orientation comes from the 

compass concerning the North direction. 
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 Vision System. The localization technique adopted in this research is 

image processing to detect trough, which is made from the tractor’s wheels of the 

previous row. The guidance line generated by the tractor in the mud during traveling 

for rice planting is very noisy, with large clumps of displaced soil. In the experiment, 

RGB images are acquired at 30 frames per second with 1920x1080 pixels resolution. 

Block diagram overall of vision-based trough localization shows in Figure 3.8.  

Figure 3.8 

Block Diagram of Vision-based Trough Localization 

 

 Image and Height of Camera Acquisition. First, the RGB image and 

the current height of the camera are acquired. The RGB image where image resolution 

1920x1080 pixels is fed into the next step. 

 Trough Segmentation. Guidance row segmentation is applied in this 

step. Image is converted to grayscale and undistorted. We use OpenCV calibration 

software for estimating camera parameters. Its use compensates for an undistorted 

image. After that, the image is reduced from 1920x1080 pixels to 1920x730. This step 

aims to reduce computation time. After that, Gaussian blurring and median filters are 

used followed by adaptive thresholding for separating background from the trough. 

 Image Perspective Transformation. In this step, the image 

perspective transformation is transformed using a homogeneous camera matrix (P) 

which consist of intrinsic matrix (K) and extrinsic parameters (pose - rotation ‘R’, and 

translation ‘t’), to get a perpendicular bird’s-eye view The formula of camera shows 

  3 1 3 3 3 3 3 1 4 1[ | ] ,    x K R t X  (1) 

Image and height of 

camera acquisition  

(a) 

Trough segmentation 

(b) 

Image perspective 

transformation 

 (c) 

Best trough selection 

(d) 

Guidance row orientation 

and distance estimation 

(e) 

Orientation and distance 

optimization  

(f) 



 

 22 

Where X is a homogeneous representation of a tractor plane system ( 1
T

t t tX Y Z   ) 

and x is a homogeneous representation of an image plane ( 1
T

u v   ). In the 

experiment, the tractor travels along the paddy field thus the only translation of the 

camera has an effect ( TT

c c cX Y Z    ct R t ), the height of the camera is changed     

( cZ ) because the gimbal helps to stabilize the rotation. The height of camera comes 

from an ultrasonic sensor. We also assume that the ground is flat ( rZ =0). Thus, an 

instantaneous estimate of the homogeneous coordinate matrix (H) is map between the 

ground coordinate and the image point of the bird’s eye-view coordinate. We can write 

 
3 1 3 3 3 1  x H X  

1
3 1 3 3 3 1


  X H x  

(2) 

 Best Trough Selection. After the image perspective transform as 

mentioned before, best trough selection is the next step. In this step, the image has at 

least one object thus we need to classify the object to be the candidate of the trough. 

The objects in which the center of the moment is less than or equal to 50 pixels in 

perspective view, will be considered as the same trough. Table 3.1 shows the detail of 

pseudocode for trough merging. After we get candidates for the trough, the best trough 

is selected for tractor tracks. The pseudocode for best trough selection is shown in Table 

3.2. Starting with the three largest areas of trough candidates are selected. Then, if there 

have more than three candidates, we will compute the ratio between major and minor 

axis length. If the minor length or the ratio of each candidate is less than or equal to the 

conditions which are 3 and 40 pixels respectively, they will be removed from the trough 

candidates. Moreover, if the major length has more than or equal to 215 pixels, they are 

also removed. Currently, if trough candidates still have three candidates, the smallest 

area will be removed from the candidate. But if the trough candidates have two 

candidates, then select the one that has an area more than 1.5 times of each other but if 

it is not in that condition, the trough candidate which has closed to the tractor will be 

selected as the best trough. The sample of best trough selection shows in Figure 3.9. 
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Table 3.1  

Pseudocode for Trough Merging Step 

 

Figure 3.9 

Sample Results of Best Trough Selection Process 

 

 

 

Input: Binary bird’s eye view image I containing candidate trough connected 

components, threshold distance   (50 in our experiments). 

Output: Integer label image with merged connected components for candidate 

troughs.  

C connected components (I) 

For each ic C do 

     Compute x-coordinate of center of mass im  for ic  

end for 

sort ( , )i ic m  pairs in ascending im  order 

For 1.. | | 1i C  do 

     If 1i im m    

          Mark ic and 1ic   for merging 

     end if 

end for 

Return image with distinct label for each merged set of 

components. 

Initial trough segmentation Best trough selection 
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Table 3.2  

Pseudocode for Best Trough Selection 

 

 Guidance Row Orientation and Distance Estimation. The best 

trough connected component step returns a set of trough points. Then orientation ( )  

and distance ( )d of the selected connected component estimate the parameters 

themselves as a guidance row for the tractor. Three methods are compared for straight-

line estimation for predicting guidance row parameters as in Figure 3.10. The three 

methods are consist of PCA, RANSAC, and the Hough transform. In OpenCV C++,  

the PCA method is provided with the function of pca_analysis. For RANSAC and the 

Input: Image I labeling pixels of each connected component from previous step, 

minimum minor length ul  (40 pixels), maximum minor length el (215 pixels), area 

A (20,000 pixels), and ratio between major length and minor length R (3). 

