ADAPTIVE LIGHTWEIGHT LICENSE PLATE IMAGE
RECOVERY USING DEEP LEARNING BASED ON GENERATIVE
ADVERSARIAL NETWORK

by

Wauttinan Sereethavekul

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Engineering in Microelectronics and Embedded Systems

Examination Committee:

External Examiner:

Nationality:

Previous Degree:

Scholarship Donor:

Dr. Mongkol Ekpanyapong (Chairperson)
Prof. Matthew N. Dailey
Prof. Huynh Trung Luong

Prof. Fausto Giunchiglia
Faculty of Science
University of Trento

Trento, Italy

Thai

Master of Engineering in Microelectronics
and Embedded Systems

Asian Institute of Technology, Thailand

Royal Thai Government - AIT Fellowship

Asian Institute of Technology

School of Engineering and Technology

Thailand
May 2024

AUTHOR’S DECLARATION

I, Wuttinan Sereethavekul, declare that the research work carried out for this thesis was
in accordance with the regulations of the Asian Institute of Technology. The work pre-
sented in it are my own and has been generated by me as the result of my own original
research, and if external sources were used, such sources have been cited. It is original
and has not been submitted to any other institution to obtain another degree or qualifi-

cation. This is a true copy of the thesis including final revisions.
Date: January 16, 2024
Name: Wauttinan Sereethavekul

. L | i
Signature: W lvon 5 erect 'r-aut"mll\

ii

ACKNOWLEDGEMENTS

This research fund was supported in part by TSRI (Thailand Science Research and In-
novation) project number RDG6250036. Furthermore, all of the hard work in this study
would not have been completed without a support from Dr. Mongkol Ekpanyapong
and his team at Al center, Asian Institute of Technology. They provided me with all
datasets used in this work. A research fund supported by my institute (AIT) in pur-
chasing research equipment, i.e., a computer machine and peripherals. Including thesis
committees who gave me excellent advice and guidance. Also, my AIT friend gave me
suggestions during the study process. Lastly, I would like to give special thanks to my

family, who always supported me on living expenses throughout this entire study.

iii

ABSTRACT

Many Convolutional Neural Networks (CNNs) methods have already surpassed tradi-
tional approaches to image restoration tasks. Those CNNs models were usually de-
signed to enhance single tasks such as an image resolution (super-resolution) or image
denoising, but we came up with unconventional goals, that is, multiple recovery tasks
from a single network design. Although the Transformer design has recently gained at-
tention in image recovery tasks, they are too slow. In order to work with license plate
images from a traffic camera stream, the system has to be responsive. So, we proposed
a fast and lightweight deep learning-based data recovery system using a Generative Ad-
versarial Network (GAN) principle named License Plate Recovery GAN (LPRGAN).
The design has a proposed encoder-decoder style inspired by an autoencoder aided by
dual classification networks. This style suits problem-characteristic learning because
strong contextual information is retrieved from the down-scaled representations. This
proposed system has three main features such as identifying a problem, data recovery,
and fail-safe mechanism. The core of system is a data recovery unit (LPRGAN), is used
to recover license plate images from multiple degraded input images. Most existing im-
age restoration systems do not have self-awareness, leading to an inefficiency problem.
Unlike existing works, this system has anomaly detection and will only process on a de-
graded input, reducing workload overhead, improving efficiency and a fail-safe feature
that prevents an unexpected bad output. Hence, the proposed algorithm requires less
resource to deploy on a low-power machine such as edge computing devices, opening
up new possibilities in on-device computing. Our proposed research can recover several
degraded problems up to 720p resolution at 15 frames per second on a single graphic
card, 256x128 resolution at 17 frames per second on a CPU-only workstation machine,

or 7 frames per second on an ultra-low-power tablet PC.

Keywords: Data Recovery, Deep Learning, Generative Adversarial Networks, Image

and Video Recovery, Machine Learning, Neural Networks, and Video Streaming.

iv

CONTENTS

Page

AUTHOR’S DECLARATION ii
ACKNOWLEDGEMENTS iii
iv
viii
ix
LIST OF ABBREVIATIONS xiv
CHAPTER 1 INTRODUCTION 1
(LI _Overview| 1

(.2 Problem Statementl 1

(1.3 Objectives| 1

(1.4 Limitations and Scope| 2
(CHAPTER 2 LITERATURE REVIEW 3
3

2.2 CUDA and CuDNN] 7

2.3 Kerag 7

(2.4 Deep Neural Network] 8

[2.4.1 Image Classification| 8

2.4.2 Autoencoder 8

9

2.44 GAN 10

[2.4.5 Supervised VS Unsupervised Training]| 14

CHAPTER 3 METHODOLOGY! 16
[3.1 'The Description of the Problems| 16

(3.2 Dataset Preparation and Processing| 17

3.2.1 Low Bitrate Dataset] 17

[3.2.2 Low Light Dataset| 17

13.2.3 Out of focus Dataset 18

13.2.4 Horizontal Motion Blur Dataset 18

13.2.5 Vertical Motion Blur Dataset| 18

13.2.6 Normal Datasetl 19

(3.3 Proposed System, Model, and Layers|
[3.3.1 MaxPooling VS Stride]

[3.4 System Flowchart]
(3.5 Data Reconstruction using LPRGAN|

[3.6 'Training Process|

[3.6.1 Fixed Learning Rate VS Decay Learning Rate|

[3.6.2 Detector/Qualifier Training|

[3.6.3 Recovery System Training]

[3.6.4 Fine Tuning Hyper Parameters|
13.6.5 Evaluation Process|

[3.7 Testing Process|
[3.7.1 Visual Approach|

[3.7.2 Synthetic Metric Approach|

CHAPTER 4 RESULT

4.1 Classification Training Resulf|

4.2 Classification Testing Result]

4.3 Optimization|
4.3.1 Kernel Sizel
4.3.2 Layer Depth Configuration|
4.3.3 Stride VS Maxpooling2D|
4.3.4 Sigmoid VS Tanh as Activation Function|

4.3.5 Learning Rate Adjustment]

4.3.6 Decay Rate Adjustment]

4.3.7 ADAM Optimizer Adjustment]

4.3.8 Best Saved Weight Selection|
4.4 LPRGAN Testing Resulf|

4.4.1 Low Bitrate Problem

4.4.2 Low Light Problem|

0473 T-Axis Motion Blur Problem

4.4.4 Out Of Focus Problem|

vi

19
20
20
2
27
27
28
29
29
31
31
33
33
38
38
39
40
40
40
40
40
43
45
45
45
46
48
48
50
51
53
55
58

45T onal Platc Test

4.4,/ Real World License Plates Testl
4.4.8 Real World License Plate Recognition Test]

CHAPTER S CONCLUSION;
REFERENCES
APPENDIX: LICENSE PLATE DATASET

vii

62
62
67
67
88
89
93

LIST OF TABLES

Tables

(Table 4.1 SSIM Score on Each Kernel Size Tablel

(Table 4.2 SSIM Score on Each Layer Depth Configuration Table|

Mahle 23 A Metic M S Tab] owBi Problem
(Table 4.4 A Metric Measurement Score Table on Low Light Problem|
M43 A Memic M S Tahl Motion Blur Problem
lable 4.6 A Metric Measurement Score Table on Out of Focus Probleml
Mable 47 A Metic M S Tab] I ~onal Plaidl
(Iable 4.8 Methods Speed Comparison Table|

aple 4. pee est lable

(Table 4.10 Memory Usage Comparison Table]

viii

Page
44
44
68
70
72
76
79
81
84
85

LIST OF FIGURES

Figures Page
[Figure 1.1 Bitrate Required for Video Streaming at Different Resolution| 2
[Figure 2.1 Autoencoder Layers| 9
[Figure 2.2 Autoencoder Encodes Image into Z Space] 10
[Figure 2.3 U-Net Layer Configuration| 11
[Figure 2.4 A Briefed View of generic GAN Diagram| 12
[Figure 2.5 A Completed View of generic GAN Diagram| 12
[Figure 2.6 Generic GAN Training Process| 13
igure 2. on xamp 14
[Figure 2.8 CycleGAN Example] 15
[Figure 3.1 Histogram Plot on each Problem Type Dataset - (a) Low Bitrate Train |
| Set, (b) Low Bitrate Test Set, (c) Low Light Train Set, (d) Low Light |
| Test Set, (e) Motion Blur Train Set and (f) Motion Blur Test Set| 17
[Figure 3.2 Overview of Proposed System Block Diagram| 21
[Figure 3.3 LPRGAN Generator Layers Visualization| 22
[Figure 3.4 [LPRGAN Generator Layer Diagram| 23
[Figure 3.5 LPRGAN Discriminator Layer Diagram| 24
[Figure 3.6 LPRGAN GAN Layer Diagram| 25
[Figure 3.7 Maxpooling Operation| 25
[Figure 3.8 Logic System Flowchart| 26
[Figure 3.9 Different Between Fixed and Decay Learning Rate Path - (a) Fixed |
| Learning Rate Converging Path and (b) Decay Learning Rate Con- |
| verging Path| 28
[Figure 3.10 Sigmoid (Red) and Tanh (Green) Function Output 32
[Figure 3.11 Test Scene Demonstration| 39
[Figure 4.1 A Detector/Qualifier Training Resulf| 41
[Figure 4.2 A Rater Training Resulf 42
[Figure 4.3 Classifier Prediction Result, (a) JPEG Quality 0 = 1-Star and (b) |
| JPEG Quality 50 = 3-Star| 42
[Figure 4.4 Original/Reference Image| 43

ix

[Figure 4.5 Comparison Between Each Kernel Size Setting - (a) K=3, (b) K=4,

| (c) K=5, (d) K=7 and (e) K=9| 43
[Figure 4.6 Last Layer Kernel Size Configuration - (a) K=1, (b) K=3 and (c) K=5| 44
[Figure 4.7 Stride vs MaxPooling Result - (a) Striding (SSIM 0.7877), (b) Max- |
| pooling (SSIM 0.554) 45
[Figure 4.8 Result from Using Sigmoid VS Tanh Function - (a) Sigmoid (SSIM |
| 0.787), (b) Tanh (SSIM 0.754)| 45
[Figure 4.9 Training Performance of Learning Rate = 0.001] 46
[Figure 4.10 Training Performance of Learning Rate = 0.0001| 47
[Figure 4.11 Training Performance of Decay Rate = 0. 1| 47
[Figure 4.12 Training Performance of Decay Rate = 0.01] 48
[Figure 4.13 Training Performance of 5; = 0.1] 49
[Figure 4.14 Training Performance of 5; = 0.5] 49
[Figure 4.15 Training Performance of 5; = 0.9| 50
[Figure 4.16 Result on Different Weight Selection - (a) Fit Weight (SSIM 0.7877) |
| and (b) Unfit Weight (SSIM 0.465)| 50
[Figure 4.17 Overall Training Performance on Low Bitrate Problem| 51
[Figure 4.18 Overall Evaluating Performance on Low Bitrate Problem| 52
[Figure 4.19 Result on Simulated Low Bitrate Problem - (a) Input Image, (b) CBD- |
| Net Output Image, (c) GFPGAN-SR Output Image, (d) Convolu- |
| tional Autoencoder Output Image, (e) GAN+U-Net Output Image, |
| (f) SwinlR Output Image and (g) LPRGAN Output Image| 52
[Figure 4.20 Result on Actual Low Bitrate Video Problem - (a) Input Image, (b) |
| CBDNet Output Image, (c) GFPGAN-SR Output Image, (d) Convo- |
| lutional Autoencoder Output Image, () GAN+U-Net Output Image, |
| (f) SwinlR Output Image and (g) LPRGAN Output Image| 53
[Figure 4.21 Result on Actual Low Bitrate Video Problem with 3X Zoom on Last |
| 3 Digits - (a) CBDNet Output Image, (b) GFPGAN-SR Output Im- |
| age, (c) Convolutional Autoencoder Output Image, (d) GAN+U-Net |
| Output Image, (e) SwinlR Output Image and (f) LPRGAN Output |
| Image] 54
[Figure 4.22 Overall Training Performance on Low Light Problem| 54
[Figure 4.23 Overall Evaluating Performance on Low Light Problem| 55

[Figure 4.24 Result on Simulated Low Light Problem - (a) Input Image, (b) CBD-

| Net Output Image, (c) GFPGAN-SR Output Image, (d) Convolu-

| tional Autoencoder Output Image, (e) GAN+U-Net Output Image,

| (f) MIRnet Output Image and (g) LPRGAN Output Image]

[Figure 4.25 Result on Actual Low Light Problem - (a) Input Image, (b) CBDNet

| Output Image, (c) GFPGAN-SR Output Image, (d) Convolutional

| Autoencoder Output Image, () GAN+U-Net Output Image, () MIR-

| net Output Image and (g) LPRGAN Output Image]

[Figure 4.26 Overall Training Performance on Horizontal Motion Blur Problem|

[Figure 4.2°7 Overall Evaluating Performance on Horizontal Motion Blur Problem|

[Figure 4.28 Overall Training Performance on Vertical Motion Blur Problem|

[Figure 4.29 Overall Evaluating Performance on Vertical Motion Blur Problem|

[Figure 4.30 Result on Simulated Horizontal Motion Blur Problem - (a) Input Im-

| age, (b) CBDNet Output Image, (c) GFPGAN-SR Output Image, (d)

| Convolutional Autoencoder Output Image, () GAN+U-Net Output

| Image, (f) DeblurGANv2+MobileNet Output Image, (g) Restormer

| Output Image and (h) LPRGAN Output Image|

[Figure 4.31 Result on Actual Horizontal Motion Blur Problem - (a) Input Im-

| age, (b) CBDNet Output Image, (c) GFPGAN-SR Output Image, (d)

| Convolutional Autoencoder Output Image, (¢) GAN+U-Net Output

| Image, (f) DeblurGANv2+MobileNet Output Image, (g) Restormer

| Output Image and (h) LPRGAN Output Image|

[Figure 4.32 Result on Simulated Vertical Motion Blur Problem - (a) Input Im-

| age, (b) CBDNet Output Image, (¢) GFPGAN-SR Output Image, (d)

| Convolutional Autoencoder Output Image, (e) GAN+U-Net Output

| Image, (f) DeblurGANv2+MobileNet Output Image, (g) Restormer

| Output Image and (h) LPRGAN Output Image|

[Figure 4.33 Result on Actual Vertical Motion Blur Problem - (a) Input Image, (b)

| CBDNet Output Image, (c) GFPGAN-SR Output Image, (d) Convo-

| lutional Autoencoder Output Image, (e) GAN+U-Net Output Image,

| (f) DeblurGANv2+MobileNet Output Image, (g) Restormer Output

| Image and (h) LPRGAN Output Image|

[Figure 4.34 Overall Training Performance on Out Of Focus Problem|

Xi

60
61

[Figure 4.35 Overall Evaluating Performance on Out Of Focus Problem|

61

[Figure 4.36 Result on Simulated Out of Focus Problem - (a) Input Image, (b)

| CBDNet Output Image, (c) GFPGAN-SR Output Image, (d) Convo-

| lutional Autoencoder Output Image, (¢) GAN+U-Net Output Image

| and () LPRGAN Output Image]

[Figure 4.377 Result on Actual Out of Focus Problem - (a) Input Image, (b) CBD-

| Net Output Image, (c) GFPGAN-SR Output Image, (d) Convolu-

| tional Autoencoder Output Image, () GAN+U-Net Output Image

| and () LPRGAN Output Image]
[Figure 4.38 Original US and UK License Plates - (a) US and (b) UK

62
63

[Figure 4.39 Result on US Plate from LPRGAN (a) Low Bitrate Input Image, (b)

| Low Bitrate Output Image, (c) Low Light Input Image, (d) Low Light

| Output Image, (e) Horizontal Motion Blur Input Image, (1) Horizon-

| tal Motion Blur Output Image, (g) Vertical Motion Blur Input Image

| and (h) Vertical Motion Blur Output Image|

[Figure 4.40 Result on UK Plate from LPRGAN (a) Low Bitrate Input Image, (b)

| Low Bitrate Output Image, (c) Low Light Input Image, (d) Low Light

| Output Image, (e) Horizontal Motion Blur Input Image, (1) Horizon-

| tal Motion Blur Output Image, (g) Vertical Motion Blur Input Image

| and (h) Vertical Motion Blur Output Image|

64

[Figure 4.41 Result on Additional Actual Thai License Plates from LPRGAN (a)

| Low Bitrate Input Image#1, (b) Low Bitrate Output Image#1, (c)

| Low Bitrate Input Image#2, (d) Low Bitrate Output Image#2, (e)

| Low Light Input Image#1, (f) Low Light Output Image#1, (g) Low

| Light Input Image#2, (h) Low Light Output Image#2, (i) Horizontal

| Blur Input Image#1, (j) Horizontal Blur Output Image#1, (k) Hori-

| zontal Blur Input Image#?2, (1) Horizontal Blur Output Image#2, (m)

| Vertical Blur Input Image#1, (n) Vertical Blur Output Image#1, (0)

| Vertical Blur Input Image#2, (p) Vertical Blur Output Image#2, (q)

| Out of Focus Input Image#1, (r) Out of Focus Output Image#1, (s)

| Out of Focus Input Image#2 and (t) Out of Focus Output Image#?2)

[Figure 4.42 Average Real World Data Recovery Performance Result

Xii

77
78

[Figure 4.43 (a) Input Image, (b) DeblurGANv2+MobileNet Output Image, (c)

| Restormer Output Image and (d) LPRGAN Output Image|

[Figure 4.44 Recognizer Prediction Confidence Resulf

[Figure 4.45 Images Set Used in Recognition Test|

[Figure 4.46 Average Real World Prediction Confidence Result|

xiii

81
86
87
87

LIST OF ABBREVIATIONS

ABR = Adaptive Bitrate Streaming

Al = Artificial Intelligence

Array = An enumerated collection of identical entities
AVC/H.264 = Advanced Video Coding

Bit = A binary digit having a value of O or 1

CBP = Coded Block Pattern

CBR = Constant Bitrate

CG = Computer Graphic

CGAN = Conditional Generative Adversarial Networks
CNN = Convolutional Neural Network

CPU = Central Processing Unit

cQp = Constant Quantization Parameter

CRF = Constant Rate Factor

CTUHEVC)Y/

Macroblock(AVC) = Coding Tree Unit

CycleGAN = Cycle Generative Adversarial Networks

DCGAN = Deep Convolution Generative Adversarial Networks
DCT = Discrete Cosine Transform

DNN = Deep Neural Network

FHD = Full High Definition

FLOPS = Floating Point Operations Per Second

Xiv

FPS = Frames Per Second

GAN = Generative Adversarial Networks
GPGPU = General-Purpose Graphic Processing Unit
GPU = Graphic Processing Unit

HEVC/H.265 = High Efficiency Video Coding

HR = High-Resolution

HQ = High Quality

I/P/B Frame = Intra-coded/Predicted/Bidirectional Predicted Frame
LPRGAN = License Plate Recovery GAN

LQ = Low Quality

LR = Low-Resolution

MSE = Mean Squared Error

ML = Machine Learning

MB = Megabyte

OCR = Optical Character Recognition

PIP = Python Package Manager

PSNR = Peak Signal-to-Noise Ratio

QoE = Quality of Experience

QP = Quantization Parameter

ReLU = Rectified Linear Unit

RMSE = Root Mean Squared Error

SCC = Spatial Correlation Coefficient

Spatial = A space that one image consist of pixel values, coordinates, in-

tensity, gradient and resolution

XV

SR
SRCNN
SSIM

Temporal

U-Net
UHD/4K
UQI
VIF
vQM

VMAF

= Super-Resolution
= Super-Resolution Convolutional Neural Network
= Structural Similarity Index

= A time that video consists of image frame sequences, correla-
tions between the images that determines the dynamic changes of

the object

= U-Net Convolutional Neural Network Architecture
= Ultra High Definition

= Universal Image Quality Index

= Visual Information Fidelity

= Video Quality Metric

= Video Multi-Method Assessment Fusion

XVi

CHAPTER 1
INTRODUCTION

1.1 Overview

Traffic cameras are now becoming essential tools in part of transportation systems. They
are used to monitor traffic activity and accidents or to detect illegal vehicles on the road.
These cameras help in traffic police workforce reduction. Not only that, a traffic camera
can be deployed in very remote areas where traffic police are hard to reach. The traffic
monitoring system can provide a full country-wide road area coverage. This monitoring
is a worldwide standard practice to enhance road security and safety. The most important
aspect of traffic monitoring is vehicle license plate reading, such as in road accidents or
traffic violation vehicles so that police officers can identify them. So this study provides
a new approach to help restoring a degraded license plate image using a deep learning

technique.

1.2 Problem Statement

There are many shortcomings in reading a license plate. Examples are occasionally
corrupted data within a streaming frame, low light area, slow shutter camera speed that
is not fast enough to track a plate, or an intention to save disk space by reducing recording
bitrate, resulting in low-quality media files. A simple form of data corruption can be seen
as a blocky-looking or blocky artifact due to a low bitrate streaming. FiglI.T| shows a

bitrate requirement in a video streaming at different resolutions.

1.3 Objectives

This study aims to develop a new light and fast yet practical license plate image quality
recovery, covering low bitrate, low light, motion blur and out-of-focus situations with
a single network setup. This research relies on artificial intelligence to overcome those
problems. It must be response to cope with real-time stream processing and light enough
to deploy on a typical workstation machine to enhance a monitoring potential. In addi-
tion, it is designed to handle multiple scenarios from a single network setup. Hence, a

training and using this work are effortlessly.

Figure 1.1

Bitrate Required for Video Streaming at Different Resolution

- 30 FPS 60 FPS
Average Video Streaming Bitrate
30000
20000
w
=}
L
= -
10000
0 = 1)
360p 480p 720p 1080p 2160p (4K)

1.4 Limitations and Scope

This work features a GAN, contains a modified generator and discriminator, resulting in
just under a million parameters (for 256x128 image recovery). The image recognition
and image recovery systems are also introduced into the system, working together to de-
tect and recover a degraded input, greatly improve system efficiency, instead of a simple
barebone system. However, there are still some limitations that need to be concerned.

* Qutput dimension size is a fixed size (256x128x3). It cannot be used to create
other larger or smaller sizes unless reconfiguration and retraining are required.

* QOutput quality is limited by the training dataset. It cannot create a better quality
than the original dataset.

* Some small detail areas in the generated image could be less sharp, such as the
province name in some problem cases. This drawback can be avoided by having a
higher training dataset resolution i.e., collecting higher-resolution images or using
a super-resolution technique.

* While the proposed model could be used in other countries rather than its origin,
but its performance would not be on par. Hence, retraining in a target country is

required.

CHAPTER 2
LITERATURE REVIEW

2.1 Related Works

This research has studied a deep learning principle which is a part of Al, to address such
problems. It has a unique ability to learn and observe input patterns used for many com-
plex tasks. This technique is suitable for improving low-quality images by learning from
high-quality ones. There are many CNNs available that have these capabilities. For ex-
ample, an autoencoder (Chollet,|2016)) is useful when an input has a noise in the image
or audio. It is used to remove noise in a signal. An autoencoder also has a convolutional
version called a convolutional autoencoder. It has multiple convolution computation lay-
ers as part of a network. The U-Net (Ronneberger, Fischer, & Brox|, 2015) is a network
that shares similarities to an autoencoder but even more complex layers. It consists of
two parts, a contracting path, and an expansive path. There are many GAN (Langr &
Bok, 2019) variations such as Deep Convolutional GAN (DCGAN. Deep Convolutional
Generative Adversarial Network.l,[2023)), Conditional GAN (CGAN. Conditional GAN.,
2022)), and CycleGAN (Zhu, Park, Isola, & Efros, [2017). The DCGAN is usually used
to generate a new image from random input data (normal distribution). A downside of
DCGAN is that its output cannot be controlled, so it is impossible to specify an output
appearance or class. This reason is why CGAN offers more control over DCGAN. The
CycleGAN is used to swap between two input domains. A GAN relies heavily on CNNs
because many CNNs models have posed a potential for image recovery and enhance-
ment. They learn from a pattern from big datasets. Most CNNs setups usually have
either an encoder-decoder style or a single-size style. In the first case, it utilizes a down-
sampling method to map an input to a lower-resolution representation and then applies
a reverse operation (up-sampling) to map to an original resolution. This operation is a
good way to learn input context by down-sampling resolution, but a downside is that
the fine spatial details are lost in the process. Thus, an output usually has lower details
when compared to an original, making this style a lossy process. In the latter case, a
single-scaling style utilizes feature processing. It does not contain any down-sampling
operation, producing images with more fine details. Nevertheless, this single-scale style
is commonly less effective in learning a pattern of contextual information due to a limited

representative resolution. So these two examples both have their benefits and drawbacks.

3

It is a position-sensitive procedure where pixels from two sources need to be matched
in a recovery learning process. The first source is a reference image, and the second is
a distorted image. A slight shift in pixel position between them is undesired because a
distorted pattern must be the only component in that image. Otherwise, a true pattern
will be mixed up with a dislocation pixel, making it difficult to learn a degradation pat-
tern for a specific problem. Therefore, both reference and degraded input images have
to be perfectly aligned. Then the learning can even further benefit from a large context

dataset, i.e., image scaling or problem variation.

Image processing has been developed over the past years, and one that benefits are traffic
monitoring. Traffic monitoring involves content transmission from a camera unit to a
monitoring unit. An interruption in transmission, such as unavailable bandwidth, can
produce poor-quality video transmission. Many have tried to improve content transmis-
sion, such as Petrov et al. (Petrov, Kartalov, & Ivanovski, |[2009) proposed a technique to
reduce a blocking artifact by detecting a blocking artifact in a macroblock (8x8 pixels)
and a displaced blocking effect. Then apply a blocking artifact reduction using their pro-
posed filters. They targeted mobile platforms with low bitrate video focused on operation
speed. Dar et al. (Dar & Bruckstein, 2015)) presented a work that analyses only one slice
of low bitrate video compression. This paper benefits from applying a spatio-temporal
down-scaling, i.e., reduction of frame rate and frame size, before the compression and
a corresponding up-scaling afterward. They left H.264 codec untouched. Their work
covers 16x16 macroblock from very low (2 bits/slice) through low (around 30 bits/slice)
and up to high (210 bits/slice) bitrate. So they presented that the downsampling video
before compression took place is better. Li et al. (Li et al., [2017) proposed a new five
layers CNN-based block up-sampling scheme for intra-frame coding. A block can be
down-sampled before being compressed by normal intra-coding and then up-sampled
to its original resolution. This way differs from the previous hand-craft down and up-
sampling because this paper is based on training a CNN. A new CNN structure for up-
sampling features the deconvolution of feature maps, multi-scale fusion, and residue
learning, making the network compact and efficient. They also designed different net-
works for the up-sampling of luma and chroma components, respectively, where the
chroma up-sampling CNN utilizes the luma information to boost its performance. This
scheme is built into HEVC reference software. Resulting in an average 5.5% BD-rate

reduction on common test sequences and an average 9.0% BD-rate reduction on ultra-

4

high definition (UHD) test sequences. Instead of using traditional downsampling, they
presented a CNN-based sampling scheme. Lin et al. (Lin, He, & Qing, 2019) proposed
an adaptive downsampling-based coding model to improve the low bitrate compression
efficiency of high-efficiency video coding (HEVC). They use motion estimation to find
the most similar blocks between upscaled Non-Key Frames (NKFs) and associated high-
resolution Key Frames (KFs). Then, an adaptive patching-based method is used to warp
the low-quality NKF blocks with the high-quality KF blocks. Their experimental results
demonstrate significant improvements compared to existing methods but only work on
HEVC. Yang et al. (Yang, Xu, Liu, Wang, & Guan, 2018) worked on enhancing low
bitrate HEVC video quality. They enhanced the visual quality of HEVC videos on the
decoder side. So they proposed a Quality Enhancement Convolutional Neural Network
(QE-CNN) method that does not require any encoder modification to achieve quality en-
hancement for HEVC. In particular, their QE-CNN method learns QE-CNN-I and QE-
CNN-P models to reduce the distortion of HEVC I and P/B frames, respectively. This
method differs from the existing CNN-based quality enhancement approaches, which
only handle intra-coding distortion and are thus unsuitable for P/B frames. They claimed
their method validates that the QE-CNN method effectively enhances quality for both
I and P/B frames of HEVC videos. These mentioned works feature both non-machine
learning and machine learning forms. Despite the benefit of media transmissions that
enhance streaming quality, resulting in a better video output quality, they are restricted

to a specific video codec.

On the other hand, some previous works tried to improve the image processing aspect.
For instance, Zhu et al. (Zhu, Park, Isola, & Efros, [2020) made use of the CycleGAN
to do an image-to-image translation (X — Y') which they called the "pix2pix" project
(Image-to-Image Translation using Pix2Pix.,2022)). He and his team created this project
to swap the texture of two things like, zebra and horse, and swap between two pictures
style, such as a photograph and an art style. Although swapping two pictures could ben-
efit some areas, such as swapping a noisy image with a clean one in the de-nosing task,
it does not necessarily mean imagery improvement. Guo et al. (Guo, Yan, & Zhang,
2019) presented a way to improve image denoising with additive white Gaussian noise
(AWGN) by training a convolutional blind denoising network (CBDNet) with a more re-
alistic noise model and real-world noisy-clean image pairs. Also, they provided an inter-

active strategy to rectify denoising results conveniently. A noise estimation subnetwork

5

with asymmetric learning to suppress the underestimation of noise level is embedded
into CBDNet. Wang et al. (Wang, Li, & Zhang,|2021) built a blind face restoration sys-
tem. This Generative Facial Prior (GFP) is incorporated into the face restoration process
via spatial feature transform layers, achieving a good balance of realness and fidelity.
The GFP-GAN could jointly restore facial details and enhance colors with just a single
forward pass. Kupyn et al. (Kupyn, Martyniuk, & Wu, 2019) presented DeblurGAN-
v2, a newer version of DeblurGAN that considerably boosts state-of-the-art deblurring
performance while being much more flexible and efficient. It was claimed to be faster
and better than v1. It is made of GAN with a backend such as Inception ResNet v2.
Zamir et al. (Zamir et al., 2020) presented the MIRNet, an image restoration model.
A proposed architecture maintains high-resolution representations throughout the en-
tire network and receives information from the low-resolution representations. Existing
CNN-based methods usually operate just on full-resolution or low-resolution represen-
tations. Although this network packs much functionality, it also contains several mod-
ules. They used three Recursive Residual Groups (RRGs), each of which contains two
Multi-scale Residual Block (MRBs), and each MRB also contains three streams. Za-
mir et al. (Zamir, Arora, & Khan, 2022) also proposed an efficient Transformer model
for capturing long-range pixel interactions, while remaining applicable to large images.
It can restore images on several tasks. Liang et al. (Liang et al.l 2021) proposed a
SwinlR model for image restoration based on the Swin Transformer. It consists of shal-
low feature extraction, deep feature extraction, and high-quality image reconstruction.
Recently, a biomedical paper utilizing GAN from Zhang et al. (Zhang et al.,|[2022) pre-
sented a method of increasing contrast in CT scanning images for clinical diagnosis.
Their MALAR system is based on CycleGAN. It has dual GANs that work on ultra-low-
dose-ICM aorta CT (UDCT) and low-dose-ICM aorta CT (LDCT) images. However,
this approach outputs DICOM format and does not work on standard RGB images. Wu
et al. (Wu et al.| 2021) presented an article for tomographic image reconstruction in a
sparse-view CT scan. They proposed a Dual-domain Residual-based Optimization NEt-
work (DRONE). It consists of three modules for embedding, refinement, and awareness.
The results from the embedding and refinement modules in the data and image domains
are regularized for optimized image quality in the awareness module, which ensures
the consistency between measurements and images with the kernel awareness of com-

pressed sensing. Wu et al. (Wu, Guo, Chen, Wang, & Chen,|[2022) also presented a Deep

Embedding-Attention-Refinement (DEAR) network to achieve good images from high
sparse-view levels in CT reconstruction tomography imaging. This study was based on
the DRONE and released later. DEAR also consists of three modules including deep
embedding, deep attention, and deep refinement. The results demonstrate the efficiency
of the DEAR in edge preservation and feature recovery in deep tomographic reconstruc-

tion.

From the above referenced works, each one of them has its own strength and drawback
but none focuses on real-time image processing. Since a live stream license plate recov-
ery task is a time-crucial process. This is where this proposed system gears toward to.
Finally, a group of selected novel approaches are evaluated by synthetically and visually

benchmarks to set a baseline againts the proposed method. These results are shown in

4.4

2.2 CUDA and CuDNN

CUDA(Develop, Optimize and Deploy GPU-Accelerated Apps.,2023) is a licensed name
of NVIDIA Corporation. It is an advanced computing platform using numerous gen-
eral proposed processors inside GPU (GPGPU). It is aimed at parallel computing which
largely supports popular development languages such as C, C++, Java, and Python. As a
result, big performance gains from using CUDA core inside NVIDIA GPU. This helps to
offload a workload from the main CPU to GPU, so the CPU could be used for something
else. As a drawback, in order to gain a benefit from using CUDA cores, it is required
only NVIDIA’s GPU. CUDA, however, can be compared to OpenCL from The Khronos
Group Inc which is also available on AMD Radeon GPU. CuDNN library is also a part

of CUDA which is solely used for accelerating deep learning training.

2.3 Keras

Keras is an open software library that is used for artificial neural networks interface. It
supports Python language. Keras acts as an interface for the TensorFlow library which
is provided by Google. However, before Keras version 2.3, it supported many back-
ends such as TensorFlow, Microsoft Cognitive Toolkit, Theano, and PlaidML. But after
version 2.4, Keras now only supports TensorFlow. This allows for more user-friendly,
faster speed, and more modular and extensible. Keras’s official website can be found in

(Keras.,|2023)). This work also opts for Keras as a main framework.

2.4 Deep Neural Network

Neural networks are bio-neural copycat programming that enables a computer to learn
from observational data just human learns something new. Deep learning is a powerful
set of techniques for learning in neural networks. Deep Neural Network (DNN) is just a
neural network with a lot of layers, normally network composed of 3 or more layers will
be considered deep. It can be CNN or RNN. Neural networks and deep learning cur-
rently provide the best solutions to many problems in image recognition, speech recog-
nition, and natural language processing. So, deep learning has become the most popular
and powerful in solving many problems. For example, a Convolutional Neural network
(CNN) can combine with these layers - The input layer, Convolution layer, ReLU layer,

Pooling layer, Flattening layer, and Output layer to form a neural network.

2.4.1 Image Classification

Image classification is one of many widely used DNNs. Its main purpose is to classify
each input image into each class/category. For example, a network that classifies car
images based on each type of car like a sedan, a truck, or a van. So image classification
perfectly fits into this system, an in-house image classification created for sorting each
input image into each problem type. Once trained, it can detect and identify the input
image. This function is really helpful to a GAN since a pre-trained model selection
relies on classification prediction. In addition, this classification is useful in final output

qualification to ensure the best possible result.

2.4.2 Autoencoder

Autoencoder [Fig[2.T}Fig[2.2] is a part of machine learning. It is a data compression al-
gorithm, different from a typical compression algorithm in which it learns automatically
from examples rather than pre-built by a human. The idea is, it tries to discard data from
an input (encoder/reduction) and rebuild data back to an output (decoder/reconstruction).
This is useful when an input has a low quality (i.e. noise in image or audio) or the data is
too big. Autoencoder will remove outlier data (that is noise signal) and carry over only
significant data. This way, it can be used to reduce noise in an input or reduce an input
size while preserving almost nearly its original quality. A downside of the autoencoder
is data-specific, which means that it will only be able to compress data similar to what
it has learned. Cannot be just used on any other data. For example, on an imagery task,

an autoencoder trained on pictures of faces would produce a poor job of compressing

Figure 2.1

Autoencoder Layers
Input Output
\\ 5 ~ /f
\ ™ ~ = #~ !/
\\ / e Code > oW \ /
/ S = \ /
\ \ / /
\ f/ « / \ p \ ;
h A)\]
/ \ / N ¥ \ /
/\ i - X / \\
/1’ \ £ # =\ / \
;L e, B
e ok
A _J o J
kil o
Encoder Decoder

pictures of a car, because the features it would learn are face-specific. Autoencoder is a

lossy process, its reconstruct outputs would be degraded compared to the original inputs.

Convolutional Autoencoder

This is a more complex autoencoder. It is a more advanced version of the standard
autoencoder because it has multiple convolution computation layers as a part of a net-
work and is considered a deep network. The encoder consists of a stack of Conv2D and
MaxPooling2D layers, while the decoder will consist of a stack of Conv2D and UpSam-

pling2D layers, to do a reverse order of encoder.

2.4.3 U-Net
Developed by Computer Science Department of the University of Freiburg. U-Net is
a convolutional neural network architecture semantic segmentation. It consists of two

parts, a contracting path, and an expansive path. The contracting path follows the typical

9

Figure 2.2

Autoencoder Encodes Image into Z Space

Distribution over latent
) space defined by z mean
Inputimage and z_log_var

3 ‘—'- Encoder —» \ Racgmstructed
‘ .~ Q image
.—-{ Decoder }—»
e ———

Point randomly
sampled from
the distribution

architecture of a convolutional network. It consists of the repeated application of two
3x3 convolutions, each followed by a rectified linear unit (ReLU) and a 2x2 max pooling
operation with stride 2 for downsampling. At each downsampling step, we double the
number of feature channels. Every step in the expansive path consists of an upsampling
of the feature map followed by a 2x2 convolution that halves the number of feature chan-
nels, a concatenation with the correspondingly cropped feature map from the contracting
path, and two 3x3 convolutions, each followed by a ReLLU. The cropping is necessary
due to the loss of border pixels in every convolution step. At the final layer, a 1x1 convo-
lution is used to map each 64-component feature vector to the desired number of classes.
In total the network has 23 convolutional layers. In Fig[2.3] each blue box corresponds
to a multi-channel feature map. The number of channels is on top of the box. White

boxes represent copied feature maps.