Output: Binary image with selected trough connected component(s).   

C three largest connected components in I 

wimage width 

0c largest element of C  

For each ic C  

     compute major axis length im  and minor axis length in  

     i
i

i

m
r

n
  

     If i un l  or i en l  or ir R  

          remove ic from C  

if 3C  

     remove smallest component from C  

if 2C  

     1c  largest component of C  

     2c second largest component of C  

     1c  size area of largest component of C  

     2c  size area of second largest component of C  

     1x  horizontal center of mass of 1c  

     2x  horizontal center of mass of 2c  

     if 1 21.5c c  or 1 2/ 2 / 2x w x w    

          return 1c  

     else  

          return 2c  

return 0c  
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Hough transform. They can write in the C++ language. Table 3.3, Table 3.4, and Table 

3.5 are the pseudocode of PCA, RANSAC and Hough transform respectively. 

Figure 3.10 

Guidance Row Orientation and Distance Estimation 

 

 

Table 3.3  

Pseudocode for PCA Trough Estimation 

Input: Binary bird’s eye view image I containing selected best trough connected 

component, scaling s  (200 pixel/meter), and pixel position Pc of tractor coordinate 

system origin in I. 

Output: parameters  and d of trough line estimate.   

X  2xN vector of (x,y) coordinates of pixels in trough 

connected component ,C expressed as 
1

1

N

N

x x

y y

 
 
 

 

x

y

 
  

 
X  

I identity matrix 2 2  

1×N
     S X I X 1  

e eigenvector of 
T

SS corresponding to largest eigenvalue λ   

 

  

L eλ

L X L
 

 atan2 ,x yL L     

0 1

1 0

   
   

    
n

L
P

L
 

  

Guidance row orientation and  

distance estimation 

Best trough 

RANSAC 

PCA 

HOUGH 

results 

Ground truth 

PCA 

RANSAC 

HOUGH 
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Table 3.4  

Pseudocode for RANSAC Trough Estimation 

 r cP P X  

( ) /d s r nP P  

If x cxL P  

     d d   

return , d  

Input: Binary bird’s eye view image I containing selected best trough connected 

component, threshold  (14) scaling s  (200 pixel/meter), and pixel position Pc of 

tractor coordinate system origin in I. 

Output: parameters  and d of trough line estimate.   

X  2xN vector of (x,y) coordinates of pixels in trough 

connected component ,C expressed as 
1

1

N

N

x x

y y

 
 
 

 

For 1000 iterations: 

     Let ,i jx x  be two random sample points from X 

     Let L  be the line spanning ,i jx x  

     For each kx X  

          Let kd  be the perpendicular distance between kx  and 

L   

     end for 

     Let Nnew be the count of points kx  for which kd  <   

     if Nnew>Nold 

           Nold = Nnew 

           Save L  as bestL  

     end if 

end for 

( , , )  besta b c L  

  L a b 

 atan2 ,x yL L     

0 1

1 0

   
   

    
n

L
P

L
 

 r cP P a 

( ) /d s r nP P  

If x cxa P  

     d d   

return , d   
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Table 3.5  

Pseudocode for Hough Transform Trough Estimation 

 

Input: Binary bird’s eye view image I containing selected best trough connected 

component, scaling s  (200 pixel/meter), and pixel position Pc of tractor coordinate 

system origin in I. 

Output: parameters  and d of trough line estimate.   

X  2xN vector of (x,y) coordinates of pixels in trough 

connected component ,C expressed as 
1

1

N

N

x x

y y

 
 
 

 

Let w be the width of the image and h be the height of image 

A binned accumulator with  range from -w/2-w/2 in 1-pixel 

increments,  range from 0-180 in 1-degree increments 

For each xX 

     Calculate ,  for x  

      ,A   , 1 A  

end for 

select ,  from maximum accumulator of  ,A  

if      

      

     

) )

0

 ,2 2 2
c

2 +  
( ) ( )cos( ( ) (

(
+

2 2

) os(

sin( sin

w

w w w w
h hw 

 

 

 
 
    
    
        

 



   L  

else 

     ) )

s
2 2 2 2 

)
+  

)
+

 ,2 2

0

( ( )sin( ( ( ) in(

cos( sin(

w h w h
w w w

w

 

 

 
    
    
    
    
  









   

L  

 atan2 ,x yL L     

0 1

1 0

   
   

    
n

L
P

L
 

1L r cP P  

( ) /d s r nP P  

If x cxL P  

     d d   

return , d  
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 Guidance Row Orientation and Distance Optimization. After 

orientation and distance of guidance row are estimated from the previous step, The two 

parameters ( , )d  feed as initial guesses to the optimizer which needs the parameters in 

tractor coordinate and the process of planar projection that generated the image. 