2.44 GAN

GAN stands for Generative Adversarial Network[Fig[2.4]]. It is part of the DNN story.
GAN is one exciting example of using a neural network. GAN is used in generating
image, video, or audio data from a random input. It has two separate parts. A generator
and a discriminator. A generator can be dubbed "the artist" and a discriminator is "the
art critic". A generator’s goal is to try to create the most realistic image from learning

from real-world input images whereas the discriminator’s goal is to tell whether that

10

Figure 2.3
U-Net Layer Configuration

64 B4

o output
Imat?tg i i N s " _| segmentation
g A & map

0 % 20

BE 256

i ._"l -"
|

=»conv 3x3, RelLU

512 512 copy and crop

> ¥ max pool 2x2
'

— 2 4 up-conv 2x2
-"_’__ = conv 1x1

{57}

input image is a real or fake image. During training[Fig[2.6]], the generator progressively
becomes better at creating images that look real, while the discriminator becomes better
at telling them apart. The training process comes to an end when the discriminator can

no longer distinguish real images from fakes.

In GAN, a minimax loss is used. It refers to the simultaneous optimization of the dis-
criminator and generator models. The minimax is a strategy in which two players try
to minimize the loss or cost for the worst case of the other player in turn-based games.
In this case, the generator and discriminator take turns involving updating their model
weights. The min and max refer to the minimization of the generator loss and the max-
imization of the discriminator loss. A discriminator and generator loss functions are

derived as below.
Dloss - mam(logD(x) + 10g<1 - D(G(Z))))

and
Gloss = mzn(log(l - D(G(Z))))

* D(z) is a discriminator

11

Figure 2.4
A Briefed View of generic GAN Diagram

Training set Discriminator

%
Ly, : Real
K — _[Fake

Generator ~ ﬁ‘:lke image

Figure 2.5
A Completed View of generic GAN Diagram

Generalor
network
4 x4 % I{Il24

Ex8x512

16 = ‘5”255323-:32:-:123

G o= B4 =% 3
Discriminalor
network ’ y
! 16 x 16 x 128
32 % 32 x84

B4 = 64 x 3

12

Figure 2.6

Generic GAN Training Process

First Many attempts Even more
attempt later attempts later

A

DISCRIMINATOR DISCRIMINATOR =

= DISCRIMINATOR =

* ((z) is a generator

* 2 is an input signal

DCGAN

Deep Convolutional GAN is a variety of GAN systems. It is usually used to generate a
new image from input random data (normal distribution). As a result, it is used to create
a novel image that has never existed before. One downside of DCGAN is that because
its output cannot be controlled so it is impossible to specify an output appearance or
class. However, due to the fact that DCGAN is the most simple GAN form so it is easy

to deploy.

CGAN

Due to the nature of DCGAN, its output cannot be controlled. On the other hand, CGAN
(Conditional GAN) is able to do just that. It is used to generate a controllable output.
For instance, with MNIST handwritten digits, CGAN can be controlled whether what

13

Figure 2.7
CGAN on MNIST Example

number the user needs to get. The output of CGAN is shown in Fig[2.7| where a label
controls each generated number. A cumbersome of CGAN is that every data in the
dataset requires to pair with its corresponding label, making the total number of files

grow twice.

CycleGAN

CycleGAN, or Cycle-Consistent GAN, specializes in swapping two domains like image-
to-image translation. The image-to-image translation is a class of vision and graphics
problems where the goal is to learn the mapping between an input image and an output
image using a training set of aligned image pairs. In other words, a mapping between X
domain and the Y domain is done by looking into each domain’s particular characteristic,
then transferring that information onto another and reverse. From this Fig[2.8 example,

this GAN can be used to swap textures between horse and zebra.

2.4.5 Supervised VS Unsupervised Training

There are two types of machine learning training. One is supervised learning and unsu-
pervised learning. Supervised learning requires the user to provide labels or information
corresponding to training data. Provided data can be in a form of a label or class that
groups a dataset. Unsupervised learning, on the other hand, does not need a label. It

will try to find a pixel-based similarity and dissimilarity on each input data to form a

14

Figure 2.8
CycleGAN Example

Monet 7_ Photos

Zebras 7= Horses Summer T Winter

?shrs —} horse -

harse — zebra : winter —? BUMMEer

Photograph

group of data or data clusters. So these are applied to two applications, classification
and clustering. The differences between those two are listed below 2022).

* Type - Clustering is an unsupervised learning method whereas classification is a
supervised learning method

* Process — In clustering, data points are grouped as clusters based on their similar-
ities. Classification involves classifying the input data as one of the class labels
from the output variable.

* Prediction — Classification involves the prediction of the input variable based on
the model building. Clustering is generally used to analyze the data and draw
inferences from it for better decision-making.

* Splitting of data — Classification algorithms need the data to be split as training
and test data for predicting and evaluating the model. Clustering algorithms do
not need the splitting of data for their use.

* Data Label — Classification algorithms deal with labeled data whereas clustering
algorithms deal with unlabelled data

 Stages — The classification process involves two stages, training and testing. The
clustering process involves only the grouping of data.

* Complexity — As classification deals with a greater number of stages, the complex-
ity of the classification algorithms is higher than the clustering algorithms whose

aim is only to group the data

15

CHAPTER 3
METHODOLOGY

3.1 The Description of the Problems
As mentioned earlier, there are many common problems in traffic camera streams. Most
seen problems were categorized into each group. A grouping is vital because the detec-
tion system can provide a corresponding description of an input to the recovery system
precisely. Each group has its label and was used to train a detection system. Below is a
list of problems that this study focuses on.
* Low Bitrate Dataset - Represents network congestion and low bandwidth network
problems
* Low Light Dataset - Represents low light and nighttime situations
* Motion Blur - Horizontal Dataset - Represents slow camera shutter speed and
speedy object problems
* Motion Blur - Vertical Dataset - Represents slow camera shutter speed and camera
shaking due to vibration problems
* Normal Dataset (Normal/Good Condition) - Represents a high-quality, daylight
situation in an ideal case
In the case of low bitrate problems where it is feasible to arrange them into sub-groups,
these ranges refer to the JPG compression ratio range, which is mapped to a rating score
system. This rating system will be useful in cases where a regular mathematical picture
assessment is not possible to calculate.
e 1-Star: 0-20 JPG Quality Setting (Poorest Looking)
2-Star: 20-40 JPG Quality Setting
3-Star: 40-60 JPG Quality Setting
4-Star: 60-80 JPG Quality Setting
5-Star: 80-100 JPG Quality Setting (Best Looking)

The above descriptions are used in a deep learning classification, which is supervised
training. It is trained to detect and categorize an occurring problem and acknowledges

a difference between each compression ratio range to assess an output product.

16

Figure 3.1

Histogram Plot on each Problem Type Dataset - (a) Low Bitrate Train Set, (b) Low
Bitrate Test Set, (c¢) Low Light Train Set, (d) Low Light Test Set, (e) Motion Blur Train
Set and (f) Motion Blur Test Set

(D O A o

3.2 Dataset Preparation and Processing

Thai license plate images are the dataset used in this research and were provided by the
Al Center, Asian Institute of Technology. There are 16,194 images in total, and they
were separated into 14,500 train images and 1,694 evaluation images. However, due to
ownership and privacy infringement, these images cannot be disclosed here. Due to the
raw datasets being relatively small in resolution, all images after resizing were capped
at 256x128 pixels, so a network is primarily designed to fit this image size. They were
then processed into each category using a random filter to replicate real-world problems
such as low JPG quality level for low bitrate problems or low brightness for a low light
problem. These were prepared as the first step before training a model, and their category
structure is shown below. In Fig[3.TalFig[3.1f] display histogram plots on each equal

probability random distribution of filter level.

3.2.1 Low Bitrate Dataset

To create low bitrate/compressed images, OpenCV2 is used in writing a compressed
image (a very low quality). In this way, this image can represent how each video frame
in low bitrate video looks like. In the OpenCV2 document, It says that "For JPEG, it
can be a quality (CV_IMWRITE_JPEG_QUALITY) from O to 100 (the higher is the
better). Default value is 95.". But in this case, the quality value is set to 0 to 20 to match

a 1-Star rating system range.

3.2.2 Low Light Dataset
To create low-light images, PIL ImageEnhance (Pillow library) is used to drop original

image brightness from 100% to between 10% to 50%.

17

3.2.3 Out of focus Dataset
Using a random blur kernel to create a blur filter that varies between 7 - 15 kernel size.
Then using this filter on the original dataset to simulate and creates out-of-focus dataset

images.

3.2.4 Horizontal Motion Blur Dataset

A custom 2D kernel to create a motion blur filter (How fo Add Motion Blur to Numpy
Array., 2016) is used with an image to create a motion blur image. Kernel filter size
varies between 10x10-40x40. A blur kernel filter size is a pixel-shifting distance. For
example, using 15 blur kernel size gives a 15-pixel shifting distance from the origin.
This method creates a motion blur along the X-axis (0 degrees). A motion blur kernel

filter has a formula below.

1
h=—
m
e }h is the horizontal kernel value
¢ m is the size of the kernel) i
0 0 0
0 0 0
Hm><m =
hm/2 hm/2 hm/2
| 0 0 0 |

3.2.5 Vertical Motion Blur Dataset

This vertical motion blur is the same idea as a horizontal motion blur but is different
in the filter kernel. Again, kernel filter size varies between 10x10-40x40. This method
creates a motion blur along the Y-axis (90 degrees). A motion blur kernel filter has a

formula as below.

1
V= —
m
¢ v is a vertical kernel value
e m is the size of the kernel _ _
00 -+ Vpjg ==+ O
00 - v, e 0
Vm><m - . . ./2
00 -+ Wy == O

18

3.2.6 Normal Dataset
A reference dataset, i.e., normal-looking, high-quality, and good-condition images. This

dataset is used in recovery and measurement processes.

3.3 Proposed System, Model, and Layers
A proposed system is an end-to-end system combining two image classifications and
one image recovery into one application. It helps traffic monitoring system to detect the

anomaly and efficiently recover a bad ones when needed.

A detection system is built from CNN image classification and used to handle an in-
coming stream frame, detect a degraded frame and select a matching pre-trained model
for a recovery system. This detection system can be found as a "Detector” in Fig[3.2]
It is based on VGG-16 (VGG-16 CNN Model., 2023)) network but with a reduced lay-
ers count, resulting in three convolutional levels. The kernel size used in this network
is 2. Its output (Image Description) is used in "Model Selector". It currently has five
description output classes plus five star-rating classes in low-bitrate situations. This unit
matches an input description with a predefined description found in the description of
the problems to select a proper recovery model for that input, i.e., low-bitrate input needs

a trained low-bitrate model. A selected model will then be passed to a recovery system.

A recovery system (LPRGAN) is a pixel-based license plate image recovery system. This
proposed network features a reduction layer count configuration, including replacing the
max pooling layer with a convolutional stride to speed up model performance (Sprin-
genberg, Dosovitskiy, Brox, & Riedmiller, 2015). After receiving an input image and its
corresponding trained model from a model selector, the LPRGAN uses a trained model
to recreate a high-quality version of the degraded input. Thus, this step is called the
recovery process. The LPRGAN has two parts, a generator, and a discriminator. A gen-
erator is based on a convolutional autoencoder but optimized with a less complicated
configuration. The main benefit of an autoencoder is that it can down-sampling data
while preserving a significant representation of original data. All max-pooling layers
from the original version are replaced with striding. An upscale process is also replaced
with a convolutional transpose layer instead of the original upsampling layer. A genera-
tor layer configuration can be found in Fig[3.3|and Fig[3.4] A discriminator [Fig[3.5]] is

configured with a light VGG-16 version that also features a max-pooling replacement.

19

Both generator and discriminator have a kernel size of 3 in the main layer, except the
last one (output layer) in the generator has a kernel size equal to 1. They also feature a
sigmoid activation function instead of a hyperbolic tangent (tanh) for better output value
coverage. These setups make a network more compact and responsive. A generated

product from the LPRGAN will later be fed to a qualifier for evaluation purposes.

After a recovery step, a qualifier will validate a result with a rating score according to
its problem type. This validation comes in handy when a degraded input is severely
distorted and cannot be recovered. Since most existing works do not report on this case
where the input is too distorted beyond GAN recovery capability, It is usually because
the output will result in even worse quality. This occasion can sometimes happen when
GAN could not reproduce the desired output image due to too much damage in an input
image. Because of this inadequacy, our proposed system has one final touch, a fail-safe
mechanism using a "Qualifier". It will determine which final result should be presented,
either from a degraded input or an unrecovered result. This action is to prevent the end
user gets an unpleasant disaster output. A qualifier has the same CNN image classifi-
cation setup but is trained with a different purpose, featuring three convolutional levels.
The kernel size used in this network is 2. It is used to evaluate and validate a result at

the end of the process.

3.3.1 MaxPooling VS Stride

There are two ways in reducing data size between each layer, using a max pool layer or
a stride which can be configured right in the Conv2D layer, it is a number of a grid that
the kernel needs to skip in a convolution. For example, setting stride to 2 means a kernel
will slide in 2D data by 2 slots. On the other hand, the Maxpool layer is used to select
a maximum value on each kernel window to represent a data signature. As in Fig[3.7]
the output layer is shrunken down while retaining a maximum number of blocks from
the previous layer. So the difference is that a striding does a computational on the input
but max pooling does not. Thus, using the stride method could gain a speed over max

pooling because no additional layer is required.

3.4 System Flowchart
The proposed system flowchart shows in Fig[3.8] In the training stage (left chart), pre-
pared low-quality images is fed into QRGAN for training purpose. Then a series of

measurements (one is mathematics and another visual measurement) takes place before

20

Figure 3.2

Overview of Proposed System Block Diagram

Input

Description

Classifier
Pretrained {Detector)

Model

Discriminator
|
Referance LPRGAM
(Recovery)

4 i
_.{-'601'1\.'3-64
I\'\. ."’I
= Classifier g
(Qualifier)

r[Convolutional + ReLU 'Max_ Podling

Fully Connected + RelLU

@ Dropout ‘:7/[Sigmoid .Convolulionar . LeakyRelLU

21

Output

Figure 3.3
LPRGAN Generator Layers Visualization

> b - i 5 > —
T H
> 4 £, H
4 T convZDTranspoge iy o 3
conviD 3 convIDTransposge 2 W7 | | S j_

128

conv2D 2 conv2DTranspose. 3

i . 28

2567 256 & 2667

convaD 1 conv2D_4 activation

the generated image reaches the final step. In the testing stage or real-world application
usage, a proposed system monitors an input if it has a blockiness effect and falls below
a threshold then that image will be fed into QRGAN for data recovery. After a recovery
step, an item will be passed to output as the reconstructed image for display. If the input

image is visually acceptable then it is simply bypassed to output (skip QRGAN).

3.5 Data Reconstruction using LPRGAN

The basic idea in any image compression (Image Compression.,[2022) is that the more

the compression ratio is, the more space-saving, but it results in a blocky, bad-looking
image. In the JPEG compression stage 2022)), once an image is translated from
the spatial 2D domain into the frequency domain via DCT (Discrete Cosine Transfor-
mation), a low to mid-frequency is usually discarded to reduce file size, leaving out a
high-frequency area untouched. This high-frequency signal comes from a sharp edge
in the image. The reason to leave a sharp edge area in the image is that human eyes
are sensitive to them. Removing the rest would not affect on final image in terms of
visuals. This mentioned principle is also adopted for video compression with inter and

intra-coding to save a bitrate.

On the other hand, GAN has the unique ability to generate fake data based on training
in the deep learning world. GAN is used to learn a data loss pattern from a compression
mechanism in this case. In the training process, pairs of good/ordinary-looking images

22

Figure 3.4

LPRGAN Generator Layer Diagram

input: | (None, 128, 256, 3)
convZd 1 input: InputLayer
output: | (None, 128, 256, 3)
input: (None, 128, 256, 3)

convZd 1: Conv2D

output: | (None, 64, 128, 256)
Y

input: | (None, 64, 128, 256)

convZd 2: ConvZD
- output: | (None, 32, 64, 128)
input: | (None, 32, 64, 128)

convZd 3: Conv2D

= output: | (None, 16, 32, 64)

|

leaky re lu 1: LeakyRel.U

input: | (None, 16, 32, 64)
convZd transpose 1: ConvZDTranspose
output: | (None, 32, 64, 64)
Y
input: | (None, 32, 64, 64)

output:

(None, 32, 64, 64)

| |

convZ2d transpose 2: ConvZDTranspose

input:

(None, 32, 64, 64)

output:

(None, 64, 128, 128)

l

input: | (None, 64, 128, 128)
leaky re lu 2: LeakyRelU
output: | (None, 64, 128, 128)
) J
input: (None, 64, 128, 128)

convZ2d transpose 3: ConvZDTranspose

output: | (None, 128, 256, 256)
input: | (None, 128, 256, 256)
leaky re lu 3: LeakyRelU
output: | (None, 128, 256, 256)

|

input:

(None, 128, 256, 256)

convZd 4: ConvZD

output:

(None, 128, 256, 3)

23

Figure 3.5

LPRGAN Discriminator Layer Diagram

conv2d 5 input: InputLayer

input:

output:

Y

convZ2d 5: ConvZD

input:

(None, 128, 256, 3)

output:

(None, 64, 128, 64)

'

leaky re lu 4: LeakyRelLU

input:

output:

l

convZ2d 6: ConvZD

input:

(None, 64, 128, 64)

output:

(None, 32, 64, 128)

'

leaky re lu 5: LeakyReLU

input:

output:

l

convZ2d 7: ConvZD

input:

(None, 32, 64, 128)

output:

(None, 16, 32, 128)

'

leaky re lu 6: LeakyReLU

input:

output:

'

(None, 128, 256, 3)
(None, 128, 256, 3)

(None, 64, 128, 64)
(None, 64, 128, 64)

(None, 32, 64, 128)
(None, 32, 64, 128)

(None, 16, 32, 128)
(None, 16, 32, 128)

input: | (None, 16, 32, 128)
flatten 1: Flatten
- output: (None, 65536)
input: | (None, 65536)
dropout_1: Dropout
output: | (None, 65536)
Y
input: | (None, 655306)
dense 1: Dense
- output: (None, 1)

24

Figure 3.6
LPRGAN GAN Layer Diagram

input: | (None, 128, 256, 3)

Generator_input: InputLayer

output: | (None, 128, 256, 3)

Y
input: | (None, 128, 256, 3)

output: | (None, 128, 256, 3)

l

input: | (None, 128, 256, 3)
output: (None, 1)

Generator: Sequential

Discriminator: Sequential

Figure 3.7

Maxpooling Operation

Input tensor
(4x4)

25

Figure 3.8

Logic System Flowchart

Training

LPRGAN

CQuality
Rater

No (Below 5-Star Rating)

v Yes [5-Star Rating)

Reconstructed Output

26

Detector

LPRGAN Qutput

No (Not Pass Quality Rater)

Yes (Pass Quality Rater)

(references) (x) alongside real labels (y) and pairs of fake images (z*) with fake labels
(y*) are used to train a discriminator (D) to learn on how to differentiate a good and
a bad. Then, prepared degraded input images (X') with inverted real labels (y) is used
in a generator to generate a fake image but due to the fact that a generator cannot be
trained. So to train a GAN (G), the input (X)) is passed through a series of Convolutional
2D layers (Conv2D), and their dimensions are halved in every Conv2D layer until they
start to be upscaled back in Convolutional 2D Transpose layers (Conv2DTranspose).
Conv2D is used to extract an input feature, called feature extraction, to represent its
distinctive. In contrast, Conv2DTranspose, an invert of Conv2D, is used to rebuild pixel
information based on the extracted feature. After a generator generates a new image, a
discriminator will compare a generated image (z*) with an original/reference image ()
to decide whether a generated image looks realistic enough. This way, a discriminator
helps improve a generator’s performance to generate an even better result as if it was
trained. Ultimately, a generator target is to generate a realistic image that a discriminator
can no longer tell them apart. This recovery system predicts and recovers data from
compression or degraded loss to reduce a blocky artifact, smooth out a color gradient,
and brighten or reduce a blurry image. Thus, this concept can help to repair degraded

problems found in real life.