Maximum likelihood estimation (MLE) is used to optimize the parameters. The MLE 

helps to estimate an unknown parameter vector ( ) by maximizing the joint probability 

of the observed data 1 2( ( , ,..., ) )n
nx x x x   under those parameters. The likelihood 

function is written as 

 
ℒ 1 2 3

1

( ; , , ,..., ) ( | ).

n

n i

i

x x x x p x 



  (3) 

We take the log of the likelihood to get 

 
1 2 3

1

( ; , , ,..., ) log ( | )

n

n i

i

x x x x p x 



  (4) 

Our goal is to find the optimal * maximizing this function: 

 *
1 2 3argmax( ( ; , , ,..., )).nx x x x



   (5) 

In this research, two unknown parameters are the guidance row distance and orientation

( , )d   that we want to estimate. For the observed data are the set of selected guidance 

row pixels that contain noise. We model the trough to be an inverted Gaussian function. 

The trough model is created as  

 2

2

( cos sin )

2 ,

r r tX Y d

rZ he

 



 

   
(6) 

where Xr , Yr , and Zr are a 3D point on the flat ground of the paddy field in the tractor 

coordinate system, dt is the distance from the center of trough,  is the standard 

deviation of trough’s width which assumed to be 0.03 in this experiments, h is the 

deepest trough depth which assumed constant at 0.12 m in our experiments,   is the 

guidance row orientation, and d is the guidance row distance. The sign of d is negative 

when the guidance row is to the right of the tractor; otherwise, it is positive. 

The camera model maps points between tractor and image coordinates by using 

backprojection of image point can be rewritten as 
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The image point is  1 ,
T

u v  is a variable parameter used to generate all points on 

the back projection, The camera’s position denote as 1
T

cx cy czT T T 
  , and 

P is the 

pseudo-invert of homogeneous camera matrix .P Thus, we can compute the depth of 

trough as 
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(8) 

where I  is an image point in a contour of best trough selection. Only the  is unknown, 

can be compute using the Newton-Raphson iterative root finding method. The function 

of   be define as  
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(9) 

and the deferential function of   is equation below 
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where 
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We initialize with 
rZ =0, giving

3

0
[ ][ ]

czT







P I
 and the iterative update rule  

 
1

( )
.

( )
n n

f

f


 




 
   

 

 (11) 

We allow a maximum number of iterations equal to 40. After   is estimated for every 

pixel in the region of interest for the best selected trough, we can calculate the average 

log-likelihood. For a particular  and d , we now have rZ  for every pixel in the region. 

In this experiment, the likelihood needs to set low probability to black pixels in the 

trough region and high probability to black pixels in the region because black pixels are 

assumed to represent the ground plane and white pixels are assumed to represent trough 

points that have some depth. The model for black and white pixels is a sigmoid in the 

height of the trough. We allow for scaling and phase shift of the sigmoid: 
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 (12) 

To miss the optimal condition, the optimization should move the trough which make 

most of white pixels are inside of it and mostly black pixels are outside of it. We use 

65  , and 2.5   . Sample graphs of ( | , )b bp B u v and ( | , )b bp W u v  as functions of trough 

depth. It shows in Figure 3.11. 

Figure 3.11 

Relationship between Trough’s Depth and Assumed Probability of Obtaining White and 

Black Pixels (a) Probability of White Pixels (b) Probability of Black Pixels. 

 
 

  
, ,

, ;( , ) log( ( | , )) log( ( | , ))

b b b b

b b b b b b

u v B u v W

d u v p B u v p W u v
 

    (13) 

We optimize ( )  using gradient ascent because of its flexibility. We begin with a 

guidance row distance and orientation estimate from one of three approaches (PCA, 

RANSAC, Hough transform), use Newton-Raphson to calculate the depth Zr for each 

pixel, and then use finite differences to estimate 

(a)       (b)  
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 (14) 

We update the guidance row distance and orientation using 

 1

1

.
i i

i
i id d

 






   
     

   

 (15) 

Where 𝜼 is a learning rate matrix. We use
0.05 0

0 0.1

 
 
  

, and i is the iteration. We limit 

orientation updates to no more than 0.05 radians  1| | 0.05i i    and distance updates 

less than 0.1  1 0.1 .i id d    

We repeat until the log-likelihood is stable or until 25 iterations. The guidance row 

distance and orientation that maximize the log-likelihood are the optimal parameters. 

Pseudocode for Maximum likelihood guidance distance and orientation estimation as 

we use it is provided in Table 3.6 

Table 3.6  

Pseudocode of Maximum Likelihood Guidance Distance and Orientation Estimation 

Input: black and white bird’s eye view image I of best trough, initial guess of 

distance d, initial guess of row orientation .  Initial guess may be from one of three 

methods (PCA, RANSAC, HOUGH). 