3.6 Training Process

A training result can be poor if there are insufficient resources such as computation
power, dataset, or time available. A sufficient amount of training datasets is crucial
since they directly impact training performance. The more variety of datasets available,
usually the more system performance is likely to be. Also, areasonable time is needed for
the model to fit perfectly (balanced fit). This research also features a decay learning rate
(Learning Rate Decay and methods in Deep Learning.,|2022) to accelerate the beginning

of the training process.

3.6.1 Fixed Learning Rate VS Decay Learning Rate

These are two common approaches in training any neural network. Fixed learning rate
means the user set one constant value to a network and that value will be used through
the entire training process whereas decay learning rate will use the same constant value
as an initial value and slowly reduce a learning rate over time throughout a training step.

This approach can help to prevent overshooting due to a big jump while the network is

27

Figure 3.9
Different Between Fixed and Decay Learning Rate Path - (a) Fixed Learning Rate Con-

verging Path and (b) Decay Learning Rate Converging Path

(a) (b)

trying to converge toward a balanced point. A decay learning rate is a bit more advanced
technique to optimize and generalize DNN when compared to a constant fixed learning

rate. Both the constant learning rate and decay learning rate could be visualized in

Fig[3.9a}Fig[3.9b] A decay learning rate has a formula below.

1

LR=LR
0F (1+LRDecay*N)

LR is the current learning rate in that iteration

LRy is an initial constant learning rate value

L Rpecay is a decay value used to control how fast the learning rate decreases

N is the current iteration number

3.6.2 Detector/Qualifier Training
To train an image classifier to detect and categorize (qualify) incoming input, these are
training parameters listed below.

* Iterations = 8

* Initial Learning Rate = 0.001

* Optimizer = RMSprop

* Activation = Sigmoid
To train an image classifier to scale an output rating score, these are training parameters
listed below.

* Iterations = 4

* Initial Learning Rate = 0.001

* Optimizer = RMSprop

* Activation = Sigmoid

28

Algorithm 1 Detector/Qualifier Training

1: procedure TRAIN CLASSIFIER

2:

3:
4:

10:
11:
12:

13:

for iteration =1,2,3,...do
for batch =1,2,3,...do
Load random image samples x in a mini-batch manner
Train the classifier on loaded samples (z)

Compute the classifier loss L(z) from predicted output ¢ and actual out-

put y and backpropagation a total error #%) to minimize a loss

Validate a model with validated samples ()
Compute and update Loss L(z’) to minimize a loss
end for
end for
Save Model
Save Final Iteration Result

Plot a Training Graph

14: end procedure

3.6.3 Recovery System Training

The training parameters except the [, value are common to all experiments. The detail

of values used in these studies is below.

Main Kernel Size = 3

Iterations = 200

Initial Learning Rate = 0.0001

Optimizer = Adam (Low Bitrate 8, = 0.5, Low Light 3; = 0.3, Horizontal Motion
Blur 5, = 0.7, Vertical Motion Blur 3; = 0.5)

Activation = Sigmoid

3.6.4 Fine Tuning Hyper Parameters

Finding the right value for each parameter used in a training process is one of the most

difficult and time-consuming steps. Since most of them could only be found by trial-

error approach. Parameters that need to be adjusted are listed below.

Batch Size - It is the number of how many images in one batch. Because of the
nature of neural network training, a small number of data is preferred.

Optimizer - These are some DNN most popular optimizers to choose from such

29

Algorithm 2 LPRGAN Training

1: procedure TrRaiN GAN

2:

3:
4:

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:

23:
24:

25:

for iteration =1,2,3,...do

for batch =1,2,3,...do
Load random image samples x in a mini-batch manner
Train the discriminator on loaded samples with its real labels (z, y)

Compute the discriminator loss D(z) and backpropagation a total error

0P) to minimize a loss

Using the generator to generate fake images from input G(z') = z*
Train the discriminator on fake images and fake labels sample (z*, y*)

Compute the discriminator loss D(z*) and backpropagation a total error

0P) to minimize a loss

Train the GAN by using low-quality input images with real labels sample

Compute and update GAN Loss §() to maximize a loss
end for
LR < LRjieration
Load different random image samples x in a mini-batch
Evaluate the discriminator on real images set (o, y)
Generate fake images from input G(z() =
Evaluate the discriminator on fake images set with fake labels (z, y*)
psnr <— PSNR(z, x*) and psnrg < PSN R(xq, x
scc «— SCC(zx, x*) and sccy «— SCC(xg, xf)
ssim <= SSIM (z,z*) and ssimg <— SSIM (xg, z{)
vif < VIF(xz,2*) and vify < VIF(xg,zf)

if psnrg > saved_psnrg V sccy > saved_sccy V ssimg > saved_ssimg V

vifo > saved_vify then saved_alue < new_value

end if

end for

fid < FID(xg,x{)

26: end procedure

30

as Stochastic gradient descent (SGD), RMSprop, and Adam

* Initial Learning Rate and Decay Learning Rate - In case of using variable learning
rate value, these two values are needed but if using constant learning rate, it will
be only one learning rate value to be set.

* Total Iteration - Control how many loops/epochs in one training

* Each Network Layer Convolution Size including Kernel Size and Stride Size

* Activation Function - Two common functions that can be used in the final layer
of the model here are sigmoid and tanh. The final layer is a decisive layer that
determines the output result. The difference between these two in principle is
that the former has a range scaled from O to 1 while the latter has -1 to 1. So
tanh function gives better scaling and a better gradient. A graph plot is shown in

Fig Sigmoid and tanh formulas are as followed.

. . 1
stgmoid = ——
1l+e®
2
tanh(zr) = —— — 1
anh(z) 1+e 2

or

tanh(z) = 2sigmoid(2zx) — 1

3.6.5 Evaluation Process

In between training, at the end of each epoch, there is an evaluation takes place. It can
be considered one of the training stages. This is also an important step in the training
process since it could tell how well the system can learn on seen dataset once applied to
an unseen dataset. To evaluate the network model at end of each iteration, will be two
methods, an evaluation image set is used to calculate measurement metrics (further on
the Metric Approach topic) and record the best score for each metric to be later used in

Testing Process.

3.7 Testing Process

Once the system has been trained and evaluated, then it is time to test a system with
a separated, unseen image set. They can be either got from computer processing or
real-world record. This test image will be fed into the fully trained system to generate
an output which then will be judged based on two criteria, one is a visual inspection
from both human and image classification network and another is metric measurement

same as in the evaluation step. There are two common image quality measurement or

31

Figure 3.10
Sigmoid (Red) and Tanh (Green) Function Output

1.00 ~

0.75 A

0.50

0.25 A

0.00 A

—0.25

—=0.50.

=0L 7D

=1.00

32

distortion assessment types. First is a human visual system (HVS) to assess perceptual
quality measures. The second one is mathematical measurements. In this study, the first
method is implemented in the "Visual Approach" and the second method is implemented
in the "Metric Approach" which is using python package named "Sewar" to measure an

output quality in a qualitative style.

3.7.1 Visual Approach

Due to a problem that visual inspection from humans might have a bias because a hu-
man is hard to get a consistent result since each person has a different perception, and
the human eye is hard to tell a slight change between images. So using well-trained
deep learning can help estimate an output quality is a better method. If a reconstructed
image is justified as a normal/good image by training it with a bunch of images in each
problem type. Once got output from GAN is, then feed this output to the trained image
classification network to measure the quality of the output from the GAN system and
whether it is flagged as normal/good label. Otherwise, the result will fall into one of the
bad labels. These are two metrics used in visual approach.

* Quality Rater (Qualifier)

* Prediction Confidence (Recogniser)

3.7.2 Synthetic Metric Approach
A mathematical assessment in this study includes these measurements, FID, PSNR,
SCC, SSIM, and VIF. FID is explicitly designed to assess a non-authentic, generated im-
age. This FID score is offered from Pytorch-fid (FID score for PyTorch., 2022) package.
The rest of the metrics are offered by Sewar (Sewar Python Package., 2022) package.
Below list are all metrics conducted in this research.
* FID (Fréchet Inception Distance) (How to Implement the Frechet Inception Dis-
tance (FID) for Evaluating GANs.., 2022)
* PSNR (Peak Signal-to-Noise Ratio) (Peak to Signal Noise Ratio.l, 2022)
* SCC (Spatial Correlation Coefficient) (Vallejos, Perez, Ellison, & Richardson)
2019)
* SSIM (Structural Similarity Index) (Structural Similarity Index.,[2022)
* VIF (Visual Information Fidelity) (Visual Information Fidelity., 2022)
* File size

* Time Usage

33

* Render Speed
* Memory Usage

FID

The Fréchet inception distance (FID) is a metric used to assess the quality of images
specifically created by the GAN. It compares the distribution of generated images with
the distribution of real images used to train the generator. In other words, this score tells
how well the GAN is from comparing generated dataset with a training dataset. FID
compares the mean and standard deviation of one of the deeper layers in the Inception
v3 network. These near-end layers are near output nodes that correspond to real-world
objects. Thus, it can mimic the human perception of similarity in images. The FID value
will be 0 if paired datasets are identical, and the value will go higher when there is more
difference (deviation) between two input datasets. The lower it is, the better.
FID = [|p1 — pol[” 4 tr(%) + 2g — 2(21% IR 22%)%)

* mu_1 and mu_2 refer to the feature-wise mean of the real and generated im-
ages, e.g., 2,048 element vectors where each element is the mean feature observed
across the images.

* Y and >3, are the covariance matrix for the real and generated feature vectors

o ||p1 — pa||? refers to the sum squared difference between the two mean vectors. ¢r
is the trace linear algebra operation, e.g., the sum of the elements along the main

diagonal of the square matrix.

PSNR

PSNR takes two inputs to calculate a signal power using the MSE of the reference image
from the original image. Its range is usually between 25-48dB for an 8-bit image, where

higher is better. PSNR has a formula as below.

2562

PSNR =10 % loglO(MSE)

* MSE is the mean squared error that measures the average of the squares of the

errors, the average squared difference between estimated values and actual value

34

SCC

The spatial Correlation Coeflicient calculates the spatial correlation coefficient score
from paired images. SCC is defined as a spatial concordance coeflicient for second-order
stationary processes. This problem has been widely addressed in a non-spatial context,
but here a coefficient that for a fixed spatial lag allows one to compare two spatial se-
quences along a 45°line. The proposed coefficient was explored for the bivariate Matérn
and Wendland covariance functions. The asymptotic normality of a sample version of
the spatial concordance coefficient for an increasing domain sampling framework was
established for the Wendland covariance function. To work with large digital images, a
local approach was proposed for estimating the concordance that uses local spatial mod-
els on non-overlapping windows. Monte Carlo simulations were used to gain additional
insights into the asymptotic properties of finite sample sizes. The analysis showed that
the local approach helped to explain a percentage of the non-spatial concordance and
provided additional information about its decay as a function of the spatial lag. The

generalized SCC formula is shown below.

20’Xo'y
¢(h) = 5 ——5pxy R(h
p°(h) Ug(_i_(j%/)xy (h, dxv)

1p°(h)] < lpxy(h)| <1
|p°(h)] = 0if [pxy(h)] =0

e oy is a standard deviation of X, and oy is a standard deviation of Y. Given that

X and Y are two random variables.

R(h, ¢xy) is a correlation function with parameter vector ¢ in which a covariance

function is defined

SSIM

This image quality assessment techniques rely on quantifying errors between a reference
and a sample image, which needs two images to do a calculation. A common metric is
to quantify the difference in the values of each of the corresponding pixels between the
sample and the reference images but relying on the human visual perception system
(HVS), on the other hand, is highly capable of identifying structural information from

a scene and hence identifying the differences between the information extracted from a

35

reference and a sample scene. Hence, a metric that replicates this behavior will perform
better on tasks that involve differentiating between a sample and a reference image. As
mentioned, it takes two inputs, one is original and another is reference then break down
into 3 parts, luminance, contrast, and structural comparison. The outcome value varies
between 0 to 1 where 1 is identical and O is not identical where higher is better. SSIM

has a general formula as below.
SS[M(Zl, 22) = [Z(Zl, ’ig)]a . [C(’il, ZQ)]ﬁ . [S(il, Z'Q)TY

* ¢ is the first image

* iy is the second image

* I(i1,142) is luminance comparison function
* c(iy,12) is contrast comparison function

* s(iy, 1) is structural comparison function

a >0, 3> 0, >0 denote the relative importance of each of the metrics

VIF

Visual Information Fidelity calculates pixel-based visual information fidelity. The pur-
pose of the HVS model in the information fidelity setup is to quantify the uncertainty
that the HVS adds to the signal that flows through it. As a matter of analytical and com-
putational simplicity, all sources of HVS uncertainty merged into one additive noise
component that serves as a distortion baseline in comparison to which the distortion
added by the distortion channel could be evaluated, called lumped HVS distortion vi-
sual noise and model it as a stationary, zero mean, additive white Gaussian noise model
in the wavelet domain. Thus, the HVS noise is modeled in the wavelet domain as sta-
tionary. The VIF is computed for a collection of wavelet coefficients that could represent
either an entire subband of an image or a spatially localized set of subband coeflicients.
In the former case, the VIF is a single number that quantifies the information fidelity for
the entire image, whereas in the latter case, a sliding-window approach could be used
to compute a quality map that could visually illustrate how the visual quality of the test
image varies over space. In the VIF system, the higher score is the better where 1 is the
best case. A general term of the VIF formula is below.

Ej(subbands)f(éNj; FNi|sNi)

Ej(subbands)f(éNj; EN) |sN7)

36

VIF =

« I(CN: FN|sN) and I(CV; EN|sV) represent the information that could ideally be
extracted by the brain from a particular subband of the reference and test images,
respectively

« CNi represents N elements of the RF that describe the coefficients from subband

j, and so on

File Size

Usually, any image file size will be larger when its resolution and compression quality
value is bigger. However, suppose all images have the exact resolution and compression
ratio. In that case, their file size can reflect how much that image holds information
(image detail). The bigger size, the more image contains fine detail. The file size in this

study has a unit as kilobytes (kB).

Time Usage

Time usage in this study is a training time usage per training epoch. It indicates how fast
a model setup is, and the faster approach is always preferable. A unit for the time used

in this study is second.

Render Speed

A render speed has a unit of frames per second (FPS). It indicates how fast a model setup
is. The faster approach is always preferable. This metric is used in a testing process.
This FPS can also tell if a testing model is viable for real-time operation since a CCTV

camera typically operates from 15 to 30 FPS.

Memory Usage

Memory usage can ultimately be a deciding factor if any approach could be deployed
on edge computing devices since most of them have a very limited amount of memory.

Usually, these embedded systems have around 32MB to 512MB in memory capacity.

37

So a model should use as the least RAM as possible.

3.7.3 Hardware
Below is a custom build model training PC running Ubuntu 18.04. This PC was used
throughout the entire research.
* AMD Ryzen 7 2700X 8 Cores 16 Threads CPU
Asrock B450 Gaming K4 Motherboard
Galax NVIDIA GeForce RTX 2080 Ti 11GB GDDR6 352-bit 260 Watts GPU
Corsair 32GB DDR4 Memory
WD Green SATA SSD 120GB
* Cooler Master 0PLUS Gold Full Modular 750W Power Supply

This is a workstation PC used in testing.
* Intel Xeon Processor E3-1200 v6 72 Watts CPU
* 8GB DDR4 Memory
* 2x 3.5" Enterprise SATA 7.2k 1TB
The Microsoft Surface Go 3 tablet PC is an ultra-low-power PC used in testing.
* Intel Core i3 10100Y 5 Watts Ultra Low Power CPU
* 1866MHz 8GB DDR3 Memory
* 128GB SSD PClIe Storage
This is a specification of a camera used in this study.

 Lilin ZR8022EX10 1080p 2MP CMOS Sensor IP Camera

3.7.4 Software
Below is a software list used in this thesis.
* 64-bit Ubuntu 18.04.3 LTS
* NVIDIA Driver V.430.26
* CUDA Toolkit V.10.2 + 10.0
e CuDNN V.7.6.2
* Python V.3.6.8
* PIP3 V.9.0.1
* Sublime Text 3
* Tensorflow-gpu V.1.14.0 (Not Support GPU Acceleration on CUDA10.1+)
» Keras V.2.3.0
* OpenCV2 V.4.1.1.26

38

Figure 3.11

Test Scene Demonstration

[

2

Matplotlib V.3.1.3
Numpy V.1.18.1
Pillow V.7.0.0

Scipy V.1.4.1
Scikit-Image V.0.16.2
h5py V.2.10.0

3.7.5 Test Scene

A figure shown in Fig[3.T1] represents how a test scene was set up. A camera model
used in the testing is Lilin ZR8022EX10. The distance between a camera and the front
bumper of a car where a license plate is located is 3-£0.5 meters. A car is stationary in
front of the camera to be safe and avoid an accident. There is no physical restriction on
the distance between a camera and a plate since all collected images are cropped to fit a

license plate area in post-processing.

39

CHAPTER 4
RESULT

4.1 Classification Training Result

Result on training an image classification as a degrading detector/qualifier is in Fig/4.1]
It is obvious that training beyond 6 epochs is useless in this case since model starts to
overfit a data. The optimum point here is at the 4th epoch. Due to training dataset
is rather large and learning rate is quite big so it needs only a few epochs to reach its
balanced point. The same story to a rater training [Fig[4.2]], a loss is relatively low at the

4th epoch. So a training is saturated.

4.2 Classification Testing Result

As shown result, a quality rating works well in predicting each JPEG compression-level
image. This could not be done by humans since a human could not be able to tell a
difference down to a very tiny level. A set of image varieties is used to test this ML. Be-

low are sample results from quality ratings on different JPEG compression level images

[Fig{.3a Fig 4. 3b].

The below image is an original/reference imageﬂ found in Fig It will be used to

compare against each problem type generated images.

4.3 Optimization

There are many ways to optimize a result. The most effective one is getting more training
data with more variety but if a dataset is already at its limit then trying changing layer
configuration or parameter in the model is an another option. Table.T| represents the
combination between each layer and the last layer kernel size settings. This experiment
studies the result difference between each set and finds the best kernel size setting for a
current generator setup. Furthermore, a main layer kernel size setting is used in both a

generator and a discriminator.

4.3.1 Kernel Size
Kernel size in each layer can affect the final output. Normally kernel size in a layer is

usually odd numbers such as 3, 5, or 7. This result shows an effect on the final output

I'This license plate is the author’s ownership, and it does not violate third party privacy or rights.

40

Figure 4.1

A Detector/Qualifier Training Result

Training Loss and Accuracy on Dataset

1.0 1 ———
0.8
)
E 0.6
=3
L
(%]
gﬁ 0.4
g0
. AN
0.2 1 — ftrain_loss \
—— val _loss
—— train_acc
< P \
pod — wvalacc — =
T T T T T T
0 1 2 3 4 5 6

Epoch Number

41

Figure 4.2

A Rater Training Result

Training Loss and Accuracy on Dataset

0.9 4
a'___'_p
—_—
0.8
0.7
)
@ 0.6 -
=3
L
<
@ 0.5
A
0.4
—— train_loss
034 — wval_loss
—— train_acc
— valace ~——eeoorornon
0.2
T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0
Epoch Number
Figure 4.3

Classifier Prediction Result, (a) JPEG Quality 0 = 1-Star and (b) JPEG Quality 50 =
3-Star

(a) (b)

1 4003 7 4005)

42

Figure 4.4

Original/Reference Image

o

Figure 4.5
Comparison Between Each Kernel Size Setting - (a) K=3, (b) K=4, (c¢) K=5, (d) K=7
and (e) K=9

Iﬂ? ? 06! ﬂ"l 2 Oﬁlﬂ‘l 2206 ﬂ'ﬂ 2 06! K Oﬂ

by selecting a different kernel size [Fig[d.5a-Figl4.5¢].

Another value that can be tweaked is the last layer’s kernel size. Below is a comparison
between setting the last generator layer’s kernel size from 1, 3, and 5 while keeping the

other’s kernel size as 4. This test result shows a better result when using the last layer

kernel size = 1 [Fig4.6alFig[4.6¢].

4.3.2 Layer Depth Configuration

Table [4.2]shows ablation studies between 11, 13, and 15 of the generator’s layers config-
urations. A training time is a time usage per epoch, unit in seconds. As shown below, the
more layer counts the more computational time is needed making overall performance
drop. Also, at the current stage, using 11 layers count produces the best outcome for

both metrics.

43

Figure 4.6
Last Layer Kernel Size Configuration - (a) K=1, (b) K=3 and (c) K=5

(@ (b) (0

N3 2206] NR 2208 NI 2206

Table 4.1
SSIM Score on Each Kernel Size Table

Kernel Size Main K=3 Main K=4 Main K=5 Main K=7 Main K=9

Last K=1 0.788 0.782 0.693 0.756 0.742

Last K=3 0.764 0.629 0.779 0.756 0.748

Last K=5 0.773 0.762 0.763 0.766 0.695
Table 4.2

SSIM Score on Each Layer Depth Configuration Table

Layer Counts SSIM Training Time

11 0.786 141.9
13 0.731 146.9
15 0.135 148.6

44

Figure 4.7
Stride vs MaxPooling Result - (a) Striding (SSIM 0.787), (b) Maxpooling (SSIM 0.554)

(a) (b)

N3 2206| N3 2’706

ANSA

Figure 4.8
Result from Using Sigmoid VS Tanh Function - (a) Sigmoid (SSIM 0.787), (b) Tanh
(SSIM 0.784)

(a) (b)

aunse

4.3.3 Stride VS Maxpooling2D

As mentioned earlier, this research uses stride instead of max pool layer to gain more
speed but to support a decision, here is a result compares between using stride set to 2
without Maxpooling2D and using Maxpooling2D with stride set to 1. In the end, max

pooling method did not work well here, it has too many artifacts on the output image.

4.3.4 Sigmoid VS Tanh as Activation Function
As discussed earlier, these proposed models’ activation functions have been modified.
It is slightly different from selecting the Sigmoid to the Tanh function. However, an

experiment result shows that the Sigmoid function performs better in the SSIM score.

4.3.5 Learning Rate Adjustment
This subsection demonstrates how different when selecting a learning rate. In Figld.9]

picking a learning rate value too high would make a training weight overshoots, mean-

45

Figure 4.9

Training Performance of Learning Rate = 0.001

—— Discriminator Loss Real 100 4 A MAAY LA VLAV W
Discriminator Loss Fake | Nf\‘/vv J‘Nw UJV [\/ V

. TR Y

. sl fr lff{

40 1

Train Loss
+
\
% Train Accuracy

\,\/""'—"-t‘--.-y__ | —— Discriminator Accuracy Real
0 SAAM AL bt i an 304 1 | - Discriminator Accuracy Fake
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Iteration x100 Iteration x100

ing that a loss has gone saturated and accuracy hit almost 100% (optimal accuracy in
GAN training is 50%), including those measurement metrics started to decline, in very
early point of the training. On the other hand, when picking a proper learning rate
value [Figld.10], a training loss stays consistent, and an accuracy value hangs in be-
tween the middle, especially near the end of the training, accuracy is stable at around
50% (balanced-fit) as well as measurement metrics that reach a very high peak in the

later results.

4.3.6 Decay Rate Adjustment

Here shows how the decay rate has an impact on training values. In Figld.TT] when
using a bigger decay rate, a training enters equilibrium after around the 80th iteration.
But when using a smaller decay rate number [Figld.12]], training enters a steady state
faster at around the 20th loop onward because a smaller decay value makes the learning
rate bigger. Thus training goes faster. When using decay rate value too high, it would
need more iterations to reach a peak, making the training process much slower.

* At (0,0) - Training Loss

At (0,1) - Training Accuracy
At (0,2) - Training PSNR
At (1,0) - Training SCC

At (1,1) - Training SSIM

At (1,2) - Training VIF

46

Figure 4.10

Training Performance of Learning Rate = 0.0001

3.0
—— Discriminator Loss Real
—— Discriminator Loss Fake
2.5 —— GAN Loss
2.0 A
[
é
s |
£ 137
£
=]
1.0
0.5 4
OID E T T T T T T
0 20 40 60 80 100

Iteration x100

Figure 4.11

100 4

80 4

60

% Train Accuracy

20

—— Discriminator Accuracy Real
—— Discriminator Accuracy Fake

o

Training Performance of Decay Rate = 0.1

20

T T
40 60
Iteration x100

T
80 100

an == Drrmmmor Leas Real oo
- = s I
“29 Enn
i, N‘]
2 | | i
' UJN W Ui ey :
w(,x&\fw _ .
i LA ,, S
- -] o |fm|". .1‘; (-3 W0 o 20 5:m1| *,:«: o0 00 o Pl ;m n:: a0 wo
D& L) F [11]

. \ («W il ["‘1 f
ol FNW "~ Wur =)
=L UL TR
A M ol
nzo M‘ n:'ﬁ ﬂiSA
C\.JEJJ n& s

° e 100 o 20

Iiratisn 2109

s e
Bevalis %100

47

Figure 4.12
Training Performance of Decay Rate = 0.01

g o

Lrde
J| fl ”huu.-;l., LT
! TLTATE N T
| bl | RN
1 Aih * M'il q.lllul ||| Iun q
) o { ,I'f, I l[ul Wl s f |

5.0
10 |
Diacramivato- Accurecy Neal |

Dvscramirator Accuracy Faie 1

) F] &0 [it o 20 a0 & an wo o 28 w0 Bl a Lt
iaration 1163 merabion x100 meration x100

Al vt | l‘

=
FEN S5

4.3.7 ADAM Optimizer Adjustment

An optimizer used in this work is an Adaptive Moment Estimation (ADAM) optimizer
(Adam Optimizer in Tensorflow., 2023). A B, is one of the hyperparameters and ad-
justable value. It is the initial decay rate used when estimating the first moment of the
gradient while training, which is multiplied at the end of each training step or batch.
Decreasing (3, will slow down a training process and increasing a value will result in the
opposite way. This value needs to be adjusted according to batch size. Normally, a large
batch size will result in faster learning and a small batch will result in slower learning.
Once using a very large or very low batch size could lead to non-optimal learning, ad-
justing this 3; value can help in these situations. In this showing case, using 3; = 0.5
(default is 0.9) is a middle ground that matches the other training values used in this
learning process and results in the best balance point between training speed and per-
formance. However, each training may also require tuning and has its own optimal (3,

value.

4.3.8 Best Saved Weight Selection
Picking the right weight from the best-fit point is very crucial here since the system

would not ever perform well from a bad weight. So using the right weight makes the

48

Figure 4.13

Training Performance of 5, = 0.1

— Dimriminaicr Lo el - B
iz [- »
G LS w | b
i lﬂ = na ®
t] 1=
£ g g E £
FEL] Fomt £ i
H
£ - -
ai o
E]
] | =
& === Dacnminsto Accamcy e =
an e DR Ay Kb S
L]
1 » T [] B We 15 m] o gm [= w1
feration K0 oot e Acaon wi0E Farsten s
o e
aza
N
L] a0
s aa
§ H z
" oo -
! o E Zos
B
am o0 [T
am
aE
o
am
3 = m va [B wo ma [] o va am
Raration 3303 mation 1300 Haratron 1208
Figure 4.14
g .
2y — Camriminaicr Loes fmal o =
[Er -
. e (M LSS - 3
i M -
=
gxn § xa = s
a i 3 L
=
B) i
™ i
L =
]]
a5 w
e DimCTITRRSbr Arvarecy Pesl] 1=
& 3 DA 3 vy Kb
| J
H » T [] B We 15 m [W m [= w1
fiEration WIS et e AEnaon K0S haretien s
fa
ama o -
M m
an 0
o
& o .m
¥ : =
i famn i
5w =
o
A an
& o am
3 = m va [B wo ma [] o va am
Raration 5303 Eation 2300 Haratron 1208

49

Figure 4.15
Training Performance of 5, = 0.9

g % 8 u §

5 Trm axcwrary

s E E E % E
e
_i%

i
= &8 B & @& B
£ 4 -4 g g E

system perform at its finest level. This is a comparison between picking the right saved

weight and unfit weight [Figl4.T6al-Fig[4.16b].

4.4 LPRGAN Testing Result
This section presents all testing results from the recovery system including several sit-
uations. The separated unseen images are collected for testing purposes. This is an

effective way to measure its performance on a real world scale.

Figure 4.16
Result on Different Weight Selection - (a) Fit Weight (SSIM 0.787) and (b) Unfit Weight
(SSIM 0.465)

50

Figure 4.17

Overall Training Performance on Low Bitrate Problem

#n'.’.u‘Jﬁfﬁrﬂ‘ﬂm@'ﬁ#
|

F
11 MM#!MJM{JN 2 |\

ﬂ'\ﬁfw Wil

4.4.1 Low Bitrate Problem

This subsection shows the LPRGAN testing results in low bitrate conditions. Overall

performance graphs are displayed in Figld.17}Fig[4.18]

In this case, a poor-quality version of the reference image is the input image. The in-
put image can be found in Figi4.19afl Output results from each network are shown in
Fig 4. T9b} Fig [4.19¢]| respectively. As a result, the CBDNet, the GFPGAN-SR, and the

SwinlIR do not work in this case, but the LPRGAN can recover most of the lost data in in-
put images, especially in low-detail areas like a grey plate background. At the same time,
a convolutional autoencoder has a smooth output but fails to remove a blocky artifact,

and the GAN+U-Net has a not-so-sharp image.

Here is an example of using the LPRGAN on a low bitrate video, an actual use case, in-
stead of a JPG compression image. A video was recorded with a very low bitrate, 8kbps,
H264 format. It was also resized to a 256x128 frame size, matching a proposed net-
work configuration. Unfortunately, there is no original/reference image to compare with
the output in an actual situation, so only the input [Fig/d.20a]] and outputs [Fig[4.20b}
Figl.20g]l results are available. When zoomed in, all results [Figld.2Ta} Fig[4.2Tf]] are

2Some PDF viewers (i.e., Preview in macOS) have an antialiasing feature that smooths out a rough

rendered object in a document. In order to see raw result images, this feature must be turned off.

51

Figure 4.18

Overall Evaluating Performance on Low Bitrate Problem

E 3
=

Lo
v

==
54 8 a E

¥ 4 a B B OE G

, _
=
é%;.
-

Evaime 505
B o B B s s @
h X % & & 2 B

——

=

B

Exmuate ik

e B & @

B ¥ 5 & B
——

Figure 4.19

Result on Simulated Low Bitrate Problem - (a) Input Image, (b) CBDNet Output Im-
age, (c) GFPGAN-SR Output Image, (d) Convolutional Autoencoder Output Image, (e)
GAN+U-Net Output Image, (f) SwinlR Output Image and (g) LPRGAN Output Image

(@) (b) (©) (d)

N3 2206 N 2206] N 2206] na'_igos]

(e) ® (®

| —

M 22

06] N 2206] NI 2206

52

Figure 4.20

Result on Actual Low Bitrate Video Problem - (a) Input Image, (b) CBDNet Output
Image, (¢c) GFPGAN-SR Output Image, (d) Convolutional Autoencoder Output Image,
(e) GAN+U-Net Output Image, (f) SwinIR Output Image and (g) LPRGAN Output Image

(@ (b) (0 (d)

ﬂ?l 2206|

A aF\FIH

n@s A agsand

visible, showing that the LPRGAN gives out the best result over the rest. It produces
more detail and contrasts. Although the SwinIR could remove compression artifact, it
also removes some fine detail from the image, making it looks less sharp. The GFPGAN-
SR has an aspect ratio distortion due to the nature of the super-resolution technique. The

rest of the outputs are dull and blurry.

4.4.2 Low Light Problem
This subsection demonstrates two types of testing images in a low-light situation. One
simulates a low light by reducing image brightness, and the other captures an actual low

light nighttime. Overall performance graphs are displayed in Fig[4.22}Fig[4.23]

In the simulation [Fig/.24a]], both the LPRGAN and the GAN+U-Net show improved
brightened images but not the rest. In addition, the GAN+U-Net output has some yel-
low tint and is not as sharp whereas the MIRNet and the LPRGAN produce the correct
color temperature results. Figld.24b Fig[4.24g|show all outputs. In the real-world scene
test [Figl4.254], only the GAN+U-Net, the MIRNet, and the LRPGAN outputs have im-

proved brightness from the input but the GAN+U-Net also has a weird tint in the output,
only the MIRNet and the LPRGAN produce the most realistic and corrected color tone
images [Figld.25blFigl4.25¢]]. Ultimately, the LPRGAN and the MIRNet are the first
and second candidates in low light recovery, but the CBDNet, the GFPGAN-SR, and a

53

Figure 4.21

Result on Actual Low Bitrate Video Problem with 3X Zoom on Last 3 Digits - (a) CBDNet
Output Image, (b) GFPGAN-SR Output Image, (c) Convolutional Autoencoder Output
Image, (d) GAN+U-Net Output Image, (e) SwinIR Output Image and (f) LPRGAN Output

Image

(a)

Figure 4.22

Overall Training Performance on Low Light Problem

g

3
%
= W)
= §

5 T deuracy
2 5
!EEgmg &
o e
=
-
———
=

£ 't
- 4 1L
"
=0 1
l we Dmermirabar Arraracy Res u 2
£ D nvafald® ALfaridy Pl »
{1 o ke 0

54

Figure 4.23

Overall Evaluating Performance on Low Light Problem

fu)) _
SELTTTTE

1 3 = 1

S
1

Figure 4.24

Result on Simulated Low Light Problem - (a) Input Image, (b) CBDNet Output Image, (c)
GFPGAN-SR Output Image, (d) Convolutional Autoencoder Output Image, (¢) GAN+U-
Net Output Image, (f) MIRnet Output Image and (g) LPRGAN Output Image

(@ (b) (c) (d) (e) ® (2

convolutional autoencoder failed completely.

4.4.3 1-Axis Motion Blur Problem
These are examples of solving one-directional motion blur problems. Both horizontal

(0 degrees) and vertical (90 degrees) motion blur were studied in this research. Overall

performance graphs are displayed in Fig[4.26} Fig[4.29]

A blurred input image in the horizontal blur problem is shown in Figi4.304| for a sim-
ulated test case. Simulation output results for horizontal blur demonstrated from each

network are shown in Fig/4.30b}Figi4.30hl However, in order to get actual motion blur

images, a high-speed panning camera in left-right directions creates a horizontal blur

[Fig[d.3Ta]]. This action is a much safer measurement than driving a car speeding to-

55

Figure 4.25

Result on Actual Low Light Problem - (a) Input Image, (b) CBDNet Output Image, (c)
GFPGAN-SR Output Image, (d) Convolutional Autoencoder Output Image, (¢) GAN+U-
Net Output Image, (f) MIRnet Output Image and (g) LPRGAN Output Image

(@ (b) (c) (d) (e) ® ()

Figure 4.26

Overall Training Performance on Horizontal Motion Blur Problem

- |

; -] bl
I TV gy
-

| = A

56

Figure 4.27

Overall Evaluating Performance on Horizontal Motion Blur Problem

— Camriminaicr Loes fmal 0o 180
Lo Tl Lo Tk
. & as
an B0
§ § - EE ER
Lo ; 2 §
E - i fun
3aa H e :
L
s
ar 1
" e DmCTaTERSbOr Arvarecy Pest ms
. g
i
& 0 180 e o = 190 158 o o0 1 m " 100 138 e
feration s eyt Wi mEranon s g harsbien st
L a7 am
i 650 am
e anas P
) %em H
i a3z E g-'.uq
3
3 i E 475 E -,
30
ai Az
£525
e
016 e
T A Ay = I
e e s
i 4
Figure 4.28
Overall Training Performance on Vertical Motion Blur Problem
" | - o
eIl Lo Tk
an Gkt Lis
ks -
S "
o
§ -
La #{M i, H
Eis E Im
®
L L
-
a5 "
e
il g 2
& " 0 180 e o = 190 158 o o0 1 m " 100 138 e
eration s hid eration Wi REraon 810G hersbien aiih
it
P a4
0, nam
LEES oao ey
8 548 E A F na
1 T -
i E E s
[oo
i
22
s nars
s
i
L1 [0
e Y= = I
et - s

57

Figure 4.29

Overall Evaluating Performance on Vertical Motion Blur Problem

M”l‘ W ’wM

™

i
1

Al |'i|',l

\ L“’*W w
.u w(m

ward a camera. The actual case output results for horizontal blur demonstrated from
each network are shown in Figld.3TblFig/4.3Thl Also, in a vertical motion blur prob-
lem, a simulated vertical blur image is in Figld.32a] and these Fig[4.32b}Fig[4.32h| are

the output. Once again, in order to get an actual vertical motion blur to quickly pan

a camera in up-down directions to create a vertical blur [Figld.33al]. The outputs are

shown in Figl4.33bFig[4.33h] In the end, the DeblurGANvV?2 and the Restormer can fix

a motion blur problem only in a simulation case but not a real-world one, and only the

LPRGAN can recover blurred images in both cases.