Output: parameters of optimized trough distance and orientation estimates * *,d   

X  2xN vector of (x,y) coordinates of pixels in trough 

connected component ,C expressed as 
1

1

N

N

x x

y y

 
 
 

 

,d   initial parameter estimates 

:B  set of black pixel positions in the trough region 

:W  set of white pixel positions in the trough region 

*d d ; 
*   

i 0 

while i<25  

     For each 
ix X  

          Compute trough depth 𝑍𝑟 for every point in C using 

, .d   
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3.3.2 Path Planning  

Waypoint is designed to world coordinate in X,Y axis (East, North); the number of 

waypoints depend on the area of different fields. The seeding robot will start from the 

first row which starting point is at the center of the tractor and then go straight line until 

finish the design of the first row’s distance. After that, make a U-turn to the second row 

which is parallel with the previous row as shown in Figure 3.12. The axis of path 

planning define with ' ',X Y . For straight line waypoints design as 

    

   

' '

' '
,

cos sin
,

sin cosn m

X YX

Y X Y

 

 

  
  
     

 (16) 

where   is the bearing of the tractor orientation concerning the North direction of the 

world coordinate, m is the number of points in the row, and n is the number of rows. 

The waypoint at the curve line defines as 
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thus,    

   

' '

' '
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cos sin
,

sin cos

curve curve

n m curve curve

X YX

Y X Y

 

 

  
  
     

 (18) 
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i
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     If  ˆ ,i d  is best so far 

          
* *; d d    

     ii+1 

return 
* *, d  
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Figure 3.12 

Path Planning 

 

3.3.3 Path Tracking Control System  

In this work, we are tracking the path by controlling two subsystems: the velocity and 

heading of tractor systems. The tractor’s orientation and guidance row distance are fed 

back to the control loops. Figure 3.13 describes the definition of the desired orientation 

and row distance in planar. 

Figure 3.13 

Parameters in the World Coordinate and the Tractor Coordinate 
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In this part, Pure Pursuit and look-ahead distance are used to compute the orientation 

desired which is called desired look-ahead orientation ( _d new ). The purposed of look-

ahead distance (Lt ) is to help the tractor get closer to the desired path as soon as 

possible. The look-ahead distance Lt is written as 

 2 2 ,t TL k d d   (19) 

where, k is look-ahead gain, Td  is distance from tractor to forward way point and d is 

guidance row distance. _d new  is computed by wrapping between angular deviation of 

look-ahead direction with respect to the forward waypoint direction ( )   and the desired 

yaw orientation ( )d  as 

 
_ wrap( , )d new d    . (20) 

Figure 3.14 

Block Diagram of the Control System for Path Tracking  

 

The block diagram of the control system for the path tracking is shown in Figure 3.14. 

There are two reference variables: the desired velocity of tractor Vd and desired look-

ahead orientation, which are obtained from the Pure Pursuit and look-ahead. Thus, two 

control loops: velocity and orientation loop control are tuned and working 

independently. In the velocity loop, the PID controller computes the number of stepping 

commands based on the velocity error. For the orientation loop control, the outer loop-

Pure Pursuit 

& 

Look-ahead 

  

Proximity 
  

stepping 

number 
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based PD controller is used to calculate the desired steering wheel angle ( ) and the PID 

controller is implemented for the steering angle control.  For the PD controller, the 

controller gains are adapted based on the amount of orientation error and rate of 

orientation error. These variables are used to find the suitable gain based on fuzzy logic.   
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RESULT 

The experiment results have two parts. First, the simulation is using MATLAB and 

Simulink software to simulate tracking of the tractor. Second, the experiments in the 

paddy field were conducted at the Asian Institute of Technology, Pathumthani province, 

Thailand, between 2018 to 2020. 

 Simulation Result of Using GPS Tracking Based on EKF 

MATLAB & Simulink software is used as a tool for simulation. In this work, we 

simulate two experiments, testing GPS with EKF and testing tracking planning path. 

4.1.1 GPS Based Localization with EKF 

This simulation is a test of using Extended Kalman filter (EKF) to fuse measurements 

from GPS and the model of tractor then estimate the state of position and orientation. 

Figure 4.1 shows the Simulink model of generating circle path and GPS position. At 

the initial, we set the tractor’s velocity to constant speed at 0.3 m/s and the sampling 

time 0.01. First, the simulation generates a circle path with is the green line as shown 

in Figure 4.2. At the same time, GPS position data is generated based on the circle path. 

The GPS position is shown in blue dots. The red dots are the position of GPS with EKF 

(fused). The output of simulation shows that EKF gives an approximate of the optimal 

estimate position than using GPS alone. 