4.4.4 Out Of Focus Problem

This problem can be seen when an object is not in a camera focus range. Typically, any
camera would have a specific focus range at any single time. This range can be shifted
around when changing the camera focal length or aperture. A high focal length when
paired with a large aperture value will result in a narrow focus range. Thus, once a
camera does not focus at the right place there is a large chance that the object is likely

to be out of focus. Overall performance graphs are displayed in Fig[4.34}Fig[4.33]

Here demonstrate two types of out-of-focus testing images, one is simulated using a blur
filter and another is an actual out-of-focus image achieved by forced focusing in front

of a license plate location. Results from the CBDNet, the GFPGAN, a convolutional

58

Figure 4.30

Result on Simulated Horizontal Motion Blur Problem - (a) Input Image, (b) CBDNet
Output Image, (c) GFPGAN-SR Output Image, (d) Convolutional Autoencoder Output
Image, (e) GAN+U-Net Output Image, (f) DeblurGANv2+MobileNet Output Image, (g)
Restormer Output Image and (h) LPRGAN Output Image

(@ (b) (d)

ns 2206 na 2206‘ fn 2206 ﬁm
gty Bt Bl —

(e) ® (® (h)

§ N3 2206 N3 2206 na 2206'

Figure 4.31
Result on Actual Horizontal Motion Blur Problem - (a) Input Image, (b) CBDNet Out-

put Image, (c) GFPGAN-SR Output Image, (d) Convolutional Autoencoder Output Im-
age, (¢) GAN+U-Net Output Image, (f) DeblurGANv2+MobileNet Output Image, (g)
Restormer Output Image and (h) LPRGAN Output Image

(@ (b) () (d)

ﬂ?l 2206 na 2206 ﬂ’i 2206“ 2205

(e) ® (® (h)

59

Figure 4.32

Result on Simulated Vertical Motion Blur Problem - (a) Input Image, (b) CBDNet Out-
put Image, (¢c) GFPGAN-SR Output Image, (d) Convolutional Autoencoder Output Im-
age, (e) GAN+U-Net Output Image, (f) DeblurGANv2+MobileNet Output Image, (g)
Restormer Output Image and (h) LPRGAN Output Image

(a) (b)

na 2?06 Ny 2206

3 7206] TV
('h)narzzos|

(e) ®

mzzob Ny 2206' NA 2206

Figure 4.33

Result on Actual Vertical Motion Blur Problem - (a) Input Image, (b) CBDNet Output Im-
age, (c) GFPGAN-SR Output Image, (d) Convolutional Autoencoder Output Image, (e)
GAN+U-Net Output Image, (f) DeblurGANv2+MobileNet Output Image, (g) Restormer
Output Image and (h) LPRGAN Output Image

(@ (b) () (d)

[2;205' n?iztis N3 2206.‘ 8000

(e) ® (g) (h)

60

Figure 4.34

Overall Training Performance on Out Of Focus Problem

225 s DeyrrmnEEDr Loas Real o F1s
Ditscrimncor Loss Fake
o0 — GANLom
20 2
E’ [2
i
g M n
£ g
! #
P 1
n7s
w
o5 Fau e Dinrramiiratoe Accumcy Nl
Discrmisator Atcuracy Faics 1
- 2w S0 B oOoaps WS 150 LS 200 o 2k S0 B le0 128 Mo 1¥S 2 o 28 o B0 18 o 195 g
taratice x208 ‘maration g ‘meration 200
085

£ i
&0
gnn 4 nos £
i 3 E
¥ LT
ozo nzs
0%
a1
050 nzn
&4
oy
G 3= % m 1w w10 o3 dma T = s ™ we i B m muo T @ w # wa i wo s 7w
Iratisn 5200 Eevalius X300 ‘maration oD

Figure 4.35

Overall Evaluating Performance on Out Of Focus Problem

== Drstrmnseor Loss Real Aa, tH
Dtscrminacor Loss Fake
£
0
=
E [1
i i
im E
1 Ew
HE
1
E
. Dinrmizatn Accurecy Nl i
F Dischmisate AScuraey Faits
© 35 Sy B 1w Us 150 L5 200 I T 0 @ f0 & w0 1% B0 e 200
Inaratien x200 maration xaul meration x200
[EH] o
nan
P
a2 or (&1
& e
oz H .
] u
3om o %m)s
i i]
nzn =
s nan
@14
a1
m s
© 3% % 7™ om0 Wi 1% tAoam 0 @ s @ o o B0 T I O T
Iaration 5200 ‘Sevatins xI00 meration xI00

61

Figure 4.36

Result on Simulated Out of Focus Problem - (a) Input Image, (b) CBDNet Output Im-
age, (c) GFPGAN-SR Output Image, (d) Convolutional Autoencoder Output Image, (e)
GAN+U-Net Output Image and (f) LPRGAN Output Image

(@) (b) (c) (d) (e) ®

ﬁi’zzne't na 2zosi A 2206‘ NN 2206 n'-a 2206| N3 2206
-

""""" ' bap angd af
| o - - —

b i 8 i il Uulu_. i

Figure 4.37

Result on Actual Out of Focus Problem - (a) Input Image, (b) CBDNet Output Image, (c)
GFPGAN-SR Output Image, (d) Convolutional Autoencoder Output Image, (¢) GAN+U-
Net Output Image and (f) LPRGAN Output Image

(@) (b) (c) (d) (e) ®

13 2206]] N3 2206]] N3 2206]] NN 22061 N3 2206'T N3 2208]

MR
i P
- -) - | et e e

-

autoencoder, and the U-Net are not good. Only the LPRGAN model can fix an out-of-
focus problem. The Out of Focus results are shown in Fig[4.36al-Fig[4.371

4.4.5 International License Plate Test

Although the current LPRGAN model has been trained on the Thai license plate dataset
without knowing other countries’ plate appearances, this model can still recover a poor-
quality plate at a reasonable level thanks to its generalization. Of course, its performance
would not be near a Thai license plate recovery on which it was trained, but it can be
solved by retraining with a target country dataset. These figures [Fig4.38al-Fig4.38b]]
show a US (Jeff’s License Plates. Jeffsplates., 2022) and UK (UK European License

Plate. European License Plates.,|2022) license plate samples.

4.4.6 Metric Measurements Result

There are two types of measurement in this research. First, using an image qualifier
that gives out a Star Rating, and second, mathematical measurements (Rating score is
an output from classifier both detector and qualifier. These two models have an accu-
racy of over 99%. All mathematical measurement values were computed with a pair of

original/reference and distorted images. All delta values in each case were calculated

62

Figure 4.38
Original US and UK License Plates - (a) US and (b) UK

(a) (b)

"N °* VIRGINIA ° i

VTH-9249

VH.GlHIA IS FOR I.G"EI‘&

Vergimio_odg

| S - ————

Figure 4.39

Result on US Plate from LPRGAN (a) Low Bitrate Input Image, (b) Low Bitrate Output
Image, (c) Low Light Input Image, (d) Low Light Output Image, (e) Horizontal Motion
Blur Input Image, (f) Horizontal Motion Blur Output Image, (g) Vertical Motion Blur
Input Image and (h) Vertical Motion Blur Output Image

(a) (b) (©) (@)
"Gl VIRGINIA =0 J* VIRGINIA * 1" J* VIRGINIA * i

VIK-9249 VI¥-9249 VT¥- 2249

vwm&fmmks Wllﬁlmm m.mm

~h~1'

(e) ® (h)

13288 V15349 V 119349 VTi9349

63

Figure 4.40

Result on UK Plate from LPRGAN (a) Low Bitrate Input Image, (b) Low Bitrate Output
Image, (c) Low Light Input Image, (d) Low Light Output Image, (e) Horizontal Motion
Blur Input Image, (f) Horizontal Motion Blur Output Image, (g) Vertical Motion Blur

Input Image and (h) Vertical Motion Blur Output Image

against each own low-quality image. However, it is impossible to compute these metrics
values in actual test cases due to a lack of reference material. In the motion blur problem
case, HB is a horizontal blur, and VB is a vertical blur.) including five metrics (FID,
PSNR, SCC, SSIM, and VIF) and three synthetic benchmarks (file size, training time
usage per epoch, and recovery render speed). A proposed model tested up against other

approachesﬂis presented in this subsection.

A quality rating test using an image qualifier shows that the LPRGAN has no problem
fixing poor-quality input images. It generated a 5-Star output image in the low bitrate
case and normal-looking images in the rest of the test cases. At the same time, U-Net
architecture with GAN also did a reasonable job in most cases. However, a convolu-
tional autoencoder did not perform any good. The reason behind this measurement is
that all mathematical measurements do not work when there is no reference image (its
counterpart) to calculate a value in an actual situation. In reality, only a degraded image

is presented.

3 All methods experimented in this study were under the same environment and parameters, such as
the same computer machine, an equal number of iterations, learning rate, batch size, and the same input
image under each test. Also, all images used in this study were encoded at 100% Quality to avoid a

compression loss, revealing an actual image data size.

64

Next, a visual quality inspection using mathematical calculation tests shows that the
GAN+U-Net is superior to a convolutional autoencoder. However, the LPRGAN has
the best outcome in most cases among convolutional autoencoder and GAN+U-Net ap-
proaches. As in a low bitrate scenario [Table[4.3]], the LPRGAN generated the biggest
output file size. It also has the highest (as high as SwinIR) SSIM score on low bitrate
recovery tests. The file size value is essential here since they tell how much an image
holds a piece of information. The bigger the file size, the more fine detail is generated.
SSIM score indicates that the reconstruction image has a similar structure to the orig-
inal. These outcomes prove that the LPRGAN helps predict lost data back, producing
a richer detailed image. In a low light situation [Table4.4]l, the LPRGAN beats out the
other models on SSIM score, but when comparing the LPRGAN to the MIRNet in this
scenario (MIRNet cannot reconstruct other cases, only a low light case), a competitor
has three out of five metrics (FID, SCC, and VIF) score higher than the LPRGAN. Even
though the LPRGAN has only two metrics (PSNR and SSIM) wins over the MIRNet.
Because of the low light situation, these PSNR and SSIM metrics are crucial. Since
PSNR is a Power Signal to Noise Ratio, the more PSNR is, the more power signal and
the lesser noise, producing a cleaner image, and SSIM is also calculated based on im-
age luminosity factors meaning that SSIM is high when the output has a structural and
luminosity close to an original one. A higher SSIM is a brighter image because a ref-
erence is bright. Thus, the LPRGAN output has a lower noise yet a brighter image as
the result. In motion blur cases [Table 4.5]], the LPRGAN has SCC and file size (in hor-
izontal blur case) metrics higher than the rest. The SCC is the concerning metric here
since it is designed to detect any pixel location shifting, which is suitable for this case.
A better SCC value means the lesser pixel is shifted from a reference image. In other
words, the lesser blurry image. In the last case, LPRGAN can recover a simulated out-
of-focus problem to a normal-looking image with 4 out of 6 metrics wins. In the actual

out-of-focus problem, LPRGAN also has the biggest output file size.

On the other hand, US and UK were chosen for this international plate test. The result
from Table[4.7] shows that every problem case passes a visual inspection test. Even
though the LPRGAN could not always produce better metric values than the original
input, all generated output always contains more data than the original ones by looking
at the file size metric. The outputs from the LPRGAN surprisingly have consistent file

sizes on every problem test in a margin of +1.4 kB.

65

Move over to a speed test, a speed comparison between each approached method [Ta-
ble4.8]] shows that although a convolutional autoencoder is the fastest in an FPS count
due to a non-GAN design it does not produce an output well at all. The CBDNet is also
a non-GAN design but it performs slowly at the same level as GAN-based designs. In
contrarily, comparing GAN-based models, results show that the LPRGAN is the fastest
in every render speed test. When compared to the GAN+U-Net approach in 256x128
resolution, the LPRGAN is 2.93X speedup in training speed and more than twice as fast
(2.42X) in a render test. When compared to the Restomer and the SwinIR in the render
test, the LPRGAN is 1.77X and 9.32X speedup. At a higher resolution (600x400), com-
paring the LPRGAN to the MIRNet, results are as expected because the MIRNet has a
much bigger network (one complex parallel stream vs. one simplified serial stream) and
is very limited in resolution (only producing 600x400 output), so the LPRGAN is way
faster than the MIRNet by 25.26X in the render test while the DeblurGANv2+MobileNet
is a relatively compact network, there is still a gap between itself and the LPRGAN in
render speed (1.71X difference), while the GAN+U-Net and the Restomer are dropped
behind the LPRGAN. The same story at HD resolution, the LPRGAN is slightly faster
than the DeblurGANv2+MobileNet (1.36X) in the same test scenario due to fewer pa-
rameter counts. The GAN+U-Net is even lacking behind these two GAN-based models
while the SwinlR could not finish a test due to painfully low speed. This makes the
LPRGAN the fastest.

Furthermore, there are three videos used in the LPRGAN speed on a different type of
processor test [Table4.9]]. The first video is 21.5 seconds long, 932 frames, full-length
(100% degradation) degraded video file named Video#1. The second and the third test
case are 21.5 seconds long, 932 frames, half-length (50%, 466 frames degradation) de-
graded video file and 21.5 seconds long, 932 frames, 25% length (233 frames degrada-
tion) degraded video files, named Video#2 and Video#3. This test represents real-world
usage in a mixing environment because not every video frame would be degraded all
the time, so running recovery on a good frame is a waste. This test shows a difference
between the plain LPRGAN and the adaptive LPRGAN (detection+recovery) perfor-
mance in action. However, the adaptive LPRGAN did not actually double the frame rate
in Video#2 even though a test video contains only half degraded frames due to an addi-
tional detection workload, but it is still close to doubling a frame rate than an unequipped

detection system by 1.71X and 3.3X in Video#2 and #3 on ultra-low power CPU, 1.76X

66

and 3.4X in Video#2 and #3 on workstation CPU and 1.7X and 2.92X in Video#2 and
#3 on a single GPU.

The last one is the memory usage test [Table[4.10]| (unit in MB), this test is a measure-
ment of memory usage on a single frame recovery from each method. Separated into two
groups, a non-GAN and a GAN based. Although, non-GAN methods tend to use less
RAM as result in this article shows that they do not work well in many situations. On
the other hand, the LPRGAN still uses the least amount of RAM in GAN based group.
Thus, it is possible to be used in an edge computing device where it has a limited amount

of RAM.

4.4.7 Real World License Plates Test

These are real-world samples [Figi4.41alFigl4.41{] recovery using the proposed system.

However, these plates in this subsection do not belong to the author, so to protect their
owner’s privacy, they cannot be exposed to the full license plate area (Use of Disclosure
of Personal Data, Section 24 and 27. Thai Government Gazette.,2022)). The data recov-
ery result in Fig[4.42] shows that in every degraded type, average file sizes have gained
more data after a recovery in low bitrate, low light, horizontal blur, vertical blur, and out

of focus situations at rate 1.51X, 1.25X, 1.61X, 1.63X, and 2.06X, respectively.

Difficult Real World Situation

In extremely poor input images where input information is too much distorted, a gen-
erated result could be confusing as in Figlf.4Tkl{4.4T]l This problem comes from the
generator applying deblurring aggressively from its learning which can cause mislead-
ing information. It can be solved by selecting a different weight from a lower number
of iterations where the generator is not overpowered by the discriminator. When com-
paring the LPRGAN to both the DeblurGANv2+MobileNet and the Restormer, only the
LPRGAN output produces a sharper result while the rest do not deblur well since those

remain unsharp in this real license plate test.