Figure 4.1 

Simulink Model of Generating Circle Path and GPS Position 
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Figure 4.2 

Result of Generate Circle Path and GPS Position 

 

4.1.2 Tracking Planning Path  

After the first simulation, we knew that EKF helps to reduce unwanted data. The 

purpose of the second simulation is to test the path tracking control system. In this 

simulation, the tracking control system uses Pure Pursuit and look-ahead to compute 

the desired orientation. At the outer loop, the PD controller is implemented to calculate 

the desired steering wheel angle, and the PID controller is used for the steering angle 

control. The velocity is still set as a constant speed at 0.3 m/s. The distance between 

each waypoint is set at 2.50 meters. The result is shown in Figure 4.3, The outputs are 

compared between GPS in blue dots and the fusion in the green line. As a result of 

adding EKF, the lateral errors are smaller than GPS. The maximum lateral error after 

fusion is 1.24 meters. 
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Figure 4.3 

Result on Simulink Model of Tracking GPS with EKF  

 

 Experiment Result Tracking Based on GPS without EKF in Paddy Field  

The experiments in the paddy field were conducted at the Asian Institute of Technology 

field. We tested in 2 main parts. The first is tracking based on GPS localization without 

EKF, and the second is localization based on a machine vision system. 

4.2.1 Control Based on Pure Pursuit for Estimating Orientation 

In this experiment, we set the velocity of the tractor to be constant at 0.3 m/s. Pure 

Pursuit method estimate the orientation. The orientation loop control consists of the 

outer loop-based PD controller and the PID controller for controlling the steering angle. 

The diagram of tracking control using orientation is shown in Figure 4.4. The result of 

tracking straight line path is shown in Figure 4.5. The maximum error is about 0.52 m 

when straight line tracking. 
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Figure 4.4  

Tracking Using GPS and Steering Controller Based Pure Pursuit for Estimating 

Orientation 

 

Figure 4.5 

The Straight Line Result of Tracking Based Pure Pursuit for Estimating Orientation 

 

4.2.2 Control Based on Pure Pursuit and Look-ahead for Estimating Orientation 

 PD Controller. In this experiment, we set the velocity of the tractor to 

be constant speed at 0.3 m/s same as the previous method. The difference between this 

experiment and the previous experiment is the only orientation computed from both 

Pure Pursuit and the look-ahead method. The method diagram is shown in Figure 4.6.  

The result of controlling and tracking straight line path based Pure Pursuit and look-

ahead to estimate orientation is shown in Figure 4.7. The maximum lateral error of 
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tracking is 0.18 m. The mean error of this experiment is 0.06 meter. If we compared 

this controller and the previous controller, the result shows that this controller has better 

tracking than the previous controller does. 

Figure 4.6  

Tracking using GPS and Steering Controller Based Pure Pursuit and Look-ahead for 

Estimating Orientation  

 

Figure 4.7 

Result of Tracking Using GPS and Steering Controller Based Pure Pursuit and Look-

ahead for Estimating Orientation  

 

 Fuzzy Self-adjustment for the PD Controller. The control system for 

the path tracking of this experiment is shown in Figure 3.14. There are two reference  

variables: the desired velocity of tractor and desired look-ahead orientation. For control  
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orientation loop control, it is the same method as using PD control based Pure Pursuit 

and look-ahead except for the gain parameters of the PD are coming from fuzzy design. 

The fuzzy rule of this experiment is shown in Figure 4.8. The PID controller is 

implemented as an inner loop for the steering angle control. For the velocity loop, the 

PID controller estimates the number of stepping commands to control steering. The 

result of U-turn path tracking in the paddy field is shown in Figure 4.9. The maximum 

lateral error from the desired path is 0.68 m. 

Figure 4.8 

Fuzzy Rule 
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Figure 4.9 

Result of U-turn Path Tracking Based Fuzzy Self-adjustment for PD  

 

 Localization Base on Machine Vision System 

We have a test based on a machine vision system for five experiments and all the 

experiments were conducted at the Asian Institute of Technology over the period 2018-

2020. We seeded wet fields at different times of the day. Thus, in the five experiments, 

we cannot control moisture, illumination, and shadow. 

A summary of the results of trough detection over five experiments is shown in Table 

4.1. Over the five experiments, the first three experiments have lower detection rates, 

with F1-score accuracy less than 0.8. In the experiments 2019/2 and 2020/1, we observe 

more accurate detection. These differences are come from water level and illuminate. 

Different times of day cause changes in the illumination, moisture of the soil, and 

shadow patterns. The effect of our detection method is its sensitivity to such imaging 

conditions. We plan to improve trough detection rates in future work using work deep 

learning. 

Next, we consider the accuracy of guidance row localization in comparison to ground 

truth. Only in the experiments 2019/2, and 2020/1, ground truth markers were placed 

in the center of the trough, as shown in Figure 4.10 to measure the accuracy of the 

trough estimated by our methods. For all images, we manually drew a straight line 

through the markers and transformed the resulting line into the tractor coordinate 

system. 
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Table 4.1 

Trough Detection Results 

Experiment Number Hits False positives Precision 

2018/1 30 21 9 0.70 

2018/2 30 24 6 0.80 

2019/1 39 27 12 0.69 

2019/2 35 32 3 0.91 

2020/1 13 13 0 1.00 

 

Figure 4.10 

The Ground Truth of Guidance Row Distance and Orientation Using Markers 

 

Example estimates are shown in Figure 4.11. The result is a straight line in the tractor 

ground plane, from which we can obtain guidance row distance and orientation. PCA 

result, RANSAC result, and HOUGH result are shown in Figure 4.11 (a). Figure 4.11 

(b) shows optimized guidance row estimates using MLE based on the estimates of 

initial guesses. To measure the accuracy of the guidance row estimation method, we 

used the correctly detected guidance rows (hits) in the last two experiments. The 

guidance row error is the absolute mean error in perpendicular distance between the 

estimated lines and the ground truth. A detail of the results of guidance row orientation 

and distance estimation shows in Table 4.2. The results of guidance row estimation are 

shown in Figure 4.12.  
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Figure 4.11 

Example Estimates of Guidance Row Orientation and Lateral Distance  

 

Table 4.2 

Summary of Guidance Row Estimation Results in Experiments 2019/2 and 2020/1 

 

 

Approach Experiment 
Guidance row error (mm.) 

Mean  SD Variance Median Quartile 3 Maximum 

PCA 
2019/2 35.0 34.2 1.7 24.1 30.5 153.2 

2020/1 44.6 19.5 0.4 43.5 48.9 92.1 

MLE 

PCA 

2019/2 28.4 30.2 0.9 21.1 29.6 169.4 

2020/1 28.1 30.7 0.9 18.3 35.1 114.3 

RANSAC 
2019/2 37.8 31.3 1.0 36.1 51.8 154.4 

2020/1 51.0 33.1 1.1 45.4 82.2 115.7 

MLE 

RANSAC 

2019/2 46.8 65.2 4.3 30.7 41.8 351.3 

2020/1 42.8 25.7 0.7 40.2 65.1 85.4 

HOUGH 
2019/2 37.6 36.5 1.3 26.7 52.4 172.7 

2020/1 34.4 24.1 0.6 28.2 39.3 100.7 

MLE 

HOUGH 

2019/2 48.8 68.0 4.6 27.3 51.1 333.1 

2020/1 28.7 23.1 0.5 25.8 39.3 77.0 

(a) Estimates by PCA, RANSAC, and HOUGH  (b) MLE Estimates Using Each Result from   

         (a) for Initialization 

Ground truth 

MLE PCA 

MLE RANSAC 

MLE HOUGH 

    Ground truth 

    PCA 

    RANSAC 

    HOUGH 
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Figure 4.12 

Guidance Row Estimation Results of Experiments 2019/2 and 2020/1 

 

 

Lateral Distance Error in Experiment 2020/1 

Lateral Distance Error in Experiment 2019/2 
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A summary of the result shows that MLE PCA has mean error levels for the optimized 

method are 28.4, and 28.1 mm which are optimized in both two-year experiments. If 

we focus only on quartile 3, all MLE methods show improvements in every three 

methods of both years. Some results show that mean optimized errors are higher than 

the mean unoptimized because the reason for the estimates is that the unoptimized 

estimates are not close enough to the ground truth to attract the optimizer; this reason 

makes outliers in the results of the optimized estimate. 

When we combine the results of Experiments 2019/2 and 2020/1, we find that 

optimization makes RANSAC and HOUGH estimate slightly worse overall but 

improves in PCA. The differences using repeated measures two-tailed t-test, which 

0 : 0H   , were only significant for PCA. The summary of significance shows in Table 

4.3. 

Table 4.3 

Difference between Each Line Fitting Method and the Optimized Line Fitting Method, 

Over Experiments 2019/2 and 2020/1 

method 
MLE PCA- 

PCA 

MLE RANSAC-

RANSAC 

MLE HOUGH-

HOUGH 

Average 

difference 
-0.00950704 0.00407204 0.00630311 

df 44 44 44 

T stat -2.354218 0.566035 0.962463 

P-value 0.023090 0.574245 0.341076 

sig Yes No No 

 

In conclusion, PCA is the best performance if we consider the results with its compute 

time. Among the optimized methods, MLE PCA gives the best optimized lateral 

distance and orientation estimates than using the PCA method alone. The cons of 

optimization are time consuming. The optimized methods used an average of 46 

seconds per frame while unoptimized methods needed the time in less than 1 second as 

shown in Table 4.4. Although the speed could be further improved by code-level 
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optimization of our implementation, the compute resource gap between PCA and MLE 

PCA is still wide. 

Table 4.4 

Time consumption of Each Method over Experiments 2019/2 and 2020/1 

Activity 
Minimum 

(s/frame) 

Maximum 

(s/frame) 

Average 

(s/frame) 

Guidance row 

segmentation and best 

guidance row selection 

0.10 0.22 0.14 

PCA 0.00008 0.00053 0.00022 

MLE PCA 0.10 92.20 46.24 

RANSAC 0.19 1.35 0.68 

MLE RANSAC 9.50 84.89 46.22 

HOUGH 0.03 0.20 0.09 

MLE HOUGH 15.14 84.17 46.17 
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CONCLUSION AND FUTURE WORK 

In this chapter, the conclusion and future work of this work are described below. 