4.4.8 Real World License Plate Recognition Test
This test is another aspect of the LPRGAN helping license plate recognition. A rec-

ognizer is a recognition system similar to a classifier, a typical VGG-16 network found

67

Table 4.3

A Metric Measurement Score Table on Low Bitrate Problem

Method Ra- FID PSNR SCC SSIM VIF File Size

ting (AFID) (APSNR) (ASCC) (ASSIM) (AVIF) (AFile
Size)

Original/ 5- 0.0 48.0 1.0 1.0 1.0 31.7

Baseline Star

Simulated 1- 239.07 20.66 0.202 0.763 0.271 7.9

Low Bi- Star

trate

Conv. 3- 188.67 (- 20.67 0.245 0.776 0.273 12.0

Autoen- Star 50.4) (+0.01) (+0.043) (4+0.013) (+0.002) (+4.1)

coder

CBDNet 1- 220.64 (- 20.79 0.209 0.765 0.273 10.3
Star 18.43) (+0.13) (+0.007) (+0.002) (+0.002) (+2.4)

GFPGAN- 3- 160.72 (- 20.01 (- 0.338 0.784 0.303 22.6

SR Star 78.35) 0.65) (+0.136) (+0.021) (+0.032) (+14.7)

GAN+U- 5- 18430 (- 16.61 (- 0.158 (- 0.669 (- 0.195 (- 22.2

Net Star 54.77) 4.05) 0.044) 0.094) 0.076) (+14.3)

SwinlR 2- 206.46 (- 21.29 0.261 0.787 0.293 18.3
Star 32.61) (+0.37) (+0.059) (+0.024) (+0.022) (+10.4)

LPRGAN 5- 102.15 (- 20.81 0.302 0.787 0.285 27.5
Star 136.92) (+0.15) (+0.100) (+0.024) (+0.014) (+19.6)

68

Method Ra- FID PSNR SCC SSIM VIF File Size
ting (AFID) (APSNR) (ASCC) (ASSIM) (AVIF) (AFile
Size)
Actual 3- - - - - - 16.5
Low Star
Bitrate
Conv. 4- - - - - - 18.5
Autoen- Star (+2.0)
coder
CBDNet 3- - - - - - 16.7
Star (+0.2)
GFPGAN- 5- - - - - - 23.0
SR Star (+6.5)
GAN+U- 5- - - - - - 22.9
Net Star (+6.4)
SwinlR 5- - - - - - 18.2
Star (+1.7)
LPRGAN 5- - - - - - 25.9
Star (+9.4)

69

Table 4.4

A Metric Measurement Score Table on Low Light Problem

Method Ra- FID PSNR SCC SSIM VIF File Size
ting (AFID) (APSNR) (ASCC) (ASSIM) (AVIF) (AFile
Size)
Original/ Nor- 0.0 48.0 1.0 1.0 1.0 31.7
Baseline mal
Simulated Low 179.30 3.33 0.835 0.128 0.395 154
Low Light
Light
Conv. Low 190.14 2.36 0.087 (- 0.024 0.078 (- 7.4(-8.0)
Autoen- Light (+10.84) (-0.97) 0.748) (+0.104) 0.317)
coder
CBDNet Low 12643 (- 3.31 0.512 (- 0.120 (- 0.330 (- 9.9(5.5)
Light 52.87) (-0.02) 0.323) 0.008) 0.065)
GFPGAN- Low 122.86 (- 3.31 0.586 (- 0.124 (- 0351 (- 128
SR Light 56.44) (-0.02) 0.249) 0.004) 0.044) (-2.6)
GAN+U- Low 162.18 (- 8.60 0.332 (- 0.604 0.301 (- 23.8
Net Light 17.12) (+5.27) 0.503) (+0.476) 0.094) (+8.4)
MIRNet Nor- 70.73 (- 8.66 0.781 (- 0.642 0.470 25.0
mal 108.57) (+5.33) 0.054) (+0.514) (+0.075) (49.6)
LPRGAN Nor- 102.99 (- 11.16 0.330 (- 0.729 0.313 (- 243
mal 76.31) (+7.83) 0.505) (+0.601) 0.082) (+8.9)

70

Method Ra- FID PSNR SCC SSIM VIF File Size
ting (AFID) (APSNR) (ASCC) (ASSIM) (AVIF) (AFile
Size)
Actual Low - - - - - 24.5
Low Light
Light
Conv. Low - - - - - 11.7
Autoen- Light (-12.8)
coder
CBDNet Low - - - - - 18.4
Light (-6.1)
GFPGAN- Low - - - - - 23.0
SR Light (-1.5)
GAN+U- Nor- - - - - - 31.1
Net mal (+6.6)
MIRNet Nor- - - - - - 29.5
mal (+5.0)
LPRGAN Nor- - - - - - 32.5
mal (+8.0)

71

Table 4.5

A Metric Measurement Score Table on Motion Blur Problem

Method Ra- FID PSNR SCC SSIM VIF File Size
ting (AFID) (APSNR) (ASCC) (ASSIM) (AVIF) (AFile
Size)
Original/ Nor- 0.0 48.0 1.0 1.0 1.0 31.7
Baseline mal
Simulated HB 138.53 16.90 0.059 0.666 0.162 20.8
Horizon-
tal Blur
Conv. HB 273.42 1455 (- 0.046 (- 0458 (- 0.076 (- 148
Autoen- (+134.89) 2.35) 0.013) 0.208) 0.086) (-6.0)
coder
CBDNet HB 153.14 16.90 -0.034 (- 0.665 (- 0.162 16.3
(+14.61) (+0.0) 0.093) 0.001) (+0.0) (-4.5)
GFPGAN- HB 192.12 16.38 (- -0.021 (- 0.660 (- 0.156 (- 21.2
SR (+53.59) 0.52) 0.080) 0.006) 0.010) (+0.4)
GAN+U- Nor- 263.96 9.22 0.088 0426 (- 0.113 (- 264
Net mal (+125.43) (-7.68) (+0.029) 0.240) 0.049) (+5.6)
Deblur- Nor- 121.03 (- 18.41 0.055 (- 0.764 0.217 20.3
GANV2- mal 17.5) (+1.51) 0.004) (+0.098) (+0.055) (-0.5)
+Mobile-
Net
Restormer Nor- 88.73 (- 19.19 0.085 0.800 0.240 23.6
mal 49.8) (+2.29) (+0.026) (+0.134) (+0.78) (+2.8)
LPRGAN Nor- 12849 (- 17.82 0.180 0.740 0.236 28.2
mal 10.04) (+0.92) (+0.121) (+0.074) (+0.074) (+74)

72

Method Ra- FID PSNR SCC SSIM VIF File Size
ting (AFID) (APSNR) (ASCC) (ASSIM) (AVIF) (AFile

Size)
Actual HB - - - - - 22.2
Horizon-
tal Blur
Conv. HB - - - - - 15.3
Autoen- (-6.9)
coder
CBDNet HB - - - - - 18.2
(-4.0)
GFPGAN- HB - - - - - 23.4
SR (+1.2)
GAN+U- Nor- - - - - - 26.7
Net mal (+4.5)
Deblur- HB - - - - - 19.3
GANvV2- (-2.9)
+Mobile-
Net
Restormer HB - - - - - 23.1
(+0.9)
LPRGAN Nor- - - - - - 28.9
mal (+6.7)

73

Method Ra- FID PSNR SCC SSIM VIF File Size
ting (AFID) (APSNR) (ASCC) (ASSIM) (AVIF) (AFile
Size)
Simulated VB 217.31 16.99 0.090 0.649 0.155 21.2
Vertical
Blur
Conv. VB 446.92 1450 (- -0.028 (- 0414 (- 0.068 (- 154
Autoen- (+229.61) 2.49) 0.118) 0.235) 0.087) (-5.8)
coder
CBDNet VB 237.96 16.99 -0.070 (- 0.650 0.154 (- 16.7
(+20.65) (+0.00) 0.160) (+0.001) 0.001) (-4.5)
GFPGAN- VB 249.09 16.52 (- -0.041 (- 0.639 (- 0.147 (- 21.8
SR (+31.78) 0.47) 0.131) 0.010) 0.008) (+0.6)
GAN+U- Nor- 277.13 1435 (- 0.010 (- 0496 (- 0.105 (- 29.8
Net mal (+59.82) 2.64) 0.080) 0.153) 0.050) (+8.6)
Deblur- Nor- 184.46 (- 17.55 -0.024 (- 0.712 0.180 19.5
GANvV2- mal 32.85) (+0.56) 0.114) (+0.063) (+0.025) (-1.7)
+Mobile-
Net
Restormer Nor- 108.18 (- 18.52 0.079 (- 0.799 0.230 24.2
mal 109.13) (+1.53) 0.011) (+0.150) (+0.075) (+3.0)
LPRGAN Nor- 155.57 (- 18.39 0.155 0.713 0.210 23.1
mal 61.74) (+1.4) (+0.065) (+0.064) (+0.055) (+1.9)

74

Method Ra- FID PSNR SCC SSIM VIF File Size
ting (AFID) (APSNR) (ASCC) (ASSIM) (AVIF) (AFile

Size)
Actual VB - - - - - 25.3
Vertical
Blur
Conv. VB - - - - - 15.3
Autoen- (-10.0)
coder
CBDNet VB - - - - - 19.5
(-5.8)
GFPGAN- VB - - - - - 25.1
SR (-0.2)
GAN+U- Nor- - - - - - 30.3
Net mal (+5.0)
Deblur- VB - - - - - 20.9
GANvV2- (-4.4)
+Mobile-
Net
Restormer VB - - - - - 254
(+0.1)
LPRGAN Nor- - - - - - 29.5
mal (+4.2)

75

Table 4.6

A Metric Measurement Score Table on Out of Focus Problem

Method Ra- FID PSNR SCC SSIM VIF File Size

ting (AFID) (APSNR) (ASCC) (ASSIM) (AVIF) (AFile
Size)

Original/ Nor- 0.0 48.0 1.0 1.0 1.0 31.7

Baseline mal

Simulated OOF 191.77 16.87 -0.044 0.614 0.172 15.7

OOF

Conv. OOF 228.56 1527 (- 0.012 0472 (- 0.120 (- 13.1

Autoen- (+36.79) 1.6) (+0.056) 0.142) 0.052) (-2.6)

coder

CBDNet OOF 191.03(- 16.78 (- -0.052 (- 0.608 (- 0.170 (- 8.1(-7.6)

0.74) 0.09) 0.008) 0.006) 0.002)

GFPGAN- Nor- 221.20 1471 (- 0.102 0.649 0.232 27.2

SR mal (+29.43) 2.16) (+0.146) (+0.035) (+0.060) (+11.5)

GAN+U- Nor- 13236 (- 13.96 (- 0.095 0.642 0.195 28.3

Net mal 59.41) 2.91) (+0.139) (+0.028) (+0.023) (+12.6)

LPRGAN Nor- 169.63 (- 17.82 0.175 0.702 0.210 28.3
mal 22.14) (+0.95) (+0.219) (+0.088) (+0.038) (+12.6)

76

Figure 4.41

Result on Additional Actual Thai License Plates from LPRGAN (a) Low Bitrate Input Im-

age#l, (b) Low Bitrate Output Image#1, (c) Low Bitrate Input Image#2, (d) Low Bitrate

Output Image#2, (e) Low Light Input Image#1, (f) Low Light Output Image#1, (g) Low
Light Input Image#2, (h) Low Light Output Image#2, (i) Horizontal Blur Input Image#1,

(j) Horizontal Blur Output Image#1, (k) Horizontal Blur Input Image#2, (I) Horizontal
Blur Output Image#2, (m) Vertical Blur Input Image#1, (n) Vertical Blur Output Im-

age#l, (o) Vertical Blur Input Image#2, (p) Vertical Blur Output Image#2, (q) Out of
Focus Input Image#1, (r) Out of Focus Output Image#1, (s) Out of Focus Input Image#2

and (t) Out of Focus Output Image#2

(@) (r) (s) (t)

77

Method Ra- FID PSNR SCC SSIM VIF File Size

ting (AFID) (APSNR) (ASCC) (ASSIM) (AVIF) (AFile
Size)

Actual OOF - - - - - 17.9

OOF

Conv. OOF - - - - - 12.3

Autoen- (-5.6)

coder

CBDNet OOF - - - - - 8.2(-9.7)

GFPGAN- OOF - - - - - 18.5

SR (+0.6)

GAN+U- Nor- - - - - - 24.0

Net mal (+6.1)

LPRGAN Nor- - - - - - 26.9
mal (+9.0)

Figure 4.42

Average Real World Data Recovery Performance Result

27

Data Size (kB)
®» © B O & =

(7]

Low Bitrate

B Raw Input

I Recovered Output

Average Real World Recovery Performance

2912
24 24.98 25.16
23.26
2
16.52 I
0

26.25

Law Light Harizontal Blur Wertical Blur Out of Focus

24.62

78

Table 4.7

A Metric Measurement Score Table on International Plate

Method Ra- FID PSNR SCC SSIM VIF File Size
ting (AFID) (APSNR) (ASCC) (ASSIM) (AVIF) (AFile
Size)
US 5- 0.0 48.0 1.0 1.0 1.0 34.5
Original/ Star/
Baseline Nor-
mal
US Sim. 1- 142.27 20.02 0.300 0.797 0.306 2.2
Low Bi- Star
trate
US 5- 157.80 19.32 (- 0.340 0.789 (- 0.289 (- 304
LPRGAN Star (+15.53) 0.7) (+0.04) 0.008) 0.017) (+28.2)
US Sim. Low 66.79 4.45 0.859 0.271 0.561 21.3
Low Light
Light
US Nor- 160.02 13.75 0.325 (- 0.749 0.285 (- 29.5
LPRGAN mal (+93.23) (+9.3) 0.534) (+0.478) 0.276) (+8.2)
US Sim. HB 164.79 15.21 0.270 0.519 0.114 21.5
HB
US Nor- 230.80 14.5 0.091 (- 0476 (- 0.104 (- 29.0
LPRGAN mal (+66.01) (-0.71) 0.179) 0.043) 0.010) (+7.5)
US Sim. VB 182.41 17.09 0.301 0.632 0.206 233
VB
US Nor- 237.56 1691 (- 0.161 (- 0.645 0.192 (- 293
LPRGAN mal (+55.15) 0.18) 0.140) (+0.013) 0.014) (+6.0)

79

Method Ra- FID PSNR SCC SSIM VIF File Size
ting (AFID) (APSNR) (ASCC) (ASSIM) (AVIF) (AFile

Size)

UK 5- 0.0 48.0 1.0 1.0 1.0 26.0
Original/ Star/
Baseline Nor-

mal
UK Sim. 1- 346.09 18.55 0.294 0.580 0.214 1.9
Low Bi- Star
trate
UK 5- 369.93 17.73 (- 0.334 0.639 0.236 33.7
LPRGAN Star (+23.84) 0.82) (+0.04) (+0.59) (+0.022) (+31.8)
UK Sim. Low 64.30 791 0.813 0.306 0.521 17.2
Low Light
Light
UK Nor- 247.79 16.61 0.393 (- 0.665 0.275 (- 324

LPRGAN mal (+183.49) (+8.7) 0.42) (+0.359) 0.246) (+17.0)

UK Sim. HB 242.53 15.47 0.234 0.540 0.196 18.4
HB

UK Nor- 378.32 1431 (- 0.116 (- 0432 (- 0.114 (- 324
LPRGAN mal (+135.79) 1.16) 0.118) 0.108) 0.082) (+14.0)

UK Sim. VB 24628 16.76 0.346 0.690 0.297 20.1
VB

UK Nor- 35776 1532 (- 0.139 (- 0.567 (- 0.181 (- 33.8
LPRGAN mal (+111.48) 1.44) 0207) 0.123) 0.116) (+13.7)

80

Table 4.8
Methods Speed Comparison Table

Model Total Params Training Time Render Speed
Conv. Autoencoder 0.26M 429 249
@256x128 Video#l
CBDNet - - 24
@256x128 Video#l
GFPGAN-SR - - 14
@256x128 Video#l
GAN+U-Net 31.55\M 369.2 73
@256x128 Video#l
DeblurGANv2+MobileNet 3.0IM - 49
@256x128 Video#l
Restormer - - 100
@256x128 Video#l
SwinIR - - 19
@256x128 Video#l
LPRGAN 0.96M 125.8 177
@256x128 Video#l
Figure 4.43

(a) Input Image, (b) DeblurGANv2+MobileNet Output Image, (c) Restormer Output Im-
age and (d) LPRGAN Output Image

(@ (b) (c) (d)

81

Model

Total Params Training Time

Render Speed

Conv. Autoencoder
@600x400 Video#1
CBDNet
@600x400 Video#l
GFPGAN-SR
@600x400 Video#1
GAN+U-Net
@600x400 Video#1
MIRNet
@600x400 Video#l
DeblurGANv2+MobileNet
@600x400 Video#1
Restormer
@600x400 Video#1
SwinlR
@600x400 Video#l
LPRGAN
@600x400 Video#1

0.26M 314.8
32M 759.1

3.0IM -
1.37M 464.3

68

12

20

1.9

28

20

48

82

Model

Total Params

Training Time

Render Speed

Conv. Autoencoder
@1280x720 Video#1
CBDNet
@1280x720 Video#1
GFPGAN-SR
@1280x720 Video#1
GAN+U-Net
@1280x720 Video#1
DeblurGANv2+MobileNet
@1280x720 Video#1
Restormer
@1280x720 Video#1
SwinlR
@1280x720 Video#1
LPRGAN
@1280x720 Video#1

0.26M

33M

3.01M

2.73M

906.2

1567.5

1294.1

24

11

15

83

Table 4.9

LPRGAN Speed Test Table
Mode Total Params Training Time Render Speed
Ultra Low Power CPU

LPRGAN 0.96M - 7
@256x128 Video#l
Adaptive LPRGAN 0.96M - 7 (+0)
@256x128 Video#l

LPRGAN 0.96M - 7
@256x128 Video#2
Adaptive LPRGAN 0.96M - 12 (+5)
@256x128 Video#2

LPRGAN 0.96M - 7
@256x128 Video#3
Adaptive LPRGAN 0.96M - 23 (+11)
@256x128 Video#3
Workstation CPU

LPRGAN 0.96M - 17
@256x128 Video#l
Adaptive LPRGAN 0.96M - 17 (+0)
@256x128 Video#l

LPRGAN 0.96M - 17
@256x128 Video#2
Adaptive LPRGAN 0.96M - 30 (+13)
@256x128 Video#2

LPRGAN 0.96M - 17
@256x128 Video#3
Adaptive LPRGAN 0.96M - 58 (+41)
@256x128 Video#3

84

Mode Total Params Training Time Render Speed

GPU

LPRGAN 0.96M
@256x128 Video#l
Adaptive LPRGAN 0.96M
@256x128 Video#1

LPRGAN 0.96M
@256x128 Video#2
Adaptive LPRGAN 0.96M
@256x128 Video#2

LPRGAN 0.96M
@256x128 Video#3
Adaptive LPRGAN 0.96M
@256x128 Video#3

- 176

- 176 (+0)

- 176

- 298 (+122)

- 176

- 512 (+336)

Table 4.10

Memory Usage Comparison Table

Model RAM Usage
Non GAN Based
Conv. Autoencoder 109.5
CBDNet 182.3
MIRNet 580.6
Transfomer Based
Restormer 3136.0
SwinIR 3208.8
GAN Based
GFPGAN-SR 767.4
GAN+U-Net 576.7
DeblurGANv2+MobileNet 633.7
LPRGAN 306.7

85

Figure 4.44

Recognizer Prediction Confidence Result

B Raw Input [Recovered Output
License Plate Recogniser Confidence

0.
0.
0.7
0.
0.
0.
0.
0.
01 ..
]
4’%@ %co ?O‘<o %”% %{‘q,, %% 1% 62’%. &,
3 4 %%

; ; S
%, Qﬁ"‘b ({0/3{ %‘& %q? %q)f % ﬁo/

[3 <=]

Confidence
WwoR oo

L]

in Fig[3.2] which has three classes, EU, TH (Offence Relating to Documents. Chapter]
3, Section 264. Thailand Penal Code Thai Criminal law.,[2022) and US plates (EU-
Belgian and US datasets were from (Belgian License Plates. Kaggle.,2022)) and

\License Plates. Kaggle. [2022)), in total 1,237 training images. These training images

differ from the LPRGAN dataset, making predictions the most neutral. However, we
only focus on the TH license plate class to prove that with the help of LPRGAN can
make a recognizer has more confidence in recognizing a license plate. In Fig.44]is
a result from Fig[4.45] images set, there is not much different result in low bitrate and
vertical blur problems but in low light and horizontal blur, cases result in a great benefit
from using the LPRGAN system, whereas normal is a good quality image so its confi-
dence is the highest. The next test is an average confidence value result by sampling a set
of each degraded type from real-world images (some of them were shown in Figlf.4Ta}
Fig4.4T1). The result in Fig[d.46proves that recovery images help to increase an average
prediction performance in low bitrate by 1.1X, low light by 1.41X, horizontal blur by
1.52X, horizontal blur by 1.16X, and out of focus by 1.29X, respectively.