 Conclusion 

Currently, the tracking controller of the tractor uses GPS and compass as guidance to 

control steering. At the outer loop, we fed the orientation of the tractor concerning the 

North direction and compute the error between look-ahead orientation and tractor 

orientation. The PD based fuzzy logic is used for computing desired steering. In the 

inner loop, PID is used to estimate the PWM command to control the DC motor 

attached to the tractor’s steering. Another independent control loop is the velocity 

control loop based PID controller. Both independent desired velocity and desired 

orientation are estimated from Pure Pursuit and the look-ahead method. The result 

shows the error is less than 1 m. 

In this research, the methods for localization of a guidance row in a paddy field have 

been described. We explore three different methodologies and provide a method for 

further optimizing initial guesses using MLE. The MLE method provides more accurate 

results than the methods not using it. The best approach is MLE PCA. In two 

experiments, PCA has an average mean error of 39.8 mm, while MLE PCA has an 

average mean error of 28.25 mm, an improvement of 29%. The optimization method 

thus enables centimeter-level accuracy for guidance row mapping. 

 Future Work 

For future work, we will test the method in real-time on the tractor while it is running. 

These improvements are needed. First, we will use an inertial measurement unit (IMU) 

to measure roll, pitch, and yaw, along with compensation for the camera motion 

measured by the IMU rather than using a gimbal to stabilize the camera. Second, a real-

time operating system (RTOS) should be used to ensure the system does out miss real-

time events. Another area for improvement is the trough detection rates. This process 

can be improved using deep learning for the detection of the trough pixels. Finally, with 

real-time responses and a high trough detection rate, autonomous seed planting will be 
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possible through the integration of steering and velocity control. Farmers will benefit 

from the low cost and high accuracy of the system. 

 

  



 

 51 

 

REFERECE 

Astrand, B., & Baerveldt, A. J. (2005). A vision based row-following system for 

agricultural field machinery. Mechatronics, 15(2), 251–269. 

https://doi.org/10.1016/j.mechatronics.2004.05.005 

Backman, J., Oksanen, T., & Visala, A. (2012). Navigation system for agricultural 

machines: Nonlinear model predictive path tracking. Computers and 

Electronics in Agriculture, 82, 32-43. 

https://doi.org/10.1016/j.compag.2011.12.009 

Bakker T, van Asselt K, Bontsema J, Müller J, van Straten G. (2011). Autonomous 

navigation using a robot platform in a sugar beet field. Biosystems 

Engineering,  109(4), 357–368.  

Carballido, J., Perez-Ruiz, M., Gliever, C., & Agüera, J. (2012). Design, development 

and lab evaluation of a weed control sprayer to be used in robotic systems. 

In Proceedings of the First International Conference on Robotics and 

Associated High-technologies and Equipment for Agriculture. Applications of 

automated systems and robotics for crop protection in sustainable precision 

agriculture,(RHEA-2012) Pisa, Italy-September 19-21, 2012 (pp. 23-29). 

University of Pisa. 

Chaivivatrakul, S., & Dailey, M. N. (2014). Texture-based fruit detection. Precision 

Agriculture, 15(6), 662–683. https://doi.org/10.1007/s11119-014-9361-x 

Gan-Mor, S., Clark, R. L., & Upchurch, B. L. (2007). Implement lateral position 

accuracy under RTK-GPS tractor guidance. Computers and Electronics in 

Agriculture, 59(1-2), 31-38. https://doi.org/10.1016/j.compag.2007.04.008 

Han, X. Z., Kim, H. J., Kim, J. Y., Yi, S. Y., Moon, H. C., Kim, J. H., & Kim, Y. J. 

(2015). Path-tracking simulation and field tests for an auto-guidance tillage 

tractor for a paddy field. Computers and Electronics in Agriculture, 112, 161-

171. https://doi.org/10.1016/j.compag.2014.12.025 

Jiang, G., Wang, Z., & Liu, H. (2015). Automatic detection of crop rows based on 

multi-ROIs. Expert Systems with Applications, 42(5), 2429–2441. 

https://doi.org/10.1016/j.eswa.2014.10.033 

Kanagasingham, S., Ekpanyapong, M., & Chaihan, R. (2020). Integrating machine 

vision-based row guidance with GPS and compass-based routing to achieve 

autonomous navigation for a rice field weeding robot. Precision Agriculture, 

21(4), 831–855. https://doi.org/10.1007/s11119-019-09697-z 

Kayacan, E., Kayacan, E., Ramon, H., & Saeys, W. (2015). Towards agrobots: 

Identification of the yaw dynamics and trajectory tracking of an autonomous 

tractor. Computers and Electronics in Agriculture, 115, 78-87. 