86

Figure 4.45

Images Set Used in Recognition Test

Input Output Dutput

-,. |.-'

N3 2206 T m 2206,

Input Qutput Input Qutput

|
2 \Vertical Blur

Figure 4.46
Average Real World Prediction Confidence Result

B Raw Input "' Recovered Output

Average Real World License Plate Recogniser Confidence
0.9

0.81
0.72
0.63
0.54

D45

Confidence

0.36
0.27
0.18

0.09

Low Light Horizontal Blur Vertical Blur Qut of Focus

87

CHAPTER 5
CONCLUSION

The research presented in this article studied a way to implement a fast license plate
image quality recovery for traffic monitoring in various poor situations. The proposed
framework uses the optimized lightweight encoder-decoder style CNN architecture built
inside a GAN model to do a recovery job alongside image classifications that detect in-
puts and verify outputs, helping the LPRGAN in a much more efficient and effective way.
This study proved that it could improve low bitrate, low light, and motion blur problems
from a single design network in many test cases. Not only that, this system is able to
outpace or be at the same quality level as other complex networks while performing the
task quickest. As a result, the proposed system can run on less computational power ma-
chines like most typical workstation PCs without a discreet graphic card at a reasonable
pace and is possible to deploy in embedded systems such as edge computing devices.
This study opens a new door for many power-constrained image recovery applications.
Such benefits make this framework easy to be deployed on traffic officer computers or
even embedded within camera recording boxes, aiding them in identifying vehicle li-
censes in inadequate conditions. Thus removing the need for a high-performance server

machine and greatly reducing network bandwidth usage between devices.

At this stage, the LPRGAN can render a real-time frame recovery up to 1280x720 @ 15fps,
which is sufficient for most typical CCT V/IP cameras, for example, Merit Lilin ZG1232EX3
(BMP, 15FPS) or Merit Lilin LR832 (2MP, 15FPS). As time passes, license plates can
be collected more, giving a model retraining even more performance gain. However,
this study demonstrated a few applications that this system could handle. It depends on
how the user provides a dataset for training because the system uses a good dataset as
a template and learns how a distorted dataset differs, so it would theoretically work in

other situations too.

88

REFERENCES

Adam optimizer in tensorflow. (2023, Jan). Retrieved from https://www
.geeksforgeeks.org/adam-optimizer-in-tensorflow

Belgian license plates. kaggle. (2022, Nov). Retrieved from https://www.kaggle
.com/datasets/aladdinss/license-plate-annotated-image-dataset

Cgan. conditional gan. (2022, Jul). Retrieved from https://keras.io/examples/
generative/conditional_gan

Chollet, F. (2016, May). Autoencoder. building autoencoders in keras. Retrieved from
https://blog.keras.io/building-autoencoders-in-keras.html

Dar, Y., & Bruckstein, A. M. (2015, Apr). Improving low bit-rate video coding using
spatio-temporal down-scaling. Multimedia cs.MM. Retrieved from https://
arxiv.org/abs/1404.4026v2

Dcgan. deep convolutional generative adversarial network. (2023, Nov). Retrieved from
https://www.tensorflow.org/tutorials/generative/dcgan

Develop, optimize and deploy gpu-accelerated apps. (2023, Mar). Retrieved from
https://developer.nvidia.com/cuda-toolkit

Fid score for pytorch. (2022, Jul). Retrieved from https://pypi.org/project/
pytorch-fid

Guo, S., Yan, Z., & Zhang, K. (2019, Jun). Toward convolutional blind denoising of
real photographs. IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). Retrieved from https://ieeexplore.ieee.org/document/
8954448

How to add motion blur to numpy array. (2016, Oct). Retrieved from
https://stackoverflow.com/questions/40305933/how-to-add-motion
-blur-to-numpy-array

How to implement the frechet inception distance (fid) for evaluating gans. (2022,
Jul). Retrieved from https://machinelearningmastery.com/how-to
-implement-the-frechet-inception-distance-fid-from-scratch

Image compression. (2022, Jul). Retrieved from https://en.wikipedia.org/wiki/
Image_compression

Image-to-image translation using pix2pix. (2022, Jun). Retrieved from https://www
.geeksforgeeks.org/image-to-image-translation-using-pix2pix

Jeff’s license plates. jeffsplates. (2022, Aug). Retrieved from http://

89

https://www.geeksforgeeks.org/adam-optimizer-in-tensorflow
https://www.geeksforgeeks.org/adam-optimizer-in-tensorflow
https://www.kaggle.com/datasets/aladdinss/license-plate-annotated-image-dataset
https://www.kaggle.com/datasets/aladdinss/license-plate-annotated-image-dataset
https://keras.io/examples/generative/conditional_gan
https://keras.io/examples/generative/conditional_gan
https://blog.keras.io/building-autoencoders-in-keras.html
https://arxiv.org/abs/1404.4026v2
https://arxiv.org/abs/1404.4026v2
https://www.tensorflow.org/tutorials/generative/dcgan
https://developer.nvidia.com/cuda-toolkit
https://pypi.org/project/pytorch-fid
https://pypi.org/project/pytorch-fid
https://ieeexplore.ieee.org/document/8954448
https://ieeexplore.ieee.org/document/8954448
https://stackoverflow.com/questions/40305933/how-to-add-motion-blur-to-numpy-array
https://stackoverflow.com/questions/40305933/how-to-add-motion-blur-to-numpy-array
https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-from-scratch
https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-from-scratch
https://en.wikipedia.org/wiki/Image_compression
https://en.wikipedia.org/wiki/Image_compression
https://www.geeksforgeeks.org/image-to-image-translation-using-pix2pix
https://www.geeksforgeeks.org/image-to-image-translation-using-pix2pix
http://www.jeffsplates.ca/wp-content/uploads/2018/07/E5E421DF-5108-456C-AE5B-A479BA65A1B2.jpeg
http://www.jeffsplates.ca/wp-content/uploads/2018/07/E5E421DF-5108-456C-AE5B-A479BA65A1B2.jpeg

www. jeffsplates.ca/wp-content/uploads/2018/07/E5E421DF-5108
-456C-AE5B-A479BA65A1B2 . jpeg

Jpeg. (2022, Jul). Retrieved from https://en.wikipedia.org/wiki/JPEG

Keras. (2023, Mar). Retrieved from https://keras.io

Kupyn, O., Martyniuk, T., & Wu, J. (2019, Aug). Deblurgan-v2: Deblurring (orders-of-
magnitude) faster and better. IEEE/CVF International Conference on Computer
Vision (ICCV). Retrieved from https://ieeexplore.ieee.org/document/
9008540

Langr, J., & Bok, V. (2019). Gans in action - deep learning with generative adversarial
networks. Manning.

Learning rate decay and methods in deep learning. (2022, Jul). Retrieved from
https://medium.com/analytics-vidhya/learning-rate-decay-and
-methods-in-deep-learning-2ceeb641910b

Li, Y, Liu, D., Li, H., Li, L., Wu, F., Zhang, H., & Yang, H. (2017, Jul). Convo-
lutional neural network-based block up-sampling for intra frame coding. /EEE
Transactions on Circuits and Systems for Video Technology. Retrieved from
https://arxiv.org/abs/1702.06728v3

Liang, J., Cao, J., Sun, G., Zhang, K., Gool, L. V., & Timofte, R. (2021, Aug). Swinir:
Image restoration using swin transformer. Image and Video Processing (eess.1V),
Computer Vision and Pattern Recognition (c¢s.CV). Retrieved from https://
ieeexplore.ieee.org/document/9878962

Lin, H., He, X., & Qing, L. (2019, May). Improved low bitrate hevc video coding
using deep learning based super-resolution and adaptive block patching. IEEE
Transactions on Multimedia. Retrieved from https://ieeexplore.ieee.org/
document/8723517

Offence relating to documents. chapter 3, section 264. thailand penal code thai crim-
inal law. (2022, Nov). Retrieved from https://www.samuiforsale.com/
law-texts/thailand-penal-code.html#3

Peak to signal noise ratio. (2022, Jul). Retrieved from https://sonalsart.com/
what-is-psnr

Petrov, A., Kartalov, T., & Ivanovski, Z. (2009, Nov). Blocking effect reduction in low bi-
trate video on a mobile platform. presented at ieee international conference on im-

age processing. IEEE International Conference on Image Processing. Retrieved

90

http://www.jeffsplates.ca/wp-content/uploads/2018/07/E5E421DF-5108-456C-AE5B-A479BA65A1B2.jpeg
http://www.jeffsplates.ca/wp-content/uploads/2018/07/E5E421DF-5108-456C-AE5B-A479BA65A1B2.jpeg
http://www.jeffsplates.ca/wp-content/uploads/2018/07/E5E421DF-5108-456C-AE5B-A479BA65A1B2.jpeg
https://en.wikipedia.org/wiki/JPEG
https://keras.io
https://ieeexplore.ieee.org/document/9008540
https://ieeexplore.ieee.org/document/9008540
https://medium.com/analytics-vidhya/learning-rate-decay-and-methods-in-deep-learning-2cee564f910b
https://medium.com/analytics-vidhya/learning-rate-decay-and-methods-in-deep-learning-2cee564f910b
https://arxiv.org/abs/1702.06728v3
https://ieeexplore.ieee.org/document/9878962
https://ieeexplore.ieee.org/document/9878962
https://ieeexplore.ieee.org/document/8723517
https://ieeexplore.ieee.org/document/8723517
https://www.samuiforsale.com/law-texts/thailand-penal-code.html#3
https://www.samuiforsale.com/law-texts/thailand-penal-code.html#3
https://sonalsart.com/what-is-psnr
https://sonalsart.com/what-is-psnr

fromhttps://ieeexplore.ieee.org/abstract/document/5414031

Ronneberger, O., Fischer, P., & Brox, T. (2015, May). U-net: Convolutional networks
for biomedical image segmentation. MICCAI 2015. Retrieved from https://
arxiv.org/abs/1505.04597v1

Sewar python package. (2022, Jul). Retrieved from https://pypi.org/project/
sewar

Sharma, R. (2022, Aug). Clustering vs classification: Difference between clustering &
classification. Retrieved from https://www.upgrad.com/blog/clustering
-vs-classification

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2015, Apr). Striving
for simplicity : The all convolutional net. ICLR 2015. Retrieved from https://
arxiv.org/abs/1412.6806v3

Structural similarity index. (2022, Jul). Retrieved from https://medium.com/
srm-mic/all-about-structural-similarity-index-ssim-theory-code
-in-pytorch-6551b455541e

Uk european license plate. european license plates. (2022, Aug). Re-
trieved from https://www.customeuropeanplates.com/images/
uk-license-plate. jpg

Use of disclosure of personal data, section 24 and 27. thai government gazette. (2022,
Aug). Retrieved from https://data.opendevelopmentmekong.net/
dataset/78c90118-6671-4c19-afel-7bfbace4d46a/resource/
ec616beb-9fbf-4071-b4b5-cb1f3e46e826/download/entranslation
_of_the_personal_data_protection_act_O.pdf

Us license plates. kaggle. (2022, Nov). Retrieved from https://www.kaggle.com/
datasets/tolgadincer/us-license-plates

Vallejos, R., Perez, J., Ellison, A. M., & Richardson, A. D. (2019, May). A spatial con-
cordance correlation coefficient with an application to image analysis. Methodol-
ogy (stat. ME). Retrieved from https://arxiv.org/abs/1905.05016

Vgg-16 cnn model. (2023, Jan). Retrieved from https://www.geeksforgeeks.org/
vgg-16-cnn-model

Visual information fidelity. (2022, Jul). Retrieved from https://www.sciencedirect
.com/topics/computer-science/visual-information-fidelity

Wang, X., Li, Y., & Zhang, H. (2021, Jun). Towards real-world blind face restoration

91

https://ieeexplore.ieee.org/abstract/document/5414031
https://arxiv.org/abs/1505.04597v1
https://arxiv.org/abs/1505.04597v1
https://pypi.org/project/sewar
https://pypi.org/project/sewar
https://www.upgrad.com/blog/clustering-vs-classification
https://www.upgrad.com/blog/clustering-vs-classification
https://arxiv.org/abs/1412.6806v3
https://arxiv.org/abs/1412.6806v3
https://medium.com/srm-mic/all-about-structural-similarity-index-ssim-theory-code-in-pytorch-6551b455541e
https://medium.com/srm-mic/all-about-structural-similarity-index-ssim-theory-code-in-pytorch-6551b455541e
https://medium.com/srm-mic/all-about-structural-similarity-index-ssim-theory-code-in-pytorch-6551b455541e
https://www.customeuropeanplates.com/images/uk-license-plate.jpg
https://www.customeuropeanplates.com/images/uk-license-plate.jpg
https://data.opendevelopmentmekong.net/dataset/78c90118-6671-4c19-afe1-7bfbace4d46a/resource/ec616be5-9fbf-4071-b4b5-cb1f3e46e826/download/entranslation_of_the_personal_data_protection_act_0.pdf
https://data.opendevelopmentmekong.net/dataset/78c90118-6671-4c19-afe1-7bfbace4d46a/resource/ec616be5-9fbf-4071-b4b5-cb1f3e46e826/download/entranslation_of_the_personal_data_protection_act_0.pdf
https://data.opendevelopmentmekong.net/dataset/78c90118-6671-4c19-afe1-7bfbace4d46a/resource/ec616be5-9fbf-4071-b4b5-cb1f3e46e826/download/entranslation_of_the_personal_data_protection_act_0.pdf
https://data.opendevelopmentmekong.net/dataset/78c90118-6671-4c19-afe1-7bfbace4d46a/resource/ec616be5-9fbf-4071-b4b5-cb1f3e46e826/download/entranslation_of_the_personal_data_protection_act_0.pdf
https://www.kaggle.com/datasets/tolgadincer/us-license-plates
https://www.kaggle.com/datasets/tolgadincer/us-license-plates
https://arxiv.org/abs/1905.05016
https://www.geeksforgeeks.org/vgg-16-cnn-model
https://www.geeksforgeeks.org/vgg-16-cnn-model
https://www.sciencedirect.com/topics/computer-science/visual-information-fidelity
https://www.sciencedirect.com/topics/computer-science/visual-information-fidelity

with generative facial prior. CVPR 2021. Retrieved from https://arxiv.org/
abs/2101.04061v2

Wu, W., Guo, X., Chen, Y., Wang, S., & Chen, J. (2022, Nov). Deep embedding-
attention-refinement for sparse-view ct reconstruction. IEEE Transactions on In-
strumentation and Measurement. Retrieved from https://ieeexplore.ieee
.org/document /9944644

Wu, W., Hu, D., Niu, C., Yu, H., Vardhanabhuti, V., & Wang, G. (2021, May).
Drone: Dual-domain residual-based optimization network for sparse-view ct re-
construction. IEEE Transactions on Medical Imaging. Retrieved from https://
ieeexplore.ieee.org/document/9424618

Yang, R., Xu, M., Liu, T.,, Wang, Z., & Guan, Z. (2018, Jul). Enhancing quality for
hevc compressed videos. IEEE Transactions on Circuits and Systems for Video
Technology (2018). Retrieved from https://arxiv.org/abs/1709.06734

Zamir, S. W., Arora, A., & Khan, S. (2022, Sep). Restormer: Efficient transformer for
high-resolution image restoration. IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Retrieved from https://ieeexplore.ieee
.org/document /9878962

Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., Yang, M.-H., & Shao, L.
(2020, Jul). Learning enriched features for real image restoration and enhance-
ment. European Conference on Computer Vision (ECCV) 2020. Retrieved from
https://arxiv.org/abs/2003.06792

Zhang, W., Zhou, Z., Gao, Z., Yang, G., Xu, L., Wu, W., & Zhang, H. (2022, Oct). Multi-
ple adversarial learning based angiography reconstruction for ultra-low-dose con-
trast medium ct. /IEEE Journal of Biomedical and Health Informatics. Retrieved
fromhttps://ieeexplore.ieee.org/document/9916111

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017, Mar). Unpaired image-to-image
translation using cycle-consistent adversarial network. ICCV. Retrieved from
https://arxiv.org/abs/1703.10593v7

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2020, Aug). Unpaired image-to-image
translation using cycle-consistent adversarial networks. ICCV. Retrieved from

https://arxiv.org/abs/1703.10593v7

92

https://arxiv.org/abs/2101.04061v2
https://arxiv.org/abs/2101.04061v2
https://ieeexplore.ieee.org/document/9944644
https://ieeexplore.ieee.org/document/9944644
https://ieeexplore.ieee.org/document/9424618
https://ieeexplore.ieee.org/document/9424618
https://arxiv.org/abs/1709.06734
https://ieeexplore.ieee.org/document/9878962
https://ieeexplore.ieee.org/document/9878962
https://arxiv.org/abs/2003.06792
https://ieeexplore.ieee.org/document/9916111
https://arxiv.org/abs/1703.10593v7
https://arxiv.org/abs/1703.10593v7

APPENDIX
LICENSE PLATE DATASET

Thai license plates dataset used in this work contains both actual plates and dummy
plates but only the latter is available upon request due to privacy infringement on per-

sonal information disclosure.

93

	AUTHOR'S DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Overview
	Problem Statement
	Objectives
	Limitations and Scope

	LITERATURE REVIEW
	Related Works
	CUDA and CuDNN
	Keras
	Deep Neural Network
	Image Classification
	Autoencoder
	U-Net
	GAN
	Supervised VS Unsupervised Training

	METHODOLOGY
	The Description of the Problems
	Dataset Preparation and Processing
	Low Bitrate Dataset
	Low Light Dataset
	Out of focus Dataset
	Horizontal Motion Blur Dataset
	Vertical Motion Blur Dataset
	Normal Dataset

	Proposed System, Model, and Layers
	MaxPooling VS Stride

	System Flowchart
	Data Reconstruction using LPRGAN
	Training Process
	Fixed Learning Rate VS Decay Learning Rate
	Detector/Qualifier Training
	Recovery System Training
	Fine Tuning Hyper Parameters
	Evaluation Process

	Testing Process
	Visual Approach
	Synthetic Metric Approach
	Hardware
	Software
	Test Scene

	RESULT
	Classification Training Result
	Classification Testing Result
	Optimization
	Kernel Size
	Layer Depth Configuration
	Stride VS Maxpooling2D
	Sigmoid VS Tanh as Activation Function
	Learning Rate Adjustment
	Decay Rate Adjustment
	ADAM Optimizer Adjustment
	Best Saved Weight Selection

	LPRGAN Testing Result
	Low Bitrate Problem
	Low Light Problem
	1-Axis Motion Blur Problem
	Out Of Focus Problem
	International License Plate Test
	Metric Measurements Result
	Real World License Plates Test
	Real World License Plate Recognition Test

	CONCLUSION
	REFERENCES
	APPENDIX: LICENSE PLATE DATASET
	LICENSE PLATE DATASET