https://doi.org/10.1016/j.compag.2015.05.012 

https://doi.org/10.1016/j.compag.2007.04.008


 

 52 

Kraus, T., Ferreau, H. J., Kayacan, E., Ramon, H., De Baerdemaeker, J., Diehl, M., & 

Saeys, W. (2013). Moving horizon estimation and nonlinear model predictive 

control for autonomous agricultural vehicles. Computers and electronics in 

agriculture, 98, 25-33. https://doi.org/10.1016/j.compag.2013.06.009 

Leemans, V., & Destain, M.-F. (2006). Application of the Hough Transform for Seed 

Row Localisation using Machine Vision. Biosystems Engineering, 94(3),      

325–336. https://doi.org/10.1016/j.biosystemseng.2006.03.014 

Leemans, V., & Destain, M.-F. (2007). A computer-vision based precision seed drill 

guidance assistance. Computers and Electronics in Agriculture, 59(1–2), 1–12. 

https://doi.org/10.1016/j.compag.2007.04.003 

Li, H., Lee, W. S., & Wang, K. (2016). Immature green citrus fruit detection and 

counting based on fast normalized cross correlation (FNCC) using natural 

outdoor colour images. Precision Agriculture, 17(6), 678–697. 

https://doi.org/10.1007/s11119-016-9443-z 

Morimoto, E., Suguri, M., & Umeda, M. (2005). Vision-based navigation system for 

autonomous transportation vehicle. Precision Agriculture, 6(3), 239–254. 

https://doi.org/10.1007/s11119-005-1384-x 

Nagasaka, Y., Umeda, N., Kanetai, Y., Taniwaki, K., & Sasaki, Y. (2004). Autonomous 

guidance for rice transplanting using global positioning and gyroscopes. 

Computers and electronics in agriculture, 43(3), 223-234. 

https://doi.org/10.1016/j.compag.2004.01.005 

Nieuwenhuizen, A. T., Hofstee, J. W., & Van Henten, E. J. (2010). Performance 

evaluation of an automated detection and control system for volunteer potatoes 

in sugar beet fields. Biosystems Engineering, 107(1), 46-53. 

https://doi.org/10.1016/j.biosystemseng.2010.06.011 

Noguchi, N., & Barawid Jr, O. C. (2011). Robot farming system using multiple robot 

tractors in Japan agriculture. IFAC Proceedings Volumes, 44(1), 633-637. 

Noguchi, N., & Barawid Jr, O. C. (2011). Robot farming system using multiple robot 

tractors in Japan agriculture. IFAC Proceedings Volumes, 44(1), 633-637. 

https://doi.org/10.3182/20110828-6-IT-1002.03838 

Perez-Ruiz, M., Slaughter, D. C., Gliever, C. J., & Upadhyaya, S. K. (2012). Automatic 

GPS-based intra-row weed knife control system for transplanted row 

crops. Computers and Electronics in Agriculture, 80, 41-49. 

https://doi.org/10.1016/j.compag.2011.10.006 

Peruzzi, A., Frasconi, C., Martelloni, L., Fontanelli, M., & Raffaelli, M. (2012). 

Application of precision flaming to maize and garlic in the RHEA project. 

In Proceedings of the First International Conference on Robotics and 

Associated High-technologies and Equipment for Agriculture. Applications of 

automated systems and robotics for crop protection in sustainable precision 

agriculture,(RHEA-2012) Pisa, Italy-September 19-21, 2012 (pp. 55-60). 

University of Pisa. 



 

 53 

Qureshi, W. `S., Payne, A., Walsh, K. B., Linker, R., Cohen, O., & Dailey, M. N. 

(2017). Machine vision for counting fruit on mango tree canopies. Precision 

Agriculture, 18(2), 224–244. https://doi.org/10.1007/s11119-016-9458-5 

Reiser, D., Sehsah, E. S., Bumann, O., Morhard, J., & Griepentrog, H. W. (2019). 

Development of an autonomous electric robot implement for intra-row weeding 

in vineyards. Agriculture, 9(1), 18. https://doi.org/10.3390/agriculture9010018 

Stentz A, Dima C, Wellington C, Herman H, Stager D. A. (2002). System for semi-

autonomous tractor operations. Autonomous Robots,  13(1), 87–104 

Vieri, M., Lisci, R., Rimediotti, M., & Sarri, D. (2012). The innovative RHEA airblast 

sprayer for tree crop treatment. In Proceedings of the First International 

Conference on Robotics and Associated High-technologies and Equipment for 

Agriculture. Applications of automated systems and robotics for crop protection 

in sustainable precision agriculture,(RHEA-2012) Pisa, Italy-September 19-21, 

2012 (pp. 93-98). University of Pisa. 

Xue, J., Zhang, L., & Grift, T. E. (2012). Variable field-of-view machine vision based 

row guidance of an agricultural robot. Computers and Electronics in 

Agriculture, 84, 85–91. https://doi.org/10.1016/j.compag.2012.02.009 


